
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

利用邊緣運算最佳化360度全景影片之頭戴式虛擬實境串流

Edge-Assisted 360-degree Video Streaming for Head-Mounted

Virtual Reality

羅文志

Wen-Chih Lo

學號：105062620

Student ID:105062620

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 107年 7月

July, 2018

Acknowledgments

I would like to express my gratitude toward all the people who helped me

in the past two years. I would not be able to finish my thesis were it not with-

out your help along the way. I want to thank my parents specifically, for it is

they who provided me with the firm support and stood behind my decisions. I

would also like to thank my labmates in Networking and Multimedia Systems

Laboratory, especially Ching-Ling Fan, Hua-Jun Hong, and Pin-Chun Wang,

who helped me a great deal in the course of my research. Lastly, I would like

to express my gratitude toward my adviser: Prof Cheng-Hsin Hsu. Without

the guidance and the suggestion I received from him, I would not be able to

accomplish what I have done and learned so much.

2

致致致謝謝謝

在此我要感謝在過去兩年中所有幫助過我的人，如果沒有你們的

幫助我一定沒有辦法順利完成我的論文。 在此我要特別感謝我的父

母，他們提供我堅定不移的支持，同時也支持我所作的每一個決定。

我也要感謝網路與多媒體系統實驗室的同學們，特別是樊慶玲、洪華

駿、王品淳及其他實驗室同仁在過去兩年中，不管是研究或人生課題

都幫助我非常的多。最後，我要感謝我的指導教授：徐正炘教授。如

果沒有他的給予我的指導以及建議，在過去的兩年內我一定沒辦法完

成如此多的事情以及學到如此多的東西。

3

Abstract

Over the past years, 360◦ video streaming is getting increasingly popular.

Watching these videos with Head-Mounted Displays (HMDs), also known as

VR headsets, gives a better immersive experience than using traditional pla-

nar monitors. However, several open challenges keep state-of-the-art technol-

ogy away from the immersive viewing experience, including high bandwidth

consumption, long turn around latency, and heterogeneous HMD devices. In

this thesis, we propose an edge-assisted 360◦ video streaming system, which

leverage edge networks to perform viewport rendering. We formulate the op-

timization problem to determine which HMD client should be served without

overloading the edge devices. We design an algorithm to solve the problem

as mentioned earlier, and a real testbed is implemented to prove the concept.

The resulting edge-assisted 360◦ video streaming system is evaluated through

extensive experiments with an open-sourced 360◦ viewing dataset. With the

assistance of edge devices, we can reduce the bandwidth usage and compu-

tation workload on HMD devices when serving the viewers. Also, the lower

network latency is guaranteed. We also conduct several extensive experiment.

The results show that compared to current 360◦ video streaming platforms,

like YouTube, our edge-assisted rendering platform can: (i) save up to 62% in

bandwidth consumption, (ii) achieve higher viewing video quality at a given

bitrate, (iii) reduce the computation workload for those lightweight HMDs.

Our proposed system and the viewing dataset are open-sourced and can be

leveraged by researchers and engineers to improve the 360◦ video streaming

further.

4

中中中文文文摘摘摘要要要

近年來，360度全景影片蔚為流行。諸多廠商也爭相發表各自的頭

戴顯示器。與傳統的平面式螢幕相比，使用頭戴顯示器觀看360度全

景影片，提供使用者更好的觀看體驗。然而，為了實現高品質的沈浸

式觀看體驗，有諸多挑戰必須一一克服，例如：網路延遲、頻寬消耗

等。在這篇論文中，我們提出利用邊緣運算360度全景影片之頭戴式

虛擬實境串流系統。此外，我們更設計了一最佳化演算法，此演算法

根據不同的使用者採取不同的串流策略，並能有效地降低網路延遲且

提高使用者的觀看體驗。為了驗證本系統及演算法的效能，我們也蒐

集並公開了一360度全景影片使用者觀看習慣資料庫，利用此資料庫，

我們具體量化了利用邊端運緣360度全景影片之頭戴式虛擬實境串流系

統的優缺點。在與現有的串流系統相比下，我們的系統（一）降低頻

寬消耗、（二）提供較好的使用者觀看體驗及（三）降低使用者端的

運算資源消耗。此串流系統及使用者觀看習慣資料庫皆已在網路上開

源，希望能幫助到產、學界對此領域有興趣的研究者。

5

Contents

Acknowledgments 2

致致致謝謝謝 3

Abstract 4

中中中文文文摘摘摘要要要 5

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Organization . 5

2 Background 7

2.1 360◦ Videos Preprocessing . 7

2.2 360◦ Videos Streaming . 8

2.3 Edges Computing . 9

2.4 360◦ Videos Quality Assessments . 10

3 System Architecture 12

3.1 Cloud Server . 12

3.2 Edge Server . 14

3.2.1 Tile Rewriting (TR) . 15

3.2.2 Viewport Rendering (VPR) . 15

3.3 HMD Client . 16

4 Optimal Edge-Assisted Rendering to Head-Mounted Displays 17

4.1 Notations and Models . 18

4.2 Formulation . 19

4.3 Proposed Algorithm . 20

5 360◦ Videos Viewing Dataset 24

5.1 Content Traces . 24

5.2 Sensor Traces . 27

5.3 Dataset Format . 28

5.3.1 Content Dataset . 28

5.3.2 Sensor Dataset . 28

6

6 Evaluations 32

6.1 Implementations . 32

6.2 Setups . 33

6.3 Results . 34

7 Related Work 43

7.1 360◦ Video Acquisition . 43

7.2 360◦ Video Encoding . 46

7.3 360◦ Video Transmission . 49

7.4 360◦ Video Quality Assessment . 52

8 Conclusion and Future Work 56

Bibliography 58

7

List of Figures

1.1 Current pipeline of 360◦ video streaming platform, using YouTube for

illustration. 2

1.2 360◦ video streaming, caching, and rendering with edge networks. 3

2.1 Basic planar projections are widely used in the academia and industry. . . 7

2.2 A viewer watches a 360◦ video with an HMD. He or She rotates his or

her head to change the viewing orientation and only gets to see a small

portion (about 100◦x100◦ circle) of the whole video. 8

2.3 Rendering AR/VR content on edge servers then delivered through (a) Cel-

lular Networks and (b) Internet. 10

3.1 The system design of our proposed 360◦ edge-assisted streaming system. 12

3.2 (a) The implemented modules of cloud server and (b) a video processing

pipeline of ERP video. 13

3.3 (a) The implemented modules of edge server and (b) TR and VPR stream-

ing pipeline. 15

3.4 A sample clip of TR approach in equirectangular projection. 16

3.5 A sample clip of VPR approach in equirectangular projection. 16

4.1 Interactions among the core components of our proposed edge server. . . 17

4.2 The average bandwidth consumption when viewer watching 360◦ videos,

including 1x1, 3x3, 5x5, 7x7 tiles, and only viewport scene. 22

4.3 Video quality gain if the rendering approach is transformed from TR to

VPR. 23

5.1 (a), (d), (g), (j): sample 360◦ video frames; (b), (e), (h), (k): image

saliency maps; and (c), (f), (i), (l): motion maps. Samples from Char-

iot Race: (a), (b), (c); from Roller Coaster: (d), (e), (f); from Hog Rider:

(g), (h), (i); and from Kangaroo Island: (j), (k), (l). 25

5.2 A photo of our 360◦ video streaming testbed. During the experiments,

most subjects prefer to stand when watching videos. 27

8

5.3 Sample lines of a raw sensor data log file. 28

5.4 Sample lines of a view orientation log file. 29

5.5 Sample lines of a viewed tile log file. 30

6.1 Network topology. 33

6.2 Consumed bandwidth of CUR, OPT, and PRO, when edge server capacity

E = 10. 35

6.3 Consumed Bandwidth of OPT and PRO, compared to CUR, when edge

server capacity is increasing, where E = (5, 10, 15, 20, 25). 36

6.4 Video quality in Viewport-PSNR of OPT and PRO, compared to CUR,

where edge server capacity E = 10 and available outbound bandwidth B

= 1 Gbps. 37

6.5 Video quality in Viewport-PSNR of OPT and PRO algorithm. 38

6.6 Video quality improvement of OPT and PRO algorithms. 39

6.7 Video quality improvement of OPT and PRO algorithms. 39

6.8 Video quality improvement of OPT and PRO algorithms. 40

6.9 Latency of edge server and HMD client. 41

6.10 Latency of cloud server and HMD client. 41

6.11 Power consumption (mW) of CUR, TR, and VPR. 42

6.12 Normalized power consumption with diverse edge server capacity. 42

9

List of Tables

1.1 Terms and Synonyms Related to 360◦ Videos Streaming 5

2.1 The Proposed Objective Quality Metrics For 360◦ Videos 11

4.1 Symbols Used Throughout This Paper 18

5.1 Specifications of Ten 360◦ Videos from YouTube 26

5.2 Content Data Files of Ten 360◦ Videos 29

5.3 Sensor Data Files of 50 Subjects . 31

6.1 Running Time (s) of OPT and EDD, when there are 40 HMD clients and

outbound bandwidth B = 0.3 Gbps. 36

6.2 Rendering Time (ms) of each video sequences from 360◦ video viewing

dataset. 40

10

Chapter 1

Introduction

In recent years, augmented and virtual reality (AR/VR) technologies are rapidly grow-

ing and have attracted attention from both academia and industries. AR/VR have drawn

attention to several possible use scenarios, such as gaming, education, and transporta-

tion. According to the report from IDC [87], it indicates that more than a billion people

worldwide will regularly use and access AR/VR apps, content, and data by 2021. Market

research [2] also shows that the AR/VR market will drive 108 billion USD annual revenue

by 2021. Watching AR/VR content (e.g., 360◦ videos) has become one of the most recent

trends.

Using traditional planar monitors, however, to watch a live 360◦ video, especially ac-

tivities, such as a football match or a music concert is a passive experience. Watching

these videos with Head-Mounted Displays (HMDs), also known as VR headsets, view-

ers can dynamically change their viewports during playout time for a better immersive

viewing experience. Over the past years, AR/VR products, such as HMDs, have become

easily accessible. Many companies release their HMDs, such as Oculus Rift DK2 [7],

HTC Vive [9], HTC Vive Focus [10], Samsung Gear VR [16], Google Cardboard [8], and

Sony PlayStation VR [17]. These products offer viewers wider Field-of-Views (FoVs)

and provide a more immersive experience than traditional televisions and monitors. Fur-

thermore, lots of 360◦ cameras also come to the market, for instance, Ricoh Theta S [14],

Luna 360 VR [12], and Samsung Gear 360 [15]. On top of that, major multimedia stream-

ing service providers, such as Facebook [6] and YouTube [18] now support 360◦ video

streaming for VR content, as shown in Fig. 1.1. With the growing popularity of AR/VR

goods and services, people are able to watch 360◦ videos at anytime and from anywhere.

By leveraging recent advances in hardware, storage/memory, communication, computing,

computer vision, and other adjunct areas will allow novel applications of 360◦ videos.

For example, Facebook spaces [3] allow users to socialize with their friends from differ-

ent places in a shared virtual room. For retailers, customers may buy clothes online with

1

virtual fitting rooms to save the commute time and expense. In education, HMDs may

capture more students’ attentions at lower costs for more intuitive classroom experience.

Without a doubt, AR/VR may bring a brand new way of working, communication, and

entertainment in the near future.

Figure 1.1: Current pipeline of 360◦ video streaming platform, using YouTube for illus-

tration.

However, there are several open challenges that keep state-of-the-art technology away

from immersive viewing experience, including high bandwidth consumption, long turn

around latency, and heterogeneous HMD devices. The following are some observations

on these three challenges:

• High bandwidth consumption. The resolution of 360◦ videos is commonly above

4K to contain a more comprehensive view than conventional videos, which then

increases Internet traffic. However, there is no need to stream whole 360◦ videos

all the time. The viewers never watch the whole 360◦ videos; instead, they can only

rotate his/her head to change the viewing orientation when watching a 360◦ video

and wearing an HMD. Simultaneously, HMD displays the current FoV based on the

orientation.

• Latency-sensitivity. The 360◦ viewing experience is extremely latency-sensitive.

However, human perception requires accurate and smooth movements, and some

researches show that the round-trip latency should be less than 60ms to avoid mo-

tion sickness [29, 65]. Severe latency can lead to detached immersive experience

and a motion sickness.

• Heterogeneous HMD devices. So far there are three types of released HMDs, in-

cluding i) HMD connected with a PC, like Oculus Rift DK2), ii) HMD connected

with a mobile device, such as Samsung Gear VR, and iii) standalone HMD, like

HTC Vive Focus. Based on a critical observation [62]: we know that different

HMD device demonstrates different computing power and network condition. All

three types of HMD devices perform viewport rendering locally. Thus, to acceler-

ate computation and render high-resolution viewports for HMDs, a high-end GPU

is needed. Yet, the cables are cumbersome, when HMDs are connected to GPU-

equipped PCs. Such standalone HMDs are way heavier because of the extra GPUs

2

and batteries. The high hardware requirements, however, result in inconvenience

and an uncomfortable viewing experience.

Figure 1.2: 360◦ video streaming, caching, and rendering with edge networks.

To resolve the challenges, we first study the state-of-the-art streaming pipeline of 360◦

video [22, 103, 104, 42, 36]. To reduce bandwidth consumption, we will split the 360◦

videos into tiles of subvideos, which are encoded by modern video codecs, such as HEVC

(High Efficiency Video Coding) [95], into video bitstreams, which can be further encoded

into multiple various quality at different bitrates. With a variety versions of tiles, HMD

client can request and decode those tiles that will be watched in high quality only, and

other non-watched tiles will be in low-quality to conserve bandwidth.

Even so, due to the fact that different HMD device has different computing power,

we then propose an edge-assisted 360◦ video streaming system to come across hetero-

geneous HMD devices. To be more specifically, we will render user’s viewport on edge

devices, such as base station, access points, and IoT devices, to optimally allocate bi-

trate and shorten latency. Fig. 1.2 summarizes three different streaming and rendering

approaches. Starting from the top is the state-of-the-art 360◦ video streaming system,

which serves as baseline in this thesis. In the middle is the Tile Rewriting (TR) approach.

TR approach is suitable for devices with low bandwidth since it streams tiles that will be

watched in high quality while the others go in low quality. Viewport Rendering (VPR),

at the bottom, on the other hand is compatible for light-weight HMD devices because

computation demanding process is offloaded to edge devices. By rendering user’s view-

port scenes on edge devices, we are able to not only create a lightweight HMD devices

3

which gives users a better viewing experience, but also have guaranteed lower network

latency.. However, the computation resource of an edge server is limited. It is challenging

to optimally determine which HMDs should be served by edge devices. For example, for

those HMDs tethered with a mobile device and standalone HMDs, we tend to perform the

viewport rendering on edge devices to reduce the computation workload on those HMDs.

Otherwise, for those HMDs connected to GPU-equipped PCs, we are only streaming tiled

videos and performing the viewport rendering on HMDs themselves. Fig. 1.2 illustrates

from top to bottom: (i) current 360◦ video streaming, (ii) Tile Rewriting (TR), and (iii)

Viewport Rendering (VPR) approach.

To tackle the challenges, we first formulate the optimization problem to determine

which HMD should be utilized without overloading the edge devices. We then design an

algorithm to solve the aforementioned problems properly, and implemented a real testbed

to prove the concept. The resulting edge-assisted 360◦ video streaming system is eval-

uated through extensive experiments with an open-sourced 360◦ viewing dataset [62].

Compared to current 360◦ video streaming platforms, like YouTube, our edge-assisted

rendering platform can: (i) save up to 62% in bandwidth consumption, (ii) achieve higher

video quality at a given bitrate, and (iii) reduce the computation workload.

To avoid confusion, Table 1.1 shows the definition of some terms used in this thesis,

and their synonyms if necessary.

1.1 Contributions

In this thesis, we study the aforementioned challenges and present our 360◦ viewing

dataset collected from ten YouTube 360◦ videos and 50 subjects. Also, we develop the

edge-assisted 360◦ videos rendering system adopting and propose the optimization algo-

rithms to perform the 360◦ video rendering in edge networks. Specifically, in this thesis,

we made the following contributions:

• We study the existing 360◦ video streaming platforms, discover their limita-

tions, and then improve them by designing a new edge-assisted 360◦ video

streaming system, which supports TR and VPR approaches, to accommodate the

different HMD clients. Our edge-assisted 360◦ video streaming system can save

bandwidth consumption without degrading the video quality while guaranteeing

low network latency. Furthermore, by rendering user’s viewport scenes on edge de-

vices, we also make HMD devices light weight, which allows users a better viewing

experience.

• We formulate and design an optimization algorithm for the optimal edge-assisted

rendering to target HMDs problem. We then validate the proposed algorithm us-

4

Table 1.1: Terms and Synonyms Related to 360◦ Videos Streaming

Term Definition Synonyms

360◦ Video A video captures a view in every direction at the

same time.

Omnidirectional video,

panoramic video, and

spherical video

Virtual Reality

(VR)

A human-made virtual environment with artifi-

cial objects, which can be explored by users.

Augmented

Reality (AR)

Similar to VR, but AR combines some virtual

objects with real environments, where users are

currently at.

Mixed Reality (MR)

Viewport A portion of videos that are viewable to a 360◦

video viewer.

Field-of-View (FoV)

and Region-of-Interest

(RoI)

Projection A mathematical transform to convert videos

from one space (such as spherical space) to an-

other space (such as 2D planar plane).

Mapping

Head-

Mounted

Display

(HMD)

A display mounted in front of a viewer’s eyes

for immersive 360◦ video viewing experience.

VR headset

ing our developed system.

• We conduct extensive experiments to quantify the performance of our pro-

posed algorithm using the 360◦ viewing dataset collected from ten YouTube 360◦

videos and 50 subjects. We also released the 360◦ viewing dataset and scripts that

we used to calibrate the 360◦ viewing dataset for any research purposes [62].

1.2 Thesis Organization

The rest of this thesis is organized as followed: we give an introduction and list down

the challenges of 360◦ video streaming in Chapter 1; the background knowledge of 360◦

videos in Chapter 2; our edge-assisted 360◦ video streaming system proposal to con-

quer the aforementioned challenges, the system architecture, detail of the hardware, and

software components in Chapter 3; formulations targeting the optimization problem to

determine which HMD should be served without overloading the edge devices, and also

introduce optimal edge-assisted rendering problem in Chapter 4; collected content and

sensor dataset in Chapter 5; extensive experiments to quantify the performance of our

proposed algorithm using the 360◦ viewing dataset in Chapter 6; the related works of

5

360◦ video streaming works in Chapter 7; and a conclusion of our contributions and dis-

cuss the future works in Chapter 8.

6

Chapter 2

Background

In this chapter, we briefly introduce the background knowledge of 360◦ video streaming

and cloud/edge computing.

2.1 360◦ Videos Preprocessing

360◦ video is usually acquired with multiple camera arrays or a camera device with multi-

ple lenses and image sensors to cover the entire 360◦ scene with high resolution and frame

rate. However, this would burden the storage and transmission of 360◦ videos. Hence,

to stream 360◦ Video over modern Internet, we have to pre-process the videos, including

projecting, tiling, and encoding.

Figure 2.1: Basic planar projections are widely used in the academia and industry.

Planar Projection. To overcome the aforementioned challenges, the use of efficient

compression algorithms is inevitable. Several coding standards are available for com-

pressing 360◦ video sequences, such as Advanced Video Coding (H.264/AVC) [106] and

High Efficiency Video Coding (H.265/HEVC) [95]. However, the 360◦ video is omni-

directional, which means the view in every direction is recorded at the same time. For

compressing the omnidirectional videos, a projection onto a two-dimensional (2D) im-

age plane is necessary. Fig. 2.1 illustrates the commonly used projections, including

7

equirectangular projection (ERP), cubemap projection (CMP), pyramid projection (PRP),

etc. The coding of omnidirectional content using different projections is widely studied

in the literature [23, 44, 57, 68, 98]. Among the other projections we mentioned, the ERP

is the most popular format for 360◦ videos due to its ease of use and wide support in both

hardware and software. Thus, on behalf of the ease of use and high portability, we use the

ERP as our default projection.

Tile-based Video Coding. As shown in Fig. 2.2, when watching a 360◦ video, a

viewer wearing an HMD would have to rotate his or her head to change the viewing

orientation, which can be described by the angles along the x, y, and z axes, or roll, pitch,

and yaw respectively. Based on the orientation, the HMD displays the current FoV, which

is a fixed-size region, such as a 100◦x100◦ circle. Since a viewer never sees the complete

360◦ view, streaming the 360◦ video in its full resolution wastes resources, including

bandwidth, storage, and computation. Therefore, we can split each 360◦ video into grids

of sub-images, called tiles[42, 36]. With tiles, an optimized 360◦ video streaming system

to HMDs would strive to stream only the tiles that fall in the viewer’s FoV. By doing so,

the system satisfies the viewer’s needs while consuming less resources than streaming the

whole video at its full resolution.

Figure 2.2: A viewer watches a 360◦ video with an HMD. He or She rotates his or her head

to change the viewing orientation and only gets to see a small portion (about 100◦x100◦

circle) of the whole video.

2.2 360◦ Videos Streaming

Traditional streaming protocols are stateful, such as Real-Time Transport/Streaming Pro-

tocol (RTP/RTSP). Once a client connects to a streaming server, the streaming server will

keep track of a client’s state until it disconnects. Generally speaking, the user and stream-

ing server will have frequent interactions with one other. Once the session between the

8

user and streaming server has been established, the streaming server will continuously

send media content as a stream of packets to the users over UDP or TCP protocol.

Dynamic Adaptive Streaming over HTTP (DASH) addresses the weaknesses of RTP/RTSP-

based streaming. In contrast to traditional streaming protocol, the HTTP is stateless pro-

tocol. One critical difference between these two streaming protocol is that if a stateful

stream stops and the system is reset, there is a need to take care of saving the state; on

the other hand, stateless streaming protocol does not have any state to save so it’s gener-

ally simpler. For example, if a client requests some data over HTTP protocol, the server

responds and sends the data. Then, the transaction is terminated. Each HTTP request

is handled as a standalone one-time transaction. In addition, HTTP is widely supported,

only requires a single port, traverse firewalls, media segments can be cached, and sent

over Content Distribution Networks (CDNs). DASH streaming generally works by split-

ting the source files into multiple segments which are then delivered over HTTP protocol.

Generally speaking, the same media content can have multiple representations; thus the

source file can be encoded for different screen resolutions and with different bitrates (qual-

ity levels). These processes enable the adaptive streaming. So when a client first requests

the manifest and reads the necessary information then it starts downloading the media

segments.

2.3 Edges Computing

Nowadays, cloud computing is getting mature and widely used in multiple areas. How-

ever, there are some shortages of cloud computing. For example, cloud computing cannot

deal with large amounts of data and satisfy latency-sensitive application, such as 360◦

video streaming. Transmitting large amounts of data to/from the cloud would result in

congestion networks and longer latency.

Proposed by Cisco [26], edge computing addresses the shortages of cloud computing.

Edge computing pushes applications, data, and services away from centralized worksta-

tion to the logical extreme (i.e., edge) devices of the Internet, which may spread over a

vast area. With the assistance of distributed edge devices, we can use them to carry out

computation, storage, communication locally (near the source of the data created), in-

stead of relying on the cloud. With edge computing, we are able to run applications and

store data on the edge devices, which are closer to users. It helps reducing latency, saving

network resources, and achieving location awareness.

Fig. 2.3 illustrates the two types of edge devices: (a) remote edge servers, such as

gateways and base stations, delivering data to users over 4G/5G cellular networks, and

(b) local edge servers, such as access points and IoT devices, delivering data to users over

9

Wireless Local Area Network (WLAN), such as WiFi and mmWave. The advantage of

leveraging edge devices for rendering user’s viewport scenes is portability, it allows users

to watch 360◦ videos from any place at anytime without wearing a heavy HMD. Mobil-

ity can also be ensured, but it will require the AR/VR applications to support migration

between edge servers based on the movement of users. For instance, if the edge server

is implemented at a base station of a cellular network (i.e., cell), it could be located far

from the users. If the users move from a cell to the neighbor cell, then AR/VR applica-

tions have to be migrated to the edge server implemented with the neighbor cell. With

the assistance from edge devices, the lower network latency is guaranteed. For example,

delivering media data to users from edge servers, which is located closely with each other,

can be performed using WLAN and is not expected to have severe network delay.

(a)

(b)

Figure 2.3: Rendering AR/VR content on edge servers then delivered through (a) Cellular

Networks and (b) Internet.

2.4 360◦ Videos Quality Assessments

Video Quality-of-Experience (QoE) refers to the video quality human perceive, which can

only be quantified using rigorously designed testbeds and procedures. The QoE metrics

are either: (i) subjective or (ii) objective. The subjective metrics are from user inputs,

most likely through some questionnaires; on the other hand, the objective metrics are

from computer algorithms. The subjective metrics are better at depicting actual human

10

perception, but it requires more efforts to design, conduct, and analyze. In contrast, the

objective metrics are easier to derive, but may deviate from the real human perception.

QoE metrics have been crucial for multimedia application. However, the traditional QoE

metrics are not suitable for AR/VR content (e.g., 360◦ videos), due to the planar projec-

tion, which we performed. Such as the ERP, it will cause severe distortion at the area near

the zenith and nadir, which would result in the inaccurate data.

To conquer the aforementioned challenges, several metrics have been proposed to

optimize the 360◦ videos in terms of QoE levels, such as Viewport PSNR (V-PSNR),

Spherical PSNR (S-PNSR), Weighted S-PNSR (WS-PSNR), S-PSNR-NN, WS-PSNR,

and CPP-PSNR [112, 113]. Table 2.1 lists and summarizes these proposed objective

metrics. In this thesis, we adopt WS-PSNR to be our default objective metrics.

Table 2.1: The Proposed Objective Quality Metrics For 360◦ Videos

Metrics Description

V-PSNR Calculate the PSNR based on a point set only fallen in

the viewer’s viewport.

S-PSNR Calculate the PSNR of a given set of points that are

defined on a sphere surface.

WS-PSNR Calculate the PSNR of a given set of points that are

(chosen) defined on a sphere with different weight on each point.

S-PSNR-I/S-PSNR-NN Calculate the PSNR of a given set of point with/without

interpolation (rounding to the nearest integer).

CPP-PSNR Calculate the PSNR between different projections both of

them are mapped into equal area projection.

11

Chapter 3

System Architecture

In this chapter, we will give an overview of our proposed edge-assisted 360◦ video system

and introduce the detailed components that contributes the system. Fig. 3.1 illustrates the

architecture of our edge-assisted 360◦ video streaming system. Our edge-assisted 360◦

streaming system contains three major components: cloud server, edge server, and HMD

client. We will introduce each of them below.

Figure 3.1: The system design of our proposed 360◦ edge-assisted streaming system.

3.1 Cloud Server

We implement three modules inside the cloud server. Fig. 3.2(a) gives diagram of the

components on cloud server. The cloud server contains three software components: au-

diovisual preprocessor, encoder, and sender.

The uncompressed videos are first processed by the audiovisual processor, which in-

cludes the stitching and transforming projection format. As we mentioned earlier, we

adopt ERP as the default planar projection format. Fig. 3.2(b) gives a processing pipeline

12

(a)

(b)

Figure 3.2: (a) The implemented modules of cloud server and (b) a video processing

pipeline of ERP video.

of ERP video. Each video is spilt into tiles, and encoded using HEVC. Encoding a tiled

video using HEVC encoder is a unique process. We summarize the key differences below.

Motion constrained. First, we encode the tiled video with motion constrained. In

motion prediction, a tile could refer to data of another tile in a previous or future ref-

erence frames, leading to decoding glitches. This might induce some drawbacks on the

client: requiring tracking which tiles in a frame are referred to which other tiles in other

frames, and downloading the supplementary or non-displayed information for the purpose

of reconstructing the tiles correctly. Therefore, Feldmann et al. [40] propose to constrain

the tiles encoding so that each tile only refers to the same tiles in previous or future frames,

which reduces the complexity on the clients and in the networks.

In-loop Deblocking Filter. Second, we disable the In-loop Deblocking Filter (DBF).

HEVC uses an In-loop DBF and a Simple Adaptive Offset Filter (SAO) to improve the

decoded video quality. Because of the motion-constrained encoding, the filtering opera-

tion may miss some information from the neighboring tiles, which leads to negative side

effects. Therefore, the in-loop filter needs to be disabled at the border of tiles to avoid the

artifacts.

The coded videos are then streamed independently using MPEG DASH. This works

by splitting the source files into multiple segments which are then delivered over the

13

HTTP protocol. The same content can have multiple representations, which means the

source file can be encoded in different screen resolutions and with different bitrates (qual-

ity levels). There are two main features enable DASH streaming of 360◦ videos: Media

Presentation Description (MPD) [94] and Spatial Representation Description (SRD) [70],

which are detailed below.

MPD. MPD is an Extensible Markup Language (XML) document that describes an

adaptive streaming session. It contains the media segment information, such as times-

tamp, URL, video resolution, bitrates, and bandwidth restrictions.

SRD. Describing the relationship among tiles, SRD, is a feature extending the MPD

of MPEG DASH. It provides additional information to further help DASH clients on

determining which tiles to request. SRD puts the media content in a 2D coordinate system,

providing the x-axis, y-axis, width, and height attributes. Note that SRD only describes

how the content is spatially organized, but does not presume anything on how a DASH

client uses this information. This enables the HMD clients to freely select and display

only those tiles that are relevant. To stream these tiles, we then implement an Apache

HTTP server to be our audiovisual sender.

3.2 Edge Server

The edge server is the main component of our proposed system, which acts like a render-

ing approach handler. As emphasized in Fig. 3.1, there are several software components

implemented on edge server: Resource Logger/Receiver, Orientation Logger/Extractor,

Mode Selector, Tile Rewriter, and Viewport Renderer. We define two types of network

flows in the architecture: the behavior/resource flow and the video/audio flow.

Behavior/Resource flow. The behavior/resource flow is consisted of non-audiovisual

data. Inside the edge server, the Resource Receiver is to get the specifications of HMD

client, such as resolution, frame rate, and FoV, which are recorded by Resource Logger

implemented on the HMD client. The Orientation Extractor is to get the viewer’s head

position and orientation, which are logged by Orientation Logger implemented on the

HMD client. Then, the Mode Selector leverages the collected data to determine which

streaming approach (TR or VPR) we should use.

Audio/Video flow. The audio/video flow is consisted of audiovisual data, such as

tiles. The tiles are first downloaded from cloud server to edge server. After Mode se-

lector determines the streaming approach, the tiles will be processed by Tile Rewriter or

Viewport Renderer appropriately. The processed video content is then encapsulated into

a single HEVC bitstream and delivered to the HMD client to generate the viewer’s FoV

for display.

14

3.2.1 Tile Rewriting (TR)

Fig. 3.3(b) shows the processing pipeline of TR. It first parses the MPD (with SRD info).

According to viewer’s orientation, the edge server downloads only those tiled videos that

fall in the viewer’s FoV from cloud server. Based on the SRD info, Tile Rewriter is

responsible for concatenating and encapsulating the tiled videos into a single HEVC bit-

stream. Fig. 3.4 gives a sample clip of TR approach.

(a)

(b)

Figure 3.3: (a) The implemented modules of edge server and (b) TR and VPR streaming

pipeline.

3.2.2 Viewport Rendering (VPR)

The edger server downloads only the tiled videos that fall in the viewer’s FoV from the

cloud server. Viewport Renderer is responsible for rendering the viewer’s FoV and

encapsulating the viewport video into a single HEVC bitstream. Fig. 3.5 gives a sample

clip of the VPR approach.

15

Figure 3.4: A sample clip of TR approach in equirectangular projection.

Figure 3.5: A sample clip of VPR approach in equirectangular projection.

3.3 HMD Client

With HMD, each viewer only gets to see a small part of the whole 360◦ video. Therefore,

streaming the entire 360◦ video in full resolution is a waste of bandwidth. Thus, we

leverage a crowd-sourced 360◦ viewing dataset [62] to select and download only the tiles

that fall in the viewers FoV.

A single HEVC decoder is used to decode the received video, including the tiled

and viewport ones. Watching 360◦ videos with 4K UHD resolution or higher is quite

challenging due to hardware limitations (slow CPUs or single decoder chip) on some

resource-constrained end devices. The tile and viewport video content are encapsulated

into a single HEVC bitstream, and thus, only requires a single standard HEVC decoder.

The HEVC decoder passes the decoded videos to the audiovisual player to generate the

viewer’s FoV for display.

16

Chapter 4

Optimal Edge-Assisted Rendering to

Head-Mounted Displays

Different HMDs have varied computing power and network conditions. For example,

HMDs tethered to PCs have the luxury of powerful GPUs and high network bandwidth,

while standalone HMDs are limited by weak (or zero) GPUs and battery capacity. We

consider the problem of capitalizing the edge servers to assist HMDs to render scenes.

Each edge server however has a limited computing power and network bandwidth. Thus,

we must carefully choose the best ways to assist individual HMDs for maximizing the

overall video quality improvement without overloading: (i) networks, (ii) edge servers,

and (iii) HMDs. For example, an edge server should allocate its resources to HMDs with

weaker GPU or lower battery levels. In this chapter, we formulate an edge-assisted ren-

dering problem to systematically allocate the resources of every edge server and propose

an algorithm to solve this problem.

Figure 4.1: Interactions among the core components of our proposed edge server.

17

4.1 Notations and Models

Table 4.1 summarizes the symbols used in the thesis. Each 360◦ video is divided into S-

second segments, and each segment is cut into T tiles. The tiles then are encoded at two

bitrates: bh for high-quality tiles and bl for low-quality tiles, where bh and bl are system

parameters. Let N be the number of HMD clients connected to an edge server. The edge

server has an outbound bandwidth of B, and can ender scenes for at most E HMD clients.

The viewer of HMD client n (∀n = 1, 2, · · · , N) has an orientation On, where On is the

central tile index; the FoV of n is given by the width fw

n
and height fh

n
in the unit of tiles.

Tile Rewriting (TR) renders the FoV with higher bitrate bh while rendering other re-

gions (e.g., out of FoV) with lower bitrate bl. On the other hand, Viewport Rendering

(VPR) only renders the viewport with higher bitrate bh.

Table 4.1: Symbols Used Throughout This Paper

Symbol Description

N Set of all HMD clients

n Index of a HMD client

B Outbound bandwidth of an edge server

T Number of tiles

t Index of a tile

S Video segment length in second

fw

n
The width of tiles of HMD client n’s viewport

fh

n
The height of tiles of HMD client n’s viewport

Vn Set of tiles overlapped with the viewer’s FoV

bh, bl High/Low encoding bitrate

On Viewer’s orientation collected from HMD client n

αn Consumed bandwidth of HMD client n for Viewport Rendering (VPR)

βn Consumed bandwidth of HMD client n for Tile Rewriting (TR)

qn Video quality of HMD client n for TR

q′
n

Video quality of HMD client n for VPR

E Maximum number of HMD clients that an edge server can serve

xn Decision variable of the problem formulation

We build the bitrate and quality model for our edge rendering work. The bitrate model

takes encoding bitrate bh and bl as inputs, then predicts the consumed bandwidth of HMD

client n. We let fw

n
fh

n
bh+(T −fw

n
fh

n
)bl be the consumed bandwidth of tile rewriting (TR)

and fw

n
fh

n
bh be the consumed bandwidth for viewport rendering (VPR).

18

The video quality model predicts the objective video quality of each HMD client,

when solving the optimal edge-assisted rendering problem. Let qn be the video quality

model for TR and q′
n

be the video quality model for VPR. To derive the model parameters,

we encode each tile with high encoding bitrate bh and low encoding bitrate bl, and measure

the video quality. Using the measured results, we empirically derive the video quality

model qn and q′
n
.

4.2 Formulation

Our optimal edge-assisted rendering problem is to determine: (i) the rendering approach

for each HMD client n represented by boolean variables xn ∈ {0, 1}, ∀n = 1, 2, . . . , N ,

where xn = 0 means TR is selected, and xn = 1 means VPR is selected and (ii) the video

quality of HMD client n in order to maximize the overall video quality improvement

q′
n
− qn, ∀n = 1, 2, . . . , N .

With the notations define above, our research problem can be written as:

maximize1/N ·
N∑

n=1

xn(q
′

n
− qn) (4.1a)

s . t .

N∑

n=1

xn ≤ E (4.1b)

N∑

n=1

[xn(f
w

n
fh

n
bh) + (1− xn)(f

w

n
fh

n
bh + (T − fw

n
fh

n
)bl)] ≤ B (4.1c)

xn ∈ {0, 1}, ∀n = 1, 2, . . . , N (4.1d)

We let αn = fw

n
fh

n
bh and βn = fw

n
fh

n
bh + (T − fw

n
fh

n
)bl. Eq. (4.1c) can be written as:

N∑

n=1

[αnxn + βn(1− xn)] ≤ B (4.2a)

N∑

n=1

(αn − βn)xn + βn ≤ B (4.2b)

19

Consider Eq. (4.2b), our problem can be written as:

maximize1/N ·
N∑

n=1

xn(q
′

n
− qn) (4.3a)

s . t .
N∑

n=1

xn ≤ E (4.3b)

N∑

n=1

(αn − βn)xn + βn ≤ B (4.3c)

xn ∈ {0, 1}, ∀n = 1, 2, . . . , N (4.3d)

The objective function in Eq. (4.3a) maximizes the average expected video quality

considering the given bitrates and adopts rendering approach across all HMD clients.

Eq. (4.3b) makes sure that the edge server does not become overloaded when serving

HMD clients which adopted VPR approach. Eq. (4.3c) makes sure that the total outbound

bandwidth of edge server does not exceed the available bandwidth. The solutions for the

formulation in Eq. (4.3a) depend on the given encoding bitrate, and will be discussed in

the next section.

4.3 Proposed Algorithm

We proposed an efficient algorithm to solve the optimal edge-assisted rendering problem.

The proposed algorithm is selecting HMD clients to do VPR that can boost the objective

function Eq. (4.3a) the most. More specifically, it iteratively allocates computing resource

to the HMD client with the highest video quality improvement and available bandwidth

limitation B. First, we calculate the consumed bandwidth and video quality improve-

ment q′
n
− qn. Then, we sort video quality improvement in descending order. Next, we

follow this order accordingly to allocate the computing resource E to perform VPR un-

til we reach the limitation of the constraint
∑

N

n=1
xn ≤ E. Its pseudocode is given in

Algorithm 1. Complexity analysis is given in Lemma 2.

Lemma 1 (Optimality of proposed algorithm) The proposed algorithm produces opti-

mal video quality improvement if bandwidth constraint Eq. (4.3c) is loose.

Proof 1

We first make a few observation on bandwidth consumption of TR and VPR approaches,

respectively. Based on our prior work [63], we found that if a video is split into smaller

tiles, HMD client can download and display the tiles based on viewer’s FoV more pre-

cisely. Hence, we know the consumed bandwidth of VPR is lower than TR, which leads

to the inequality:

20

Algorithm 1 Mode Selector.

1: // We first initialize variables

2: for each n in N do

3: x[n]← 0; Qual[n]← q′n − qn; Band[n]← βn; Rati[n]← (q′n − qn)/(βn − αn)

4: sort Qual[N], Band[N], Rati[N] in desc. order

5: // Case 1: ideal case, absolute quality boost

6: select first E HMD clients with the maximal Qual[n]

7: for each e in E do

8: x[e]← 1

9: Band[e]← α[e]

10: // Check if B is sufficient

11: if sum(Band[N]) ≤ B then

12: return x[N]

13: // If B is insufficient, go to Case 2: per-unit-rate quality boost

14: select first E HMD clients with the maximal Rati[n]

15: for each e in E do

16: x[e]← 1

17: Band[e]← α[e]

18: // Check if B is sufficient

19: if sum(Band[N]) ≤ B then

20: return x[N]

21: // If B is insufficient, go to Case 3: least bandwidth

22: select first E HMD clients with the maximal Band[n]

23: for each e in E do

24: x[e]← 1

25: Band[e]← α[e]

26: // Check if B is sufficient

27: if sum(Band[N]) ≤ B then

28: return x[N]

29: return no feasible solution

21

fw

n
fh

n
bh < fw

n
fh

n
bh + (T − fw

n
fh

n
bh)bl. (4.4)

That is, only streaming viewer’s viewport leads to increased bandwidth saving, com-

pared to tiled video, as shown in Fig. 4.2, Now, if the bandwidth constraint in Eq. (4.3c)

is loose, i.e., the total bandwidth consumption when all HMD clients adopting TR does

not exceed available bandwidth B, or
∑

n

n=1
βn ≤ B. We can readily transform our opti-

mization problem into a 0/1 knapsack problem.

1x1 3x3 5x5 7x7 VPR

0

5

10

15

20

Figure 4.2: The average bandwidth consumption when viewer watching 360◦ videos,

including 1x1, 3x3, 5x5, 7x7 tiles, and only viewport scene.

We then plot the video quality in Fig. 4.3, in which the video quality improvement

q′
n
− qn is proportional to the slope. Fortunately, the slope of video quality improvement

q′
n
− qn is monotonically decreasing. This means that our algorithm always finds the

steepest slope at current step (locally) and across all future steps (globally). Hence, the

proposed algorithm produces optimal video quality improvement.

Lemma 2 (Time Complexity) Our proposed algorithm runs in polynomial time.

Proof 2

The pseudocode is given in Algorithm 1. Between lines 2–3, we first calculate the

consumed bandwidth and video quality improvement for each HMD client n respectively,

which has the complexity of O(N). At line 4, we then sort them in descending order,

which has the complexity of O(N logN). Between lines 6–9, we follow the sorted order

to pick first E HMD client to allocate the computing resource, which has the complexity

22

0 4 8 12 16

0

2

4

6

8

10

Figure 4.3: Video quality gain if the rendering approach is transformed from TR to VPR.

of O(E). Next, between lines 11–12, we check the overall bandwidth if it exceeds avail-

able bandwidth B, which also costs O(N). If the overall bandwidth exceeds available

bandwidth B, we repeat the same work according to the ratio of consumed bandwidth

and video quality improvement between lines 14–20. The time complexity of this part

is O(E + N). If the overall bandwidth still exceeds available bandwidth B, we repeat

the same work according to consumed bandwidth only between lines 22–28. The time

complexity of this part is also O(E +N). We return no feasible solution after we cannot

find a suitable HMD client after the above steps. Hence, the complexity of our proposed

algorithm is O(E +N logN).

23

Chapter 5

360◦ Videos Viewing Dataset

Optimizing the 360◦ video streaming to HMDs is highly data and viewer dependent, and

thus dictates real datasets. However, there are no public 360◦ videos viewing dataset, such

as those datasets used in [33, 112] are from the industry and proprietary. To overcome

such limitation, and promote reproducible research, we build up our own 360◦ video

testbed 5.2 for collecting traces from real viewers watching 360◦ videos using HMDs.

We then collect content (360◦ videos) and use the testbed to collect sensor (HMDs worn

by viewers) dataset. The resulting dataset can be used to, for example, predict which parts

of 360◦ videos attract viewers to watch the most [39]. The dataset, however, can also be

leveraged in various novel applications in a much broader scope. For example, using our

dataset, content provider could get to compute the most common FoVs among viewers,

and derive the crowd-driven camera movements, which may be used to guide viewers

through 360◦ videos via innovative user interfaces. Through deeper investigations, we

could even identify the essential elements for gaining viewers’ attentions in 360◦ videos

streamed to HMDs.

Our dataset contains content and sensor data from ten videos available on YouTube [18]

and 50 viewers between ages of 20 and 48. More precisely, we analyze the 10 videos to

extract the crucial features: the image saliency map [27] that identifies the objects attract-

ing the viewers’ attention the most and the motion map [55] that highlights the moving

objects. We also log the sensor readings from the HMDs and process them (along with the

360◦ videos) to derive viewer orientation and viewed tile numbers. Our dataset is unique

because we collect both content and sensor data.

5.1 Content Traces

In this section, we describe our content traces. Fig. 5.1 gives sample video frames, image

saliency maps, and motion maps from four 360◦ videos.

24

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.1: (a), (d), (g), (j): sample 360◦ video frames; (b), (e), (h), (k): image saliency

maps; and (c), (f), (i), (l): motion maps. Samples from Chariot Race: (a), (b), (c); from

Roller Coaster: (d), (e), (f); from Hog Rider: (g), (h), (i); and from Kangaroo Island: (j),

(k), (l).

Video Traces. We collect ten 360◦ videos with diverse characteristics from YouTube [18].

Table 5.1 summarizes the aspects that we targeted in the 360◦ videos. All the videos are in

4K resolution at 30 frame-per-second (fps). The videos come in different lengths, so we

extract 1-min segment from each of them for experiments. The 360◦ videos are divided

into 3 categories: (i) CG, fast-paced, (ii) NI, fast-paced, and (iii) NI, slow-paced. The 360◦

videos are encoded and stored in MP4 container files. We do not re-encode the videos,

but report their size in Table 5.1. We note that H.264/AVC and H.265/HEVC codecs

only support rectangular video frames. Therefore, YouTube adopts the equirectangular

projection that maps the longitude and latitude of the sphere videos to the horizontal and

vertical coordinates of the rectangular video. Although equirectangular projection leads

to serious shape distortion (especially when close to the two poles), it is still widely used

due to its simplicity.

25

Table 5.1: Specifications of Ten 360◦ Videos from YouTube

Category Videos Used Segment Size (MB) Link

NI, fast-paced

Mega Coaster 0:20 - 1:20 160 https://youtu.be/-xNN-bJQ4vI

Roller Coaster 1:30 - 2:30 153 https://youtu.be/8lsB-P8nGSM

Driving with 0:48 - 1:48 117 https://youtu.be/LKWXHKFCMO8

NI, slow-paced

Shark Shipwreck 0:30 - 1:30 114 https://youtu.be/aQd41nbQM-U

Perils Panel 0:10 - 1:10 60 https://youtu.be/kiP5vWqPryY

Kangaroo Island 0:01 - 1:01 126 https://youtu.be/MXlHCTXtcNs

SFR Sport 0:16 - 1:16 51 https://youtu.be/lo5N90TlzwU

CG, fast-paced
Hog Rider 0:00 - 1:00 138 https://youtu.be/yVLfEHXQk08

Pac-Man 0:10 - 1:10 50 https://youtu.be/p9h3ZqJa1iA

Chariot Race 0:02 - 1:02 149 https://youtu.be/jMyDqZe0z7M

Saliency Maps. Image saliency maps (see Figs. 5.1(b), 5.1(e), 5.1(h), 5.1(k)) indicate

the attraction levels of the video frames. We process the ten 360◦ videos and generate the

image saliency map (as videos) using Convolutional Neural Network (CNN) [89], which

is widely used on images and videos. We use a deep neural network [34] based on the

pre-trained VGG-16 network [89], which is combined with the weighted features from

different levels of CNN. The image saliency map is a gray-scale image (from 0 to 255),

varying from black, indicating the least interesting pixels, to white indicating the most

interesting pixels. For each 360◦ video, we first split each video into 1,800 images. Thus,

we apply the Keras-based [30] script developed in Cornia et al. [34] to generate the image

saliency map. Last, we concatenate the 1,800 image saliency maps into a 1-min video,

and encode it using H.264 in MP4 format.

Motion Maps. We analyze the optical flow [64] of the consecutive video frames from

each 360◦ video. Optical flows indicate the relative motions between the objects in 360◦

videos and the viewers. They can be attributed to either local motions (individual objects

move) or global motions (the camera moves), which may catch viewers’ attentions. We

generate the motion maps (see Figs. 5.1(c), 5.1(f), 5.1(i), 5.1(l)) using OpenCV [1]. The

motion maps are in black-and-white images (0 or 1), where a white pixel indicates that

the pixel is on one of the optical flows. Then, we specifically each 360◦ video into 1,800

images, and generate 1,800 black-and-white images using OpenCV-based script. Last,

we concatenate these motion maps into a 1-min video, and encode it using H.264 in MP4

format.

26

5.2 Sensor Traces

We first give an overview on the architecture of our testbed. The 360◦ video testbed

contains four major components: HMD, 360◦ video player, frame capturer, and sensor

logger. Fig. 5.2 shows a photo of our testbed with the four components highlighted. We

detail these components in the following.

Figure 5.2: A photo of our 360◦ video streaming testbed. During the experiments, most

subjects prefer to stand when watching videos.

HMD. We use Oculus Rift DK2 [7] to be our HMD. We follow the official instal-

lation guide from Oculus to set up the hardware and install the Software Development

Kit (SDK). This is done on a PC workstation with an Intel E3 CPU, 16 GB RAM, and a

NVIDIA GTX 970 GPU.

360◦ video player. The Oculus Video [4] is an official app from Oculus. We configure

it to render 360◦ videos in both HMD and a mirrored screen. We note that Oculus Video

supports equirectangular 360◦ videos (projected to sphere surface) if the filenames have

a suffix of 360, e.g., coaster 360.mp4. Otherwise, the videos are played as conventional

videos instead of 360◦ ones.

Frame capturer. We use GamingAnywhere [50] as our frame capturer, in order to

record the videos rendered to the viewer. The frame capturer stamps each recorded frame

with the timestamp, which will be used to align data from various sources. We configure

GamingAnywhere to save YUV files at 30 fps.

Sensor logger. We use OpenTrack [73], an open-source head tracking tool, to record

the viewer orientations, including yaw, pitch and roll in the range of [-180, 180] from

the HMD sensors. In addition, we record and timestamp the viewer positions, including

the x, y, and z coordinates. We, however, notice that the 360◦ video player ignores the

27

viewer positions; hence, most viewers in our dataset stay at roughly the same position.

Several enhancements have been added by us into OpenTrack project. For example, we

enhance the code to save timestamped logs by increasing the granularity of timers to meet

our needs.

When a viewer watches a 360◦ video as shown in Fig. 5.2, the viewer can watch at

any orientation by rotating his/her head. The rendered videos on the mirrored screen are

captured by frame capturer and stored to disk. The sensor logger records and stores the

viewing orientations. Note that the timestamps added by frame capturer and sensor logger

are from the same PC workstation. Hence, they can be readily used for alignments.

5.3 Dataset Format

In this section, we present the data format and some statistics of both content and sensor

datasets. The content dataset is compressed using H.264, while the sensor dataset is stored

as Comma-Separated Values (CSV) files in ASCII.

5.3.1 Content Dataset

The content dataset contains twenty H.264 videos in MP4 container, where each 360◦

video is analyzed for two content files: (i) the image saliency map and (ii) the motion

map. Table 5.2 gives the filenames and sizes of these 20 video files.

5.3.2 Sensor Dataset

1: timestamp, raw x, raw y, raw z, raw yaw, raw pitch, raw roll

2: 1487571103.944, 26.289, 28.063, -15.581, -5.246, -4.298, -1.315

3: 1487571103.953, 26.291, 28.063, -15.567, -5.297, -4.287, -1.333

4: 1487571103.957, 26.292, 28.063, -15.559, -5.323, -4.284, -1.341

5: 1487571103.961, 26.293, 28.063, -15.552, -5.350, -4.277, -1.348

6: 1487571103.965, 26.294, 28.063, -15.545, -5.378, -4.270, -1.354

7: . . .

Figure 5.3: Sample lines of a raw sensor data log file.

The sensor dataset contains 500 raw sensor log files, since we have 50 subjects and

ten 360◦ videos. Fig. 5.3 gives a sample of a raw sensor log file, which contains 7 fields:

(i) timestamp, (ii) raw x, (iii) raw y, (iv) raw z, (v) raw yaw, (vi) raw pitch, and (vii)

raw roll. In our pilot experiments, we find that different HMD viewers tend to introduce

different amount of bias. We then introduce a calibration procedure before each viewer

28

Table 5.2: Content Data Files of Ten 360◦ Videos

Video Filename Size (MB)

Mega Coaster
coaster2 saliency.mp4 45.43

coaster2 motion.mp4 42.90

Roller Coaster
coaster saliency.mp4 52.19

coaster motion.mp4 23.83

Driving with
driving saliency.mp4 43.51

driving motion.mp4 71.57

Shark Shipwreck
diving saliency.mp4 21.99

diving motion.mp4 7.99

Perils Panel
panel saliency.mp4 27.07

panel motion.mp4 1.98

Kangaroo Island
landscape saliency.mp4 60.39

landscape motion.mp4 57.62

SFR Sport
sport saliency.mp4 28.58

sport motion.mp4 19.65

Hog Rider
game saliency.mp4 45.94

game motion.mp4 27.70

Pac-Man
pacman saliency.mp4 33.95

pacman motion.mp4 5.43

Chariot Race
ride saliency.mp4 49.28

ride motion.mp4 45.17

starts watching 360◦ videos. More specifically, we insert a 35-sec calibration video at

the beginning of each 360◦ video. The calibration video sequentially displays an object

(cartoon sheep) at (1920, 960), (2880, 480), (2880, 1440), (3840, 960), (960, 480), (960,

1440), and (1920, 96) of coordinates. We show the object at each position for 5 seconds,

and we ask the subject to rotate his/her head in order to place the object at the center of

their FoV. From this, we average the bias between the captured sensor data and the ground

truth from calibration video. Using the bias, we compensate the raw sensor readings (yaw,

pitch, and roll) for calibrated (cal.) sensor readings (yaw, pitch, and roll).

We note that the sensor data are collected (by OpenTrack [73]) at 250 Hz, and the

1: no. frames, raw x, raw y, raw z, raw yaw, raw pitch, raw roll, cal. yaw, cal. pitch, cal. roll

2: 00001, 16.458 ,30.032, -19.276, -9.661, 5.853, -3.068, -4.65473888889, 4.06641388889, -3.068

3: 00002, 16.458 ,30.032, -19.276, -9.661, 5.853, -3.068, -4.65473888889, 4.06641388889, -3.068

4: 00003, 16.449 ,30.02, -19.362, -9.763, 5.746, -3.184, -4.75673888889, 3.95941388889, -3.184

5: 00004, 16.449 ,30.02, -19.362, -9.763, 5.746, -3.184, -4.75673888889, 3.95941388889, -3.184

6: 00005, 16.433 ,30.007, -19.473, -9.676, 5.659, -3.308, -4.66973888889, 3.87241388889, -3.308

7: . . .

Figure 5.4: Sample lines of a view orientation log file.

29

1: no. frames, tile numbers

2: 00001, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92

3: 00002, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92

4: 00003, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92

5: 00004, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92

6: 00005, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92

7: . . .

Figure 5.5: Sample lines of a viewed tile log file.

captured video frames are saved (by GamingAnywhere [50]) at 30 Hz. Users of the raw

sensor log files need to align the raw sensor log files with the captured video frames.

To simplify the usage of our dataset, we generate view orientation log files at 30 Hz

by aligning the timestamps in the raw sensor log files and the captured video frames.

Moreover, we include the calibrated sensor readings derived above in the view orientation

log files. Fig. 5.4 gives a simple view orientation log file, which contains 10 fields: (i)

number of frames, (ii) raw x, (iii) raw y, (iv) raw z, (v) raw yaw, (vi) raw pitch, (vii) raw

roll, (viii) cal. yaw, (ix) cal. pitch, and (x) cal. roll.

While view orientation log files give the center of viewer’s FoVs, determining which

tiles are needed to render the FoVs require extra calculations; thus, we assume the FoVs

are modeled by 100◦x100◦ circles. Therefore, we process the view orientation log files,

and generate viewed tile log files to further simplify the usage of our dataset. For all 360◦

videos, we divide each frame, which is mapped in equirectangular model, into 192x192

tiles, so there are 200 tiles in total. Then we number the tiles from upper-left to lower-

right. Fig. 5.5 gives a sample viewed tile log file, which contains 2 fields: (i) number of

frames and (ii) tile numbers. Each tile number determines a unique tile of the entire 360◦

video, and an FoV overlaps with multiple tiles as shown in this figure.

Last, Table 5.3 gives filenames of sensor data. For each video and each user, there are

three sensor data files for: (i) raw sensor, (ii) view orientation, and (iii) viewed tiles. This

table also reports the total size of these log files stored in ASCII format.

30

Table 5.3: Sensor Data Files of 50 Subjects

Video Sample Filename (User 0) Total Size (MB)

Mega Coaster

coaster2 user00 raw.csv 224.93

coaster2 user00 orientation.csv 16.22

coaster2 user00 tile.csv 20.16

Roller Coaster

coaster user00 raw.csv 228.66

coaster user00 orientation.csv 16.14

coaster user00 tile.csv 19.75

Driving with

drive user00 raw.csv 226.99

drive user00 orientation.csv 15.89

drive user00 tile.csv 19.78

Shark Shipwreck

diving user00 raw.csv 224.69

diving user00 orientation.csv 16.19

diving user00 tile.csv 19.03

Perils Panel

panel user00 raw.csv 229.45

panel user00 orientation.csv 16.13

panel user00 tile.csv 20.42

Kangaroo Island

landscape user00 raw.csv 228.71

landscape user00 orientation.csv 16.29

landscape user00 tile.csv 20.41

SFR Sport

sport user00 raw.csv 225.77

sport user00 orientation.csv 15.86

sport user00 tile.csv 21.97

Hog Rider

game user00 raw.csv 230.10

game user00 orientation.csv 15.79

game user00 tile.csv 19.78

Pac-Man

pacman user00 raw.csv 218.60

pacman user00 orientation.csv 16.02

pacman user00 tile.csv 20.32

Chariot Race

ride user00 raw.csv 230.65

ride user00 orientation.csv 15.79

ride user00 tile.csv 19.55

31

Chapter 6

Evaluations

In this chapter, we conduct extensive experiments to quantify the performance of our

edge-assisted 360◦ streaming system described in Chapter 3.

6.1 Implementations

We use the 360◦ videos from a public dataset [62] for experiments. There are 10 video

sequences in this dataset, which are classified into three categories: (i) Natural Image

(NI) fast-paced, (ii) NI slow-paced, and (iii) Computer-Generated (CG) fast-paced. For

ease to conduct the experiments, we indexed the video sequences as follow: 1, 2, 3 is NI

fast-paced; 4, 5, 6, 7 is NI slow-paced, and 8, 9, 10 is CG fast-paced. The dataset also

contains video viewing data, such as users’ orientation, from 50 subjects. We split the

dataset into two groups: (i) training set (40 subjects’ viewing data) for build the system

model and (ii) test set (10 subjects viewing data) for conducting the experiments.

We leverage an Intel 40-cores workstation with 256 GB of RAM as cloud server.

Cloud server contains several software components, including an HEVC encoder, an

MPEG DASH content generator, and an Apache HTTP server. We use an open-source

codec, Kvazaar [102], to slice and encode the videos into multiple tiles (subvideos). Then,

we package our raw HEVC bitstream, cut the video into small segments with a few sec-

onds, and generate MPD file using MP4Box [13].

We set up a PC workstation with Intel i7 CPU and 16 GB RAM as edge server. We

first analyze and generate the image heatmap (as videos) using training set. The heatmap

is a gray-scale image (from 0 to 255), varying from black, indicating the least viewing

pixels, to white indicating the most viewing pixels. We can calculate the weighted Spher-

ical PSNR (WS-PSNR), based on the viewing heatmap as a video quality model, which

predicts the overall video quality improvement of each HMD client. With this video

quality model, the edge server is able to allocate its resources to maximize the overall

32

video quality improvement. Also, we implement the OSVR Render Manager [110] to be

our viewport renderer. We then implemented our proposed algorithm using Python. The

edge-assisted 360◦ system has been written in C and Python. At the client side, we use

Samsung Gear VR tethered on an mobile phone Samsung S6 Edge+ to download and ren-

der videos. We also installed PowerTutor [115], an application for mobile devices, which

measures the power consumed by major system components, on our Samsung S6 Edge+.

For comparisons, we also implemented the baseline algorithm using CPLEX [11],

which is the optimal solution solver developed by IBM. CPLEX solver gives us the max-

imal video quality improvement in a given bandwidth and computing power. For clarity,

we will refer to the current 360◦ video streaming approach, CPLEX-based algorithm, and

proposed algorithms as CUR, OPT and PRO, respectively.

Figure 6.1: Network topology.

6.2 Setups

We randomly choose 40 viewing traces form the test set, which contains 100 viewing

traces (10 subjects watched 10 video sequences), to simulate the real users watching 360◦

video. Fig. 6.1 is an example of the topology used in our experiments. We compare our

edge-assisted solution against the current 360◦ video streaming platform, in which all the

360◦ video are non-tiled and projected in equirectangular projection. All videos are 60

seconds long, in 4K solution, and 30 fps (frame-per-second). We fix the number of tiles in

5x5, segment length at 2 sec, and the high and low encoding bitrate as 8Mbps and 1Mbps,

respectively. The 360◦ videos are tiled and compressed by the state-of-the-art codec, such

33

as Kvazaar [102], on cloud server and streamed to the edge server. Edge server then acts

likes a rendering approach handler and determines which HMDs should be served by edge

devices. We assume that the network bottleneck is between edge server and HMD client.

We consider the outbound bandwidth of the networks above as 1, 2, 4 Gbps, following

the AWS network benchmark reports [5].

We consider the following performance metrics in our experiments.

• Consumed bandwidth: the required transmission bandwidth for delivering data to

clients.

• Video quality: We adopt the Viewport PSNR (V-PSNR) [112] as video quality

metric, which calculates the Peak Signal-to-Noise Ratio (PSNR) for the viewer’s

FoV (instead of the whole 360◦ video).

• Latency: we measure latency in three different categories, including rendering de-

lay (RD), propagation delay (PD), and transmission delay (TD).

• Power consumption: the consumed power (mW) for downloading data and render

the user’s viewport scenes.

We set the total number of HMD clients to be 40. We vary the maximum number of

HMD clients that an edge server can serve E = 5, 10, 15 20, 25 and record their consumed

bandwidth, latency, and video quality.

6.3 Results

In this section, we report the experiment results and analysis. Also, we hold a 95% confi-

dence intervals whenever applicable.

Our proposed system results in lower bandwidth consumption. Fig. 6.2 plots the

consumed bandwidth of CUR (non-tiled video) and our proposed edge-assisted streaming

system. It shows that our proposed solution consumes less bandwidth for all 10 video

sequences in the public dataset. This is because we only stream parts of video (both TR

and VPR) to HMD clients, instead of streaming the entire 360◦ video. Our proposed

algorithm even saves consumed bandwidth as much as OPT did. Compared to CUR, our

proposed algorithm can reduce min/avg/max = 31%/64%/78% bandwidth consumption.

Next, we increase the edge server capacity, where E = 5, 10, 15, 20, 25. Fig. 6.3

shows the average consumed bandwidth of CUR, OPT, and PRO. The result shows that

both OPT and PRO save more bandwidth consumption, when edge server capacity is

increasing. As we mentioned in Sec. 3, VPR only streams user’s FoV to HMD client,

which leads to less bandwidth consumption than TR. The higher edge server capacity (i.e.,

more HMD clients that edge can serve), the more bandwidth consumption we can save.

34

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

Figure 6.2: Consumed bandwidth of CUR, OPT, and PRO, when edge server capacity E

= 10.

Generally speaking, both of OPT and PRO can save at least 35% (up to 62%) average

bandwidth consumption, compared to CUR. Hence, only streaming tiled or viewport of

360◦ videos over modern networks reduces the amount of data transfer and Internet traffic

amount.

Our proposed system results in higher video quality. Fig. 6.4 presents the video

quality achieved by OPT and PRO, compared to CUR. This figure shows PRO outputs

better video quality for all 10 video sequences. The min/avg/max of video quality im-

provement is 6/7.4/8.4 dB.

Fig. 6.5 reports the video quality of CUR, OPT, and PRO, when the edge server ca-

pacity is increasing, where E = (5, 10, 15, 20, 25). Both OPT (as baseline algorithm)

and PRO algorithms continue delivering high video quality (V-PSNR ≥ 40) with enough

outbound bandwidth of edge server in V-PSNR over time. Fig. 6.6 plots the video quality

improvement of OPT and PRO algorithms. It shows that both OPT and PRO algorithm

achieve at most 9.5 dB video quality gain at a given bitrate. These numbers indicate

that the proposed algorithm produces the optimal video quality improvement (as proved

in Chap. 4), assuming that the outbound bandwidth of an edge server is high enough

(≥ 1Gbps).

Fig. 6.7 plots the video quality achieved by OPT and PRO algorithms, when the out-

bound bandwidth of an edge server is low (≤ 0.3Gbps). This figure shows the OPT al-

gorithm outperforms our proposed algorithm by at most 4 dB. Fig. 6.8 presents the video

quality improvement of OPT and PRO algorithms. OPT algorithm outperforms our pro-

posed algorithm when edge server can serve more than 15 HMD clients. However, when

35

5 10 15 20 25

0

5

10

15

20

25

Figure 6.3: Consumed Bandwidth of OPT and PRO, compared to CUR, when edge server

capacity is increasing, where E = (5, 10, 15, 20, 25).

the outbound bandwidth of edge server is not enough, the OPT algorithm suffers from

exponential running time as shown in Table 6.1. It is not suitable to real-time systems

like 360◦ video streaming platforms. Our proposed algorithm runs in polynomial time

(proved in Sec. 4.3). Hence, our proposed algorithm outputs good video quality without

overloading the edge server and consuming lots of time.

Table 6.1: Running Time (s) of OPT and EDD, when there are 40 HMD clients and

outbound bandwidth B = 0.3 Gbps.

Edge Server Capacity 5 10 15 20 25

OPT 5.41 375.54 533.57 55.29 1.02

PRO 0.19 0.20 0.36 0.41 0.52

The latency of our proposed system is lower. We run our edge-assisted 360◦ stream-

ing system on Amazon AWS service. We set up the edge servers at Asia/Tokyo (TYO),

Asia/Seoul (SEL), Asia/Singapore (SIN), Asia/Sydney (SYD), and Asia/Mumbai (BOM),

respectively. The cloud servers are set at US/California (CA), US/Virginia (VA), CAN/Montreal

(YMQ), EU/Frankfurt (FRA), and EU/London (LON). We measure the network latency

between 1 a.m. to 2 a.m. every day. Network latency is consisted of three different cat-

egories, including rendering delay (RD), transmission delay (TD), and propagation delay

(PD). RD is the time it takes to render user’s viewport scenes and encapsulate into a MP4

container. TD is the time it takes to push packet’s bits onto the network. PD is the time it

takes for a packet to travel between one place and another at the speed of light. Table. 6.2

36

1 2 3 4 5 6 7 8 9 10

30

35

40

45

50

Figure 6.4: Video quality in Viewport-PSNR of OPT and PRO, compared to CUR, where

edge server capacity E = 10 and available outbound bandwidth B = 1 Gbps.

reports RD of each video sequences from 360◦ video viewing dataset. The average FPS

and rendering time per frame of our edge-assisted 360◦ video streaming system is 26.032

and 38.414 ms, respectively.

We plot the latency of with/without edge-assisted rendering in Fig. 6.10 and Fig 6.9.

Fig. 6.10 shows that 360◦ videos are streamed from cloud server to HMD clients, without

the assistance from edge devices. Fig. 6.9 shows that 360◦ videos are first delivered from

cloud server to edge server, and streamed to HMD clients. These two figures reveal that

lower latency is achieved with the assistance from edge devices.

Our proposed system saves the battery of HMD clients. We measure the power

consumption of HMD client using PowerTutor [115]. Power consumption is consisted of

three different categories, including computing, communicating, and displaying power.

We denote them as CPU, Comm, and Display, respectively. Fig. 6.11 reports the power

consumption of the current streaming approach, TR, and VPR. This figure shows that the

screen consumes most of battery power by up to 700 mW in average. The consumed

computation power of CUR, TR, and VPR is 66.1, 46.2, and 26.6 mW, respectively. Also,

the consumed communication power of CUR, TR, VPR is 175.6, 135.8, and 94.2 mW,

respectively. These indicate that performing VPR on edge server consumes less battery

power of HMD client than CUR and TR. Because we offload the rendering works from

HMD client to edge server and only deliver the user’s viewport scenes to the HMD client.

Fig. 6.12 plots the power consumption of CUR, OPT, and PRO, which are normalized to

CUR. Compared to CUR, PRO reduces min/avg/max 7.1%/8.9%/10.5% power consump-

tion of the HMD client. By performing user’s viewport rendering and only streaming

37

5 10 15 20 25

30

40

50

60

Figure 6.5: Video quality in Viewport-PSNR of OPT and PRO algorithm.

parts of 360◦ video (e.g., TR or VPR), our edge-assisted 360◦ streaming system reduces

the power needed to be consumed for a HMD client.

In summary, when available outbound bandwidth of an edge server is high (B ≥ 1

Gbps), our proposed algorithm can produce optimal video quality improvement, which is

up to 8.4 dB. When available outbound bandwidth is low (B ≤ 0.3 Gbps), our proposed

still achieves a good video quality improvement without consuming lots of time. Our

edge-assisted 360◦ video streaming system achieves lower network latency, reduces the

computation/communication loading, and extends the battery life of HMD client.

38

5 10 15 20 25

0

5

10

15

Figure 6.6: Video quality improvement of OPT and PRO algorithms.

5 10 15 20 25

30

40

50

60

Figure 6.7: Video quality improvement of OPT and PRO algorithms.

39

5 10 15 20 25

0

2

4

6

8

10

Figure 6.8: Video quality improvement of OPT and PRO algorithms.

Table 6.2: Rendering Time (ms) of each video sequences from 360◦ video viewing

dataset.

Video Sequences FPS Time per Frame (ms)

Mega Coaster 21.22 47.13

Roller Coaster 21.22 47.13

Driving with 29.61 33.78

Shark Shipwreck 26.47 37.78

Perils Panel 29.99 33.33

Kangaroo Island 24.34 41.09

SFR Sport 29.80 33.56

Hog Rider 25.83 38.72

Pac-Man 29.99 33.33

Chariot Race 21.85 45.76

Avg. 26.03 38.41

40

TYO SEL SIN SYD BOM

0

100

200

300

400

Figure 6.9: Latency of edge server and HMD client.

CA VA YMQ FRA LON

0

100

200

300

400

Figure 6.10: Latency of cloud server and HMD client.

41

CUR TR VPR
0

2

4

6

8

10

12

14
10

2

Figure 6.11: Power consumption (mW) of CUR, TR, and VPR.

5 10 15 20 25
0

20

40

60

80

100

N
o

rm
a
li

z
e
d

 P
o

w
e
r

C
o

n
.

(%
)

Figure 6.12: Normalized power consumption with diverse edge server capacity.

42

Chapter 7

Related Work

In this chapter, we present various state-of-the-art researches in the literature, from acqui-

sition, encoding, transmission, to display. We also discuss quality assessment at the end

of this section.

7.1 360◦ Video Acquisition

Capturing, stitching, and pre-processing images and videos from heterogeneous cameras

for 360◦ videos are the starting point for providing immersive experience, which requires

unique optimization approaches. Schreer et al. [84] discuss format agnostic production,

which jointly leverages videos from multiple camera sensors at different temporal and

spatial resolutions for 360◦ videos that support diverse applications from mobile devices

to wide-angle displays. Different from conventional production systems, format-agnostic

production systems have no fixed frame size and support virtual cameras controlled by

directors or viewers. The authors built such a system using 360◦ cameras and image pro-

cessing algorithms to capture nature scenes, and render immersive viewing (360◦ video)

and hearing (spatial audio) experience. The techniques and experiments presented in their

paper are valuable to researchers working on ultra-high resolution 360◦ videos.

Hardware cameras have been built for 360◦ videos, which could be based on either

single cameras or camera arrays. Single camera approaches are less expensive and are

immune to the artifacts due to stitching. For example, Krishan and Nayer [58] present a

fisheye camera for 360◦ images, which attaches a curved mirror to a fish-eye lens. They

propose an algorithm to stitch the two images from fish-eye lens and mirror into a seam-

less 360◦ image. Cotune et al. [35] present a stereoscopic 360◦ video capturing system

using a pair of rotating commercial-graded video cameras. The authors employ full video

frames for stereo motion alignment in the temporal domain. They do not stitch adjacent

video frames, instead they blend the video frames, because blending seams are contin-

43

uous, and thus, harder to spot. Aggarwal et al. [21] propose to use a filter mirror for

stereoscopic 360◦ videos, where the light rays, into left and right eyes, are captured by a

single camera. The filter mirror’s surface is parameterized and the parameters are math-

ematically optimized for maximizing the quality of captured images. Compared to the:

(i) multi-camera and (ii) moving camera systems, the filter mirror approach reduces the

device size, simplifies the synchronization/calibration, and works on commodity cameras.

In contrast, single cameras need to support ultra-high resolution for immersive expe-

rience. Belbachir et al. [24] attach a pair of linear light sensors to a rotation platform, and

generate stereoscopic 360◦ videos in real-time. This is achieved in three steps. First, two

linear dynamic vision sensors, which are designed for capturing asynchronous images, are

mounted on a high-speed rotating disk. Second, an algorithm is proposed to reconstruct

intensity images using the sensor data. Last, stereoscopic 360◦ videos, anaglyph images,

and depth images are created from the high dynamic range cameras at high frame rate.

Camera arrays often have higher total resolutions. For example, Foote and Kim-

ber [43] build a camera array by attaching off-the-shelf cameras along the wall of a

cylinder. This automatic camera system, called FlyCam, generates seamless videos by

fusing data from several near-by cameras. They present an approach for stitching and

anti-distortion, in order to generate 360◦ videos, motion analysis, and camera control

algorithms. Their lightweight methods for 360◦ videos could be used in several appli-

cations, such as teleconferences, lectures, and meetings. Afshari et al. [19] construct a

camera array by adding cameras on a sphere, which is inspired by flying insects. With

FPGA, they design a system for real-time videos captured from up to 30 cameras. The

cameras are put on a spherical pointing at different directions. In addition, they present

a 360◦ video reconstruction algorithm, configurations, and a real FPGA implementation.

Cogal et al. [31] present a similar camera array with 44 high-resolution cameras, achiev-

ing a total resolution of 220 Mega-Pixels (MP). The cameras are optimally arranged on

a sphere for 360◦ × 100◦ FoV. The detailed hardware design of a 360◦ video capturing

and recording system is presented in their paper. It is reported to achieve 21.6 MP at 30

frame-per-second (fps) and 82.3 MP at 9.5 fps in real-time.

Images and videos from cameras need to be pre-processed before being useful. Stitch-

ing, which merges multiple images/videos into a higher-resolution one, is probably the

most commonly seen pre-process. Countless papers propose ways to improve the qual-

ity of image stitching, e.g., Zomet et al. [117], who developed optimization algorithms

to maximize the stitching quality. The stitching quality is defined as a function of: (i)

similarity between the output and input images and (ii) invisibility of the artifacts along

the seams of stitched images. Several cost functions are introduced and tested, while

the seam visibility is quantified in the gradient domain. Their proposed solution min-

44

imizes the adopted cost function, and can be used to generate 360◦ images and object

blending, among other applications. Xiong and Pulli [109] also solve the stitching prob-

lem for images. They concentrate on minimizing the artifacts that appear on the seam

of two stitched images, due to the color and luminance difference between them. This

is achieved by color matching across input images with techniques like color correction

and image blending. The resulting 360◦ images show high color consistency and smooth

color transition. The proposed solution is implemented and evaluated on smartphones for

360◦ images with visually-appealing results. Xiao et al. [107], in contrast, propose an

algorithm to generate panorama images directly from fisheye images. In particular, they

formulate the projection conversion equations and map the points on fisheye images to

the panorama using backward mapping approach.

Video stitching is more challenging, and receives increasingly more attentions. For

example, Lin et al. [61] present a framework to stabilize and stitch videos captured by

freely moving cameras. Each stitched video is generated by first identifying the camera

paths, and constructing the 3D scene. Next, a new camera path is built by smoothening

all the input camera paths. This new camera path is then employed to warp the input

videos into a stitched one. Their proposed warping process is optimized for both sta-

bility and stitching quality. Their framework has various applications, such as stitching

360◦ videos, social-media content creation, and multi-robot vision. Jiang and Gu [53] de-

sign a spatial-temporal content preserving stitching approach for videos. Their proposed

algorithm adopts warping to stitch imaging and stabilize videos, but with fixed camera

positions. The algorithm consists of two steps: (i) aligning frames from multiple videos

and (ii) finding spatial-temporal seams. The first step aligns frames from different videos

in a temporally consistent manner. The second step is transformed into a 3D graphcut

problem, where the weights are functions of objects and motion to maximize the stitching

quality. Perazzi et al. [77] capitalize local warping to remove parallax from multiple un-

structured cameras for 360◦ videos. Their proposed algorithm is unique for three reasons.

First, they propose a patch-based error measure as a function of image gradients, which

is used to maintain content similarity between input videos and the resulting 360◦ videos.

Second, they design a method to analyze the relative camera positions, scene content,

and order of pairwise warping, to improve the warping quality. Last, they introduce a

weighted warping procedure for the final 360◦ videos, which mitigates the temporal ar-

tifacts. Because stitching videos is computationally intensive, they proposed to employ

GPU to accelerate video stitching. Calagari et al. [28] build a similar system, but with

videos from regular cameras that have been installed in the sports fields/courts for sports

360◦ videos. They first generate a static 360◦ image, which serves as the background

image when some areas are not covered by any camera. Then, the authors derive player

45

motions from the main (center) camera, and apply various techniques such as warping,

to remove the parallax and align videos from all cameras. Last, the resulting video is

blended with the background image. The resulting system has been tested in basketball,

hockey, and volleyball games and compared against a GoPro Omni 360 camera rig. Silva

et al. [88] connect multiple (4 or 6) GoPros to a computer via HDMI cables and capture

cards. The captured video frames are loaded to GPU card memory. The last 4 (or 6)

video frames in the queue are then stitched with vertex and fragment shaders. The re-

sulting video frames are encoded by GPU and streamed by CPU. Lee et al. [59] propose

approaches to solve issues of creating 360◦ videos from structured camera array. These

issues include the misalignment between two adjacent cameras and the relative low res-

olution of the final 360◦ video. First, they leverage a moving checkerboard to perform

calibration for estimating various settings of individual cameras. The depth disparities

are then computed through feature extraction to recover 3D points for minimizing the

parallax artifacts. Second, they propose to sample more important regions at higher fre-

quencies, and less important regions at lower frequencies. Their results show that their

proposed approach achieves higher rendering quality and preserves more content details

than the equirectangular projection. Huang et al. [51] take a step further: they reconstruct

3D scenes in order to support 6 DoF in HMDs, where viewers can not only rotate their

heads but also move freely in 3D scenes. Their approach contains two phases: offline and

online. In the offline phase, they analyze the inputs of a 360◦ camera with the Structure-

from-Motion (SfM) algorithm for camera parameters and scene geometry. When a viewer

interacts with 360◦ videos using an HMD, i.e., in the online phase, the 6 DoF motions re-

ported by the HMD sensors are used to warp the stereoscopic views corresponding to the

motions. The warping algorithm runs on the unit sphere to avoid shape distortion. Their

solution is accelerated by GPUs for high frame rate (> 120 fps).

7.2 360◦ Video Encoding

Typical 360◦ videos are spherical videos projected to rectangle videos in high resolutions,

while viewers access random viewports, which are subsets of individual video frames. En-

coding 360◦ videos, therefore, is very challenging and requires advances supports from

video codecs. Heymann et al. [46] extend existing MPEG-4 to divide the 360◦ video

into independently-encoded subvideos for the support of decoding and rendering parts of

videos. Rerabek et al. [80] propose to encode 360◦ images into 360◦ JPEG files that can

be decoded using the legacy JPEG decoder for backward compatibility. More specifi-

cally, their encoder first estimates the viewer viewports using saliency maps and encodes

the viewports of 360◦ images using the regular JPEG encoder. The encoder then com-

46

press the entire 360◦ image also using JPEG and embeds the resulting bitstream as the

metadata. By doing so, 360◦-capable decoders and projectors can render the 360◦ images

while legacy JPEG decoders render the viewport images. High Efficiency Video Coding

(HEVC) [71] supports tiles, which are disjoint rectangular video regions that can be in-

dependently decoded. Tiles allow: (i) parallel decoding for decoder speedup to cope with

high resolutions and (ii) random decoding of dynamic viewports. Tiles, however, impose

constraints on the encoding process, which needs to be carefully considered. More de-

tails on the HEVC standard are given in Sullivan et al. [95], while the details about the

tile supports in HEVC can be found in Misra et al. [66]. In general, HEVC results in

50% rate cut at similar quality [95] than AVC. In addition, tiles lead to up to 5.5% lumi-

nance bitrate reduction, compared to slices [66]. Due to their superior coding efficiency,

HEVC and its tile support are widely used in 360◦ video systems. HEVC standard does

not specify the precise optimization algorithms used at the encoder side. Among existing

open-source HEVC codecs, Kvazaar [102] is developed in C language and provides an

option to be optimized in Assembly. Kvazaar implements various coding tools defined in

HEVC, which enable parallelization on multi-core CPUs and hardware acceleration. It is

reported that Kvazaar achieves real-time 4K encoding using a 14-core Intel CPU. Kvazaar

supports three parallel processing approaches, including tiled encoding, and thus can be

leveraged by 360◦ video testbeds.

Several types of optimization on video codecs have also been studied, which can be

classified into three groups: (i) parameter selection, (ii) stream rewriting, and (iii) coding

efficiency optimization. In parameter selection, Sanchez et al. [81] consider the problem

of optimizing the tile dimension, in order to minimize the bitrate of the viewports. They

propose a model using spatio-temporal activity metrics to achieve optimal tiling of the

360◦ videos for streaming. Their evaluations show that the proposed method resulted to

higher coding efficiency, compared to static tile size, and lower complexity. Khiem et

al. [56] adapt the encoding parameters of different regions in zoomable videos, based on

the historical viewer access patterns, and propose two ways to dynamically crop view-

ports. The first way is to merge the tiles that fall into a single viewport, which is suitable

for tiled encoding. The second way is to limit the motion search range of the referenced

macroblocks, which is suitable for conventional encoding. Although the proposed solu-

tion improves compression efficiency, it does not achieve real-time streaming nor support

diverse viewer access patterns.

In stream rewriting, Sanchez et al. [96] propose a compressed domain algorithm to

rewrite multiple HEVC tiles into a single bitstream of the current viewport, which can

be decoded by a single hardware decoder, and a solution to reduce the bandwidth con-

sumption when users switch their viewports. This is a critical challenge for 360◦ video

47

systems as high bandwidth consumption may lead to playout interruptions. Their core

idea is to insert redundant reference pictures to compensate the temporal tiles that may

not be streamed based on the viewers’ viewports. Skupin et al. [92] propose the tech-

nique of dynamic tiling, which aims to adapt the resolution on-the-fly according to the

viewer’s viewports. They encode each video into high and low resolutions. Then, they

vary the ratio of high- and low-resolution tiles over time, so that view’s viewports are

sent in high-resolution while other portions are sent in low-resolution tiles. Sanchez et

al. [82] apply a similar approach on SHVC, which is the scalable extension of HEVC, in

order to support multiple resolutions. The rewritten bitstream can be decoded by a single

hardware decoder. Their proposed solution reduces the bitrate when switching among

viewers’ viewports. They utilize the concept of open GoP (Group-of-Picture) for better

compression efficiency, because closed GoP may suffer from frame loss during decoding.

Their solution supports seamless playback with and without the enhancement layers.

Several studies aim to optimize the coding efficiency for 360◦ videos and images.

Sauer et al. [83] consider the convex polytopes projection, and propose a solution to com-

pensate the geometric distortion for better motion compensation performance. Their work

is motivated by the observation that straight lines are bended at the border of two adja-

cent faces when 360◦ videos are projected to a polytope. Such shape distortion results

in suboptimal motion compensation when some motion happens across the borders. To

cope with this issue, the authors propose to extend each face by projecting the adjacent

faces to it using homographies. This is to ensure straight lines remain straight after pro-

jection, which increases the motion compensation performance and reduces the bitrate.

Li et al. [60] extend each face of the cube projection to maintain texture continuity across

face boundaries, so as to enhance motion compensation. They propose a padding method

that projects the reference and current pixels on the same surface, before HEVC encoders

perform motion estimation. Compared with the existing methods, the proposed solution

offers an average (maximum) of 1.1% (3.4%) bitrate saving. Compression algorithms of

non-rectangular images and videos have also been investigated. Tosic and Frossard [98]

propose a 360◦ image compression algorithm that takes the geometric proprieties into

considerations. The crux of their work is a redundant storage of basic geometric shapes

on a sphere. This 360◦ image is projected on a sphere, and then passed into an iterative

algorithm for a suboptimal solution of the weighted sum of a series of atoms. This is

followed by an adaptive quantizer before being sent to the decoder. The resulting codec

achieves superior performance at lower bitrates, where image geometry dominates image

texture in terms of entropy. Youvaluri et al. [111] consider compressing 360◦ videos that

are pseudo-cylindrically projected. However, using pseudo-cylindrical projection leads

to some problems, such as coding inefficiency and coding artifacts at its borders. They

48

propose intra- and inter-frame coding tools for higher coding efficiency and mitigate cod-

ing artifacts. Ozcinar et al. [74] select the tile bitrates in 360◦ videos. They formulate

it as an Integer Linear Programming (ILP) problem, which chooses a subset of bitrates

for each tile, in order to maximize a weighted sum of video quality and resource (storage

and network) cost. The weights are heuristically chosen by the service providers, and the

resulting problem is solved using a general ILP solver. Yu et al. [112] also optimize the

bitrate of the tiles, while jointly considering the sampling densities of different part of the

360◦ videos. The rationale is that some projection models, like equirectangular model,

oversample the sphere videos close to north and south poles. Because the resulting prob-

lem is a variant of knapsack problems, the authors propose a suboptimal algorithm to first

determine sampling density, followed by deciding the bitrates. Xie et al. [108], in con-

trast, consider a more general bit-rate allocation problem, where tiles have diverse viewing

probabilities. They formulate the problem as a mathematical optimization problem, with

a weight sum of: (i) overall viewport distortion and (ii) inter-tile distortion variance. The

distortion and bitrates of 360◦ video titles coded with diverse codec settings, such as the

Quantization Parameters (QPs), are empirically derived, and their optimization problem

is an ILP problem, which are solved with general solvers.

7.3 360◦ Video Transmission

Modern multimedia transport standards can be roughly classified into MPEG Media Trans-

port (MMT), for broadcast services, and DASH, for unicast services.

Broadcasting 360◦ videos over the Internet has been studied. For example, Hu et

al. [49] propose a 360◦ video broadcast system using MPEG Media Transport (MMT)

for broadcasting over the Internet. The authors divide and encode the 360◦ videos into

multiple tiles. The encoded tiles are encapsulated into multiple MMT assets, which can

be individually received by receivers. The authors employ MMT signaling messages to

describe the spatial relationship of MMT assets. This allows receivers to subscribe the

tiles in their viewports at high bitrate, and other tiles at low bitrate.

To support 360◦ video streaming, MPEG DASH standard has included an amendment

on Spatial Representation Description (SRD), which enables clients to request viewports

of whole videos with 2D coordinates. The SRD standard is presented in Niamut et al. [70],

along with several use cases of tiled videos. SRD expands Media Presentation Description

(MPD) to define the relative spatial positions of tiles. It provides attributes like x- and y-

axis coordinates, as well as width and height, DASH clients can determine what tiles to

request. Like MPD, the SRD only provides the spatial organization of content, without

dictating how DASH clients leverage such information. Several use cases of SRD has

49

been proposed and discussed, such as zoomable, mobile, and TV-wall displays, where

tiled streaming provides additional flexibility. Concolato et al. [32] further discuss the

High-Efficiency Video Codec (HEVC) and ISO Base Media File Format (ISOBMFF)

standards, for encoding and encapsulating tiled videos for transmission. Combining SRD,

HEVC, and ISOBMFF, a client may merge several tiles into a video stream, which is

decodable by a decoder. Their evaluations show that the proposed approach incurs a

minor streaming overhead when delivering the tiled videos compared to the non-tiled

ones. Therefore, standard DASH clients can then request and decode some or all tiles;

in other words, a subset of tiles in different quality levels can be selected based on the

available bandwidth in dynamic networks.

Several papers [36, 42, 45] share their experience of realizing standard-based 360◦

video transmission. In particular D’Acunto et al. [36] provide guidelines on realizing

navigable video transmission using SRD. They summarize the design choices that allow

players to render SRD-enabled DASH content: including (i) selecting the best resolution

layers for the current viewport and (ii) enabling a seamless switches among tiled videos.

In addition, they give examples on how a player may use SRD to support zoomable and

navigable videos by extending dash.js [72], which is an MPEG DASH reference client.

Feuvre and Concolato [42] employ several open source projects, such as Kvazaar [102],

MP4Box [13], and MP4Client [76], to realize tile-based adaptive transmission using

MPEG-DASH and SRD. Furthermore, they discuss on different adaptation policies of

tiled 360◦ videos, where the tiles are either compressed independently or with tile-constrained

motion vectors. Graf et al. [45] present a tile-based 360◦ streaming system and implement

tools to evaluate the pros and cons of using different encoding and streaming strategies.

They explore various options enabling the bandwidth-efficient 360◦ video adaptation over

HTTP. They find that 6x4 tiles provide the best tradeoff between tiling overhead and band-

width consumption. The trace-driven evaluations has a confirm bitrate saving up to 40%

at similar video quality compared to the existing solutions.

Conducting measurement study and carrying out reverse engineering on the commer-

cial 360◦ video services, such as YouTube and Facebook, is another research direction.

For example, Afzal et al. [20] analyze the characteristics of online 360◦ videos. They col-

lect thousands of 360◦ videos from YouTube and classify them into several genre. They

further analyze the variability in videos resolution, and bitrate, and the possible underlying

causes of these variabilities compared to transmitting non-360◦ videos. Zhou et al. [116]

perform detailed measurements on Oculus 360◦ videos from Facebook and describe the

offset cubic projection implemented by Oculus. Furthermore, they calculate the angles

of users’ viewports by their mathematical formula in order to give-high quality videos in

the current viewports. Several experiments with different conditions are done to test how

50

many segments are unwatched and wasted. The results show that offset cubic projection

model saves more bandwidth than the traditional model, which sends all tiles of the same

quality to clients. These studies [20, 116] shed some lights on how to optimize 360◦ video

transmission, although they may not directly achieve that.

Most 360◦ video transmission is optimized through sending tiles at different quality

levels. More precisely, the tiles in the viewer’s current viewport are sent at higher quality,

and others are sent at lower quality, to cut the bandwidth usage without viewing qual-

ity degradation. Thus, Zare et al. [114] propose to encode each 360◦ video into tiles in

two representations: high- and low-resolutions. Then, they would transmit the viewport

tiles at high resolution, and other tiles at low resolution. They adopt motion-constrained

HEVC tiles and propose three heuristic schemes for 360◦ video transmission to HMDs.

Even though no intelligent adaptation is done with their tiling schemes, experiment re-

sults reveal that their solution leverages the common patterns of head movements and

achieves better coding efficiency. Nguyen et al. [69] also stream 360◦ videos in two re-

gions: the center region, which is rectangular and covers the most-probable viewports,

and the residue region. They solve an optimization problem by deciding the size and

encoding bitrate of the center region, so as to maximize video quality under the band-

width constraint. Their solution assumes the mapping between video quality and bitrate

is empirically derived, and that only one receiver is considered in the optimization prob-

lem. Ju et al. [54] encode each 360◦ video into two representations and transmit the

low-resolution full 360◦ videos along with high-resolution viewports. They propose to

consider the heat map of viewer’s attentions, for live transmitting the high-viewing prob-

ability portion. Corbillon et al. [33] encode 360◦ videos into two representations and take

diverse projection models into considerations. In addition to varying the bitrates in dif-

ferent representations, they also consider the viewports of 360◦ videos in HMDs. That

is, each 360◦ video is divided into segments, where each segment is compressed multiple

times with combinations of viewports and bitrates. Each user then requests for the proper

representation via the DASH protocol. The same authors extend their work to include

some theoretical models for the viewport-adaptive 360◦ video streaming [33]. These

models are then simplified by the following assumptions: (i) uniform coding complex-

ity, (ii) two representations, (iii) maximum quality gap between the representations, and

(iv) rectangular viewports. They then propose a viewport-adaptive streaming algorithm

to exercise the trade-off between the viewport size and the tile bitrates.

Duanmu et al. [37] generalize the previously mentioned two-representation approach,

and encode each 360◦ video into a base and multiple enhancement representations. Then,

they create different buffers for these representations, and present their prioritized buffer

control mechanisms. They give the highest priority to the playback continuity by first

51

guaranteeing the transmission of the base representation. The residual bandwidth is then

used to download enhancement representations. Nasrabadi et al. [67] consider a very sim-

ilar problem, but explicitly use Scalable Video Coding (SVC) tiles for 360◦ videos. The

core idea is to prefetch and buffer the base-layer tiles of the whole 360◦ videos earlier,

in order to avoid playout interruption and a long rebuffering time. For tiles in viewports,

enhancement-layer tiles are transmitted with residue bandwidth. Adaptations based on

viewer orientations and network conditions are both considered in their work. Petrangeli

et al. [79] propose to capitalize the push-based HTTP/2 protocol (instead of HTTP/1.1)

for multiple representation transmission to reduce the network overhead, and also an al-

gorithm to predict the tiles that may be watched in the future. Then, they use HTTP/2

to save time on request and delivery of the predicted tiles. The same authors extend the

work into a complete system [78], e.g., dead-reckoning is adopted to predict future view-

ports, and thorough evaluation results are reported. Ozcinar et al. [75] propose to send the

viewport at the highest-possible bitrate, and gradually reduce the bitrates that are propor-

tional to the distance to the viewport. They build an end-to-end transmission system for

8K resolution 360◦ videos watched by HMDs. The experiments show that their proposed

system provides better viewing quality than the baselines, when PSNR (Peak Signal-to-

Noise Ratio) and SSIM (Structural SIMilarity) of viewports are considered. Hosseini and

Swaminathan [47] also consider multiple representations, but they propose a new projec-

tion model for better viewing quality. They leverage peripheral vision, and further reduce

the quality of some tiles. With viewport tracking, the dynamically delivered tiles within

user’s viewports are at a higher bitrate. 72% of bandwidth saving is reported without

clear quality drops. These studies [114, 54, 33, 37, 67, 79, 75, 47, 69, 33] strive to save

bandwidth by reducing the quality of unwatched or less-noticed tiles, which is agnostic to

the network and computation infrastructures.

7.4 360◦ Video Quality Assessment

Video QoE refers to the human perceived video quality, which can only be quantified

using rigorously designed testbeds and procedures. The QoE metrics are either: (i) sub-

jective or (ii) objective metrics. The subjective metrics are from user inputs, most likely

through some questionnaires, while the objective metrics are from computer algorithms.

The subjective metrics are close with actual human perception, but require more efforts

to design, conduct, and analyze. In contrast, the objective metrics are easier to derive,

but may deviate from the real human perception. QoE evaluations and optimization have

been crucial for multimedia applications, even before 360◦ videos are popularized. For

example, Tan et al. [97] present the standardized evaluation procedures for quantifying

52

the subjective and objective QoE levels achieved by the latest H.265/HEVC video coding

standard. The authors adopt PSNR as the objective quality metric. In terms of subjec-

tive quality assessment, they follow the procedure suggested by ITU-Rec. P910 [86] and

ITU-Rec. BT500 [85], which are for multimedia applications and television pictures, re-

spectively. The subjects were asked to view and rate a random series of basic test cells,

where each cell contains two video clips: the original video clip followed by the recon-

structed one. Their evaluation procedure is not suitable for 360◦ videos, which are often

transmitted in tiles for selectively transmitting tiles that are more likely to be watched to

save the bandwidth consumption. Wang et al. [105] consider the QoE of zoomable video

tiles, which may have diverse resolutions. Their evaluations reveal that users may not

notice some tiles that are transmitted at lower resolutions. In particular, they conduct user

studies to measure two thresholds for just noticeable/unacceptable differences. These two

thresholds are then used to drive the resolution selection among tiles under the restricted

bandwidth. Their experiment results demonstrate a 14%–20% bandwidth saving using

their proposed method. In addition, the results also reveal that the two thresholds are

related to the characteristics of video content, such as the motion levels. However, their

work focuses on conventional flat displays, rather than modern HMDs.

QoE evaluation testbeds and procedures have gradually received more attentions. A

testbed is built [100] for evaluations of QoE metrics of 360◦ videos. They demonstrate the

applicability of their testbed by using it to collect Mean Opinion Score (MOS) of 360◦

images and videos encoded at different quality levels. Their testbed allows subjects to

view images and videos using HMDs based on mobile devices, e.g., Google Cardboard.

During each assessment session, their proposed testbed tracks the subject’s scores, ori-

entation, and consumed time. Singla et al. [91] assess sickness caused by watching 360◦

videos in HMDs via subjective evaluations. They consider two commercial HMDs and

two resolutions in their experiments. That is, each video content is viewed 4 times with

different combinations of HMDs and resolutions. 28 subjects are recruited to rate the

360◦ videos downloaded from YouTube, where 6 videos in total are used. Their results

show that both the resolution and content have significant impacts on the subjects’ experi-

ence, while the HMDs only impose a slight influence on it. Example observations include

that HTC Vive provides a little better overall quality compared to Oculus Rift. In addi-

tion, average female users suffer more on sickness, especially for disorientation. Singla

et al. [90] quantify the implication of different bitrates and resolutions through subjective

evaluations. The authors propose a modified subjective evaluation procedure, which: (i)

allows the subjects to view the test sequence twice for more reliable rating and (ii) asks

the subjects to rate the test sequence through speech to prevent the interruption of wear-

ing or taking off the HMD. Bessa et al. [25] study whether 3D (stereoscopic) view will

53

improve the subjective QoE levels, compared to 2D view. They recruit 63 participants to

view a single video. Half of the participants watch the video in 2D version while the other

half watch the video in 3D version. Surprisingly, their results show that 3D 360◦ videos

brings no benefit to the viewers compared to 2D 360◦ videos. This may cause by the

subjects’ have limited 360 video viewing experience, especially in 3D. QoE evaluations

on specific applications are also possible, e.g., Hupont et al. [52] propose procedures to

study the gaming QoE with HMDs. The authors conduct experiments to evaluate: (i) the

perceived presence scores and (ii) the usability scores on both conventional 2D displays

and HMDs. Their results show that wearing HMDs provides better experience compared

to 2D displays in various aspects, such as realism, possibility to act, and willingness to

use, while also leading to higher complexities and steeper learning curves. While the

studies [100, 91, 90, 25, 52] shed some lights on fine-tuning the QoE of 360◦ videos, they

do not actively optimize the QoE of 360◦ video systems.

Some work moves a bit further and optimizes 360◦ video systems in terms of user

QoE levels. Hsu et al. [48] carry out QoE evaluations on foveated rendering systems,

where the objects in the foveal region are encoded at higher quality than the objects in

the peripheral region. In their study, they vary the resolution of the foveal region and

peripheral region on 2D displays and consider four types of subjective quality assessment

methods. They find that most of the viewers do not perceive the distortion if the size of the

foveal region is larger than 7.5◦. Furthermore, they evaluate the consistency and efficiency

of the considered assessment methods. Based on the results from the considered four

methods, they model the perceptual ratio on foveated rendering using regression analysis.

Steed et al. [93] study how user interface and conditions may affect the VR QoE of HMD

users. The considered scenario is a virtual singer singing on the stage. The authors

consider 8 conditions in this scenario using Unity in their user studies. These conditions

come from the combinations of 3 settings: (i) with or without self-avatar, (ii) with or

without the singer asking the user to tap along to the beats, and (iii) with or without

the singer looking at the user. Their results reveal that self-avatar makes clear impact

on the user experience. The user experience is degraded due to synchronization issues

between the subject and his/her self-avatar, when tapping along the beats. However, with

the singer looking at the user, no negative effect on viewing experience is observed. The

authors argue that this is because the user has no expectation on the singer to engage with

him or her. Fernandes and Feiner [41] propose an evaluation design to understand the

relations between viewport size, sickness, and perceived quality. In particular, they vary

the viewport degree between 80◦ and 90◦. Each subject is asked to wear an HMD and

walk along a set of waypoints in virtual environments. They rate the discomfort levels

every 5 waypoints. Their experiment results indicate that restricting viewport size helps

54

subjects adapt to the virtual environments and reduce the discomfort level, as long as the

restricted viewport size is acceptable to the subjects. These papers [48, 93, 41] concentrate

on subjective evaluations.

Recruiting viewers for subjective evaluations is costly, error-prone, and tedious. There-

fore, several papers [101, 99, 38] discuss how to estimate the subjective results using

the objective results, so as to reduce the overhead of subjective evaluations. Upenik et

al. [101] conduct subjective evaluations with 45 subjects, and try to analyze the correla-

tion between the subjective MOS values and objective quality levels. Their considered ob-

jective quality metrics include PSNR, SSIM, M-SSIM, VIFP, S-PSNR, WS-PSNR [112],

and CPP-PSNR [113]. Their analysis on the subjective scores and objective metrics show

that the existing objective quality metrics designed for 360◦ videos (e.g., S-PSNR and

WS-PSNR) do not have higher correlation to the subjective scores than the original met-

rics (e.g., PSNR). Therefore, the authors conclude that there are still open issues in this

research direction, e.g., a better objective quality metric specifically designed for 360◦

videos is needed. Tran et al. [99] conduct similar evaluations on 18 subjects. Their

findings are more promising compared to Upenik et al. [101], e.g., all their considered

objective metrics have high correlation to the subjective results. The sources of distortion

are due to: (i) changing video content format and (ii) transmitting content over networks.

Last, Egan et al. [38] predict the QoE scores based on the biosensors. It is shown that

the electrodermal activity has significant contribution to the QoE scores. On the contrary,

the heart rate has no effect for the subjective scores. Their results confirm that exploring

VR using HMDs leads to more immersive experience than using 2D displays. While the

community is making progress at the front of modeling subjective evaluation results with

a function of objective measurement, there are still many open issues, as pointed out by

Upenik et al. [101].

55

Chapter 8

Conclusion and Future Work

In this thesis, we study the streaming pipeline of 360◦ video to HMD viewers. We found to

fulfill a real immersive AR/VR experience, there would be several challenges, including

high bandwidth consumption, latency-sensitive, and heterogeneous HMD devices. To

conquer the challenges, we proposed an edge-assisted rendering system, which leverage

edge devices to perform the tile rewriting and viewport rendering. Then, we formulate the

optimization problem to determine which HMD should be served without overloading the

edge devices, and design an algorithm to solve the aforementioned problem properly, and

a real testbed is implemented to prove the concept. The resulting edge-assisted 360◦ video

streaming system is evaluated through extensive experiments with an open-sourced 360◦

viewing dataset. Compared to current 360◦ video streaming platforms, like YouTube, our

edge-assisted rendering platform can: (i) save up to 62% in bandwidth consumption, (ii)

achieve higher viewing video quality up to 7.7 dB at a given bitrate, and (iii) reduce the

computation workload for those lightweight HMDs.

This work, however, can be extended in several directions:

• Leverage GPUs to fulfill real-time computing. Rendering user’s viewport needs

lots of computing power, so to fulfill real-time computing, we should leverage GPU

toolkit and parallel computing to accelerate the viewport rendering. These enhance-

ments will further improve the performance of our edge-assisted 360◦ streaming

platform.

• Modeling the computing cost of VPR running on an edge server. Each edge

server however has limited computing power. Like we mentioned before, rendering

the user’s viewport needs lots of computing power. To know the exactly number

of HMD clients that edge server can serve, we should model the computing cost of

VPR and develop a computing model when serving heterogeneous HMD clients.

• More intelligence algorithm. A better algorithm could be developed to carefully

choose the best ways to assist individual HMDs for maximizing the overall video

56

quality improvement without overloading: (i) networks, (ii) edge servers, and (iii)

HMDs.

By differentiating the pros and cons of edge-assisted streaming to current approach,

we open up new opportunities for researchers and engineers to further optimize 360◦

streaming platforms in terms of user experience.

57

Bibliography

[1] The OpenCV Library. http://opencv.org, 2000. Accessed May 2018.

[2] After mixed year, mobile AR to drive $108 billion VR/AR market by 2021.

https://goo.gl/P9N0z0, 2017. Accessed May 2018.

[3] Facebook Spaces. https://www.facebook.com/spaces, 2017. Accessed

April 2018.

[4] Oculus Video. ://www.oculus.com/experiences/rift/

926562347437041/, 2017. Accessed May 2018.

[5] EC2 Network Benchmark Results. https://cloudonaut.io/

behind-the-scences-ec2-network-performance-benchmark/,

2018. Accessed July 2018.

[6] Facebook. https://www.facebook.com/, 2018. Accessed May 2018.

[7] Facebook Oculus Rift. https://www.oculus.com, 2018. Accessed May

2018.

[8] Google Cardboard. https://vr.google.com/cardboard/, 2018. Ac-

cessed May 2018.

[9] HTC Vive. https://www.htcvive.com, 2018. Accessed May 2018.

[10] HTC Vive Focus. https://www.vive.com/cn/product/

vive-focus-en/, 2018. Accessed May 2018.

[11] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/, 2018. Accessed

July 2018.

[12] Luna 360 VR. http://luna.camera/, 2018. Accessed May 2018.

[13] MP4Box. https://gpac.wp.imt.fr/mp4box/, 2018. Accessed May

2018.

58

[14] Richo Theta S. https://theta360.com, 2018. Accessed May 2018.

[15] Samsung Gear 360. http://www.samsung.com/global/galaxy/

gear-360/, 2018. Accessed May 2018.

[16] Samsung Gear VR. http://www.samsung.com/global/galaxy/

gear-vr, 2018. Accessed May 2018.

[17] Sony Playstation VR. https://www.playstation.com/en-au/

explore/playstation-vr/, 2018. Accessed May 2018.

[18] YouTube. https://www.youtube.com/, 2018. Accessed May 2018.

[19] H. Afshari, V. Popovic, T. Tasci, A. Schmid, and Y. Leblebici. A spherical multi-

camera system with real-time omnidirectional video acquisition capability. IEEE

Transactions on Consumer Electronics, 58(4):1110–1118, 2012.

[20] S. Afzal, J. Chen, and K. Ramakrishnan. Characterization of 360-degree videos.

In Proceedings of the 2017 ACM SIGCOMM Workshop on Virtual Reality and

Augmented Reality Network, VR/AR Network’17, pages 1–6, 2017.

[21] R. Aggarwal, A. Vohra, and A. Namboodiri. Panoramic stereo videos with a single

camera. In Proceedings of the 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR’16, pages 3755–3763, 2016.

[22] R. Aparicio-Pardo, K. Pires, A. Blanc, and G. Simon. Transcodclouding live adap-

tive video streams at a massive scale in the cloud. In Proceedings of the 2015 ACM

Multimedia Systems Conference, MMSys ’15, pages 49–60, 2015.

[23] I. Bauermann, M. Mielke, and E. Steinbach. H.264 based coding. In Proceedings

of the 2004 International Conference Computer Vision and Graphics, ICCVG’04,

pages 209–215, 2004.

[24] A. Belbachir, S. Schraml, M. Mayerhofer, and M. Hofstatter. A novel HDR depth

camera for real-time 3D 360◦ panoramic vision. In Proceedings of the 2014 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR’14, pages 425–

432, 2014.

[25] M. Bessa, M. Melo, D. Narciso, L. Barbosa, and J. Vasconcelos-Raposo. Does

3D 360 video enhance user’s VR experience: An evaluation study. In Proceedings

of the 2016 International Conference on Human Computer Interaction, HCI’16,

pages 16:1–16:4, 2016.

59

[26] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the

Internet of Things. In Proceedings of the 2012 MCC Workshop on Mobile Cloud

Computing, MCC’12, pages 13–16, 2012.

[27] A. Borji, M. Cheng, H. Jiang, and J. Li. Salient object detection: A survey. arXiv

preprint arXiv:1411.5878, 2014.

[28] K. Calagari, M. Elgharib, S. Shirmohammadi, and M. Hefeeda. Sports VR content

generation from regular camera feeds. In Proceedings of the 2017 ACM Multimedia

Conference, MM ’17, pages 699–707, 2017.

[29] J. Carmack. Latency Mitigation Strategies.

https://www.twentymilliseconds.com/post/

latency-mitigation-strategies/, 2018. Accessed April 2018.

[30] F. Chollet. Keras. https://github.com/fchollet/keras, 2018. Ac-

cessed May 2018.

[31] O. Cogal, A. Akin, K. Seyid, V. Popovic, A. Schmid, B. Ott, P. Wellig, and

Y. Leblebici. A new omni-directional multi-camera system for high resolution

surveillance. Proceedings of SPIE, Mobile Multimedia/Image Processing, Secu-

rity, and Applications, 9120(9):9120–9120, 2014.

[32] C. Concolato, J. Feuvre, F. Denoual, E. Nassor, N. Ouedraogo, and J. Taquet.

Adaptive streaming of HEVC tiled videos using MPEG-DASH. IEEE Transac-

tions on Circuits and Systems for Video Technology, PP(99):1–1, 2017.

[33] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-adaptive navi-

gable 360-degree video delivery. In Proceedings of the 2017 IEEE International

Conference on Communications, ICC’17, pages 1–7, 2017.

[34] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. A deep multi-level network

for saliency prediction. In Proceedings of the 2016 International Conference on

Pattern Recognition, ICPR’16, pages 3488–3493, 2016.

[35] V. Couture, M. Langer, and S. Roy. Panoramic stereo video textures. In Proceed-

ings of the 2011 International Conference on Computer Vision, ICCV’11, pages

1251–1258, 2011.

[36] L. D’Acunto, J. Berg, E. Thomas, and O. Niamut. Using MPEG DASH SRD

for zoomable and navigable video. In Proceedings of the 2016 ACM Multimedia

Systems Conference, MMSys ’16, page 34:1–34:4, 2016.

60

[37] F. Duanmu, E. Kurdoglu, S. Hosseini, Y. Liu, and Y. Wang. Prioritized buffer con-

trol in two-tier 360 video streaming. In Proceedings of the 2017 ACM SIGCOMM

Workshop on Virtual Reality and Augmented Reality Network, VR/AR Network’17,

pages 13–18, 2017.

[38] D. Egan, S. Brennan, J. Barrett, Y. Qiao, C. Timmerer, and N. Murray. An evalua-

tion of heart rate and electrodermal activity as an objective QoE evaluation method

for immersive virtual reality environments. In Proceedings of the 2016 Interna-

tional Conference on Quality of Multimedia Experience, QoMEX’16, pages 1–6,

2016.

[39] C. Fan, J. Lee, W. Lo, C. Huang, K. Chen, and C. Hsu. Fixation prediction for

360◦ video streaming in head-mounted virtual reality. In Proceedings of the 2017

Workshop on Network and Operating Systems Support for Digital Audio and Video,

NOSSDAV’17, pages 67–72, 2017.

[40] C. Feldmann, C. Bulla, and B. Cellarius. Efficient stream-reassembling for video

conferencing applications using tiles in HEVC. In Proceedings of the 2013 Inter-

national Conferences on Advances in Multimedia, MMEDIA’13, pages 130–135,

2013.

[41] A. Fernandes and S. Feiner. Combating VR sickness through subtle dynamic Field-

of-View modification. In Proceedings of the 2016 IEEE Symposium on 3D User

Interfaces, 3DUI’16, pages 201–210, 2016.

[42] J. Feuvre and C. Concolato. Tiled-based adaptive streaming using MPEG-DASH.

In Proceedings of the 2016 ACM Multimedia Systems Conference, MMSys ’16,

page 41, 2016.

[43] J. Foote and D. Kimber. FlyCam: practical panoramic video and automatic camera

control. In Proceedings of the 2000 IEEE International Conference on Multimedia

and Expo., ICME’00, pages 1419–1422, 2000.

[44] C. Fu, L. Wan, T. Wong, and C. Leung. The rhombic dodecahedron map: An

efficient scheme for encoding panoramic video. IEEE Transactions on Multimedia,

11(4):634–644, 2009.

[45] M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth efficient adaptive

streaming of omnidirectional video over HTTP. In Proceedings of the 2017 ACM

Multimedia Systems Conference, MMSys’17, pages 261–271, 2017.

61

[46] S. Heymann, A. Smolic, K. Muller, Y. Guo, J. Rurainsky, P. Eisert, and T. Wiegand.

Representation, coding and interactive rendering of high-resolution panoramic im-

ages and video using MPEG-4. In Proceedings of the 2005 Panoramic Photogram-

metry Workshop, PPW’05, 2005.

[47] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming: Divide and

conquer. In Proceedings of the 2016 IEEE International Symposium on Multime-

dia, ISM’16, pages 107–110, 2016.

[48] C. Hsu, A. Chen, C. Hsu, C. Huang, C. Lei, and K. Chen. Is foveated rendering

perceivable in virtual reality: Exploring the efficiency and consistency of quality

assessment methods. In Proceedings of the 2017 ACM Multimedia Conference,

MM’17, pages 55–63, 2017.

[49] Y. Hu, S. Xie, Y. Xu, and J. Sun. Dynamic VR live streaming over MMT. In Pro-

ceedings of the 2017 International Symposium on Broadband Multimedia Systems

and Broadcasting, BMSB’17, pages 1–4, 2017.

[50] C. Huang, C. Hsu, Y. Chang, and K. Chen. GamingAnywhere: An open cloud

gaming system. In Proceedings of the 2013 ACM Multimedia Systems Conference,

MMSys’13, pages 36–47, 2013.

[51] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-DOF VR videos with a single 360-

camera. In Proceedings of the 2017 IEEE Virtual Reality, VR’17, pages 37–44,

2017.

[52] I. Hupont, J. Gracia, L. Sanagustin, and M. Gracia. How do new visual immersive

systems influence gaming QoE: A use case of serious gaming with Oculus Rift.

In Proceedings of the 2015 International Conference on Quality of Multimedia

Experience, QoMEX’15, pages 1–6, 2015.

[53] W. Jiang and J. Gu. Video stitching with spatial-temporal content-preserving warp-

ing. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR’15, pages 42–48, 2015.

[54] R. Ju, J. He, F. Sun, J. Li, F. Li, J. Zhu, and L. Han. Ultra wide view based

panoramic VR streaming. In Proceedings of the 2017 ACM SIGCOMM Workshop

on Virtual Reality and Augmented Reality Network, VR/AR Network’17, pages

19–23, 2017.

62

[55] Y. Kavak, E. Erdem, and A. Erdem. A comparative study for feature integration

strategies in dynamic saliency estimation. Signal Processing: Image Communica-

tion, 51(C):13–25, 2017.

[56] N. Khiem, G. Ravindra, and W. Ooi. Adaptive encoding of zoomable video

streams based on user access pattern. Signal Processing: Image Communication,

27(4):360–377, 2012.

[57] H. Kimata, S. Shimizu, Y. Kunita, M. Isogai, and Y. Ohtani. Panorama video

coding for user-driven interactive video application. In Proceedings of the 2009

IEEE International Symposium on Consumer Electronics, ISCE’09, pages 112–

114, 2009.

[58] G. Krishnan and S. Nayar. Cata-fisheye camera for panoramic imaging. In

Proceedings of the 2008 IEEE Workshop on Applications of Computer Vision,

WACV’08, pages 1–8, 2008.

[59] J. Lee, B. Kim, K. Kim, Y. Kim, and J. Noh. Rich360: Optimized spherical repre-

sentation from structured panoramic camera arrays. ACM Transactions on Graph-

ics, 35(4):63:1–63:11, 2016.

[60] L. Li, Z. Li, X. Ma, H. Yang, and H. Li. Co-projection-plane based 3-D padding

for polyhedron projection for 360-degree video. In Proceedings of the 2017 IEEE

International Conference on Multimedia and Expo., ICME’17, pages 55–60, 2017.

[61] K. Lin, S. Liu, L. Cheong, and B. Zeng. Seamless video stitching from hand-held

camera inputs. Computer Graphics Forum, 35(2):479–487, 2016.

[62] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu. 360◦ video viewing dataset

in head-mounted virtual reality. In Proceedings of the 2017 ACM Multimedia Sys-

tems Conference, MMSys’17, pages 211–216, 2017.

[63] W. Lo, C. Fan, S. Yen, and C. Hsu. Performance measurements of 360◦ video

streaming to head-mounted displays over live 4G cellular networks. In Proceed-

ings of the 2017 Asia-Pacific Network Operations and Management Symposium,

APNOMS ’17, pages 205–210, 2017.

[64] B. Lucas and T. Kanade. An iterative image registration technique with an appli-

cation to stereo vision. In Proceedings of the 1981 International Joint Conference

on Artificial Intelligence, IJCAI’81, pages 674–679, 1981.

63

[65] K. Mania, B. Adelstein, S. Ellis, and M. Hill. Perceptual sensitivity to head track-

ing latency in virtual environments with varying degrees of scene complexity. In

Proceedings of the 2004 Symposium on Applied Perception in Graphics and Visu-

alization, APGV’04, pages 39–47, 2004.

[66] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou. An overview

of tiles in HEVC. IEEE Journal of Selected Topics in Signal Processing, 7(6):969–

977, 2013.

[67] A. Nasrabadi, A. Mahzari, J. Beshay, and R. Prakash. Adaptive 360-degree video

streaming using scalable video coding. In Proceedings of the 2017 ACM Multime-

dia Conference, MM’17, pages 1689–1697, 2017.

[68] K. Ng, S. Chan, and H. Shum. Data compression and transmission aspects of

panoramic videos. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 15(1):82–95, 2005.

[69] D. Nguyen, H. Tran, A. Pham, and T. Thang. A new adaptation approach for

viewport-adaptive 360-degree video streaming. In Proceedings of the 2017 IEEE

International Symposium on Multimedia, ISM’17, pages 38–44, 2017.

[70] O. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and S. Lim. MPEG

DASH SRD: spatial relationship description. In Proceedings of the 2016 ACM

Multimedia Systems Conference, MMSys ’16, page 5, 2016.

[71] J. Ohm and G. Sullivan. High efficiency video coding: the next frontier in

video compression: Standards in a Nutshell. IEEE Signal Processing Magazine,

30(1):152–158, 2013.

[72] J. Oliva. A reference client implementation for the playback of MPEG

DASH via javascript and compliant browsers. https://github.com/

Dash-Industry-Forum/dash.js/, 2017. Accessed April 2018.

[73] OpenTrack: head tracking software. https://github.com/opentrack/

opentrack, 2018. Accessed May 2018.

[74] C. Ozcinar, A. Abreu, S. Knorr, and A. Smolic. Estimation of optimal encoding

ladders for tiled 360◦ VR video in adaptive streaming systems. In Proceedings

of the 2017 IEEE International Symposium on Multimedia, ISM’17, pages 45–52,

2017.

64

[75] C. Ozcinar, A. Abreu, and A. Smolic. Viewport-aware adaptive 360◦ video stream-

ing using tiles for virtual reality. In Proceedings of the 2017 IEEE International

Conference on Image Processing, ICIP’17, pages 2174–2178, 2017.

[76] T. ParisTech. MP4Client. https://gpac.wp.imt.fr/player/, 2017. Ac-

cessed April 2018.

[77] F. Perazzi, A. Sorkine-Hornung, H. Zimmer, P. Kaufmann, O. Wang, S. Watson,

and M. Gross. Panoramic video from unstructured camera arrays. Computer

Graphics Forum, 34(2):57–68, 2015.

[78] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. Turck. An HTTP/2-Based

adaptive streaming framework for 360◦ virtual reality videos. In Proceedings of

the 2017 ACM Multimedia Conference, MM’17, pages 306–314, 2017.

[79] S. Petrangeli, F. Turck, V. Swaminathan, and M. Hosseini. Improving virtual reality

streaming using HTTP/2. In Proceedings of the 2017 ACM Multimedia Systems

Conference, MMSys’17, pages 225–228, 2017.

[80] M. Rerabek, E. Upenik, and T. Ebrahimi. JPEG backward compatible coding

of omnidirectional images. Applications of Digital Image Processing XXXIX,

9971(10):1–12, 2016.

[81] Y. Sanchez, R. Skupin, C. Hellge, and T. Schierl. Spatio-temporal activity based

tiling for panorama streaming. In Proceedings of the 2017 Workshop on Network

and Operating Systems Support for Digital Audio and Video, NOSSDAV’17, pages

61–66, 2017.

[82] Y. Sanchez, R. Skupin, and T. Schierl. Compressed domain video processing for

tile based panoramic streaming using SHVC. In Proceedings of the 2015 Interna-

tional Workshop on Immersive Media Experiences, ImmersiveME’15, pages 13–

18, 2015.

[83] J. Sauer, J. Schneider, and M. Wien. Improved motion compensation for 360◦ video

projected to polytopes. In Proceedings of the 2017 IEEE International Conference

on Multimedia and Expo, ICME’17, pages 61–66, 2017.

[84] O. Schreer, I. Feldmann, C. Weissig, P. Kauff, and R. Schafer. Ultrahigh-resolution

panoramic imaging for format-agnostic video production. Proceedings of the

IEEE, 101(1):99–114, 2013.

[85] I. R. Sector. Methodology for the subjective assessment of the quality of television

picture. ITU-R Recommendation, BT.500(13), January 2012.

65

[86] I. T. S. Sector. Subjective video quality assessment methods for multimedia appli-

cations. ITU-T Recommendation, P.910, April 2008.

[87] M. Shirer and S. Murray. IDC Sees the Dawn of the DX Econ-

omy and the Rise of the Digital-Native Enterprise. https://

www.businesswire.com/news/home/20161101005193/en/

IDC-Sees-Dawn-DX-Economy-Rise-Digital-Native, 2016. Ac-

cessed April 2018.

[88] R. Silva, B. Feijó, P. Gomes, T. Frensh, and D. Monteiro. Real time 360◦ video

stitching and streaming. In Proceedings of the 2016 ACM Special Interest Group

on Computer GRAPHics and Interactive Techniques Conference, SIGGRAPH’16,

pages 70:1–70:2, 2016.

[89] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[90] A. Singla, S. Fremerey, W. Robitza, P. Lebreton, and A. Raake. Comparison of

subjective quality evaluation for HEVC encoded omnidirectional videos at differ-

ent bitrates for UHD and FHD resolution. In Proceedings of the 2017 ACM Multi-

media Thematic Workshops, Thematic Workshops’17, pages 511–519, 2017.

[91] A. Singla, S. Fremerey, W. Robitza, and A. Raake. Measuring and comparing

QoE and simulator sickness of omnidirectional videos in different head mounted

displays. In Proceedings of the 2017 International Conference on Quality of Mul-

timedia Experience, QoMEX’17, pages 1–6, 2017.

[92] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl. Tile based HEVC video for head

mounted displays. In Proceedings of the 2016 IEEE International Symposium on

Multimedia, ISM’16, pages 399–400, 2016.

[93] A. Steed, S. Frlston, M. Lopez, J. Drummond, Y. Pan, and D. Swapp. An ’in

the wild’ experiment on presence and embodiment using consumer virtual re-

ality equipment. IEEE Transactions on Visualization and Computer Graphics,

22(4):1406–1414, 2016.

[94] T. Stockhammer. Dynamic adaptive streaming over HTTP: Standards and design

principles. In Proceedings of the 2011 ACM Multimedia Systems Conference, MM-

Sys’11, pages 133–144, 2011.

66

[95] G. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the high efficiency

video coding HEVC standard. IEEE Transactions on Circuits and Systems for

Video Technology, 22(12):1649–1668, 2012.

[96] Y. Sánchez, R. Skupin, and T. Schierl. Compressed domain video processing for

tile based panoramic streaming using HEVC. In Proceedings of the 2015 IEEE

International Conference on Image Processing, ICIP’15, pages 2244–2248, 2015.

[97] T. Tan, R. Weerakkody, M. Mrak, N. Ramzan, V. Baroncini, J. Ohm, and G. Sul-

livan. Video quality evaluation methodology and verification testing of HEVC

compression performance. IEEE Transactions on Circuits and Systems for Video

Technology, 26(1):76–90, 2016.

[98] I. Tosic and P. Frossard. Low bit-rate compression of omnidirectional images. In

Proceedings of the 2009 Picture Coding Symposium, PCS’09, pages 1–4, 2009.

[99] H. Tran, N. Ngoc, C. Bui, M. Pham, and T. Thang. An evaluation of quality metrics

for 360 videos. In Proceedings of the 2017 International Conference on Ubiquitous

and Future Networks, ICUFN’17, pages 7–11, 2017.

[100] E. Upenik, M. Rerabek, and T. Ebrahimi. Testbed for subjective evaluation of

omnidirectional visual content. In Proceedings of the 2016 Picture Coding Sympo-

sium, PCS’16, pages 1–5, 2016.

[101] E. Upenik, M. Rerabek, and T. Ebrahimi. On the performance of objective met-

rics for omnidirectional visual content. In Proceedings of the 2017 International

Conference on Quality of Multimedia Experience, QoMEX’17, pages 1–6, 2017.

[102] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T. D.

Hämäläinen. Kvazaar: Open-source HEVC/H.265 encoder. In Proceedings of

the 2016 ACM Multimedia Conference, MM’16, pages 1179–1182, 2016.

[103] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-time panoramic

mapping and tracking on mobile phones. In Proceedings of the 2010 Conference

on Virtual Reality Conference, VR ’10, pages 211–218, 2010.

[104] H. Wang, M. Chan, and W. Ooi. Wireless multicast for zoomable video streaming.

ACM Transactions on Multimedia Computing, Communications, and Applications,

12(1):5, 2015.

[105] H. Wang, V. Nguyen, W. Ooi, and M. Chan. Mixing tile resolutions in tiled video:

A perceptual quality assessment. In Proceedings of the 2014 Workshop on Network

67

and Operating Systems Support for Digital Audio and Video, NOSSDAV’14, pages

25:25–25:30, 2014.

[106] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the

H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):560–576, 2003.

[107] S. Xiao and F. Wang. Generation of panoramic view from 360 degree fisheye im-

ages based on angular fisheye projection. In Proceedings of the 2011 International

Symposium on Distributed Computing and Applications to Business, Engineering

and Science, DCABES’11, pages 187–191, 2011.

[108] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360ProbDASH: Improving QoE of

360 video streaming using tile-based HTTP adaptive streaming. In Proceedings of

the 2017 ACM Multimedia Conference, MM’17, pages 315–323, 2017.

[109] Y. Xiong and K. Pulli. Color matching for high-quality panoramic images on mo-

bile phones. IEEE Transactions on Consumer Electronics, 56(4):2592–2600, 2010.

[110] S. Yao. Modeling Quality-of-Experience of 360◦ videos in head-mounted virtual

reality. Master’s thesis, National Tsing Hua University, 2018.

[111] R. Youvalari, A. Aminlou, M. Hannuksela, and M. Gabbouj. Efficient coding of

360-degree pseudo-cylindrical panoramic video for virtual reality applications. In

Proceedings of the 2016 IEEE International Symposium on Multimedia, ISM’16,

pages 525–528, 2016.

[112] M. Yu, H. Lakshman, and B. Girod. Content adaptive representations of omnidirec-

tional videos for cinematic virtual reality. In Proceedings of the 2015 International

Workshop on Immersive Media Experiences, ImmersiveMe’15, pages 1–6, 2015.

[113] V. Zakharchenko, K. Choi, and J. Park. Quality metric for spherical panoramic

video. In Proceedings of the 2016 SPIE, Optics, Photonics: Optical Engineering,

and Applications, OP’16, pages 9970–9979, 2016.

[114] A. Zare, A. Aminlou, M. Hannuksela, and M. Gabbouj. HEVC-compliant tile-

based streaming of panoramic video for virtual reality applications. In Proceedings

of the 2016 ACM Multimedia Conference, MM’16, pages 601–605, 2016.

[115] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang. Accurate

online power estimation and automatic battery behavior based power model gener-

ation for smartphones. In Proceedings of the 2010 IEEE/ACM/IFIP International

68

Conference on Hardware/Software Codesign and System Synthesis, CODES ’10,

pages 105–114, 2010.

[116] C. Zhou, Z. Li, and Y. Liu. A measurement study of Oculus 360 degree video

streaming. In Proceedings of the 2017 ACM Multimedia Systems Conference, MM-

Sys’17, pages 27–37, 2017.

[117] A. Zomet, A. Levin, S. Peleg, and Y. Weiss. Seamless image stitching by minimiz-

ing false edges. IEEE Transactions on Image Processing, 15(4):969–977, 2006.

69

