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Abstract

We design, implement, and evaluate a tiled DASH streaming system for

360° videos using QUIC/UDP protocol, in which multiplexed and priori-

tized streams are leveraged for sending urgent tiles that are about to miss their

playout time. In particular, we develop a new architecture to concurrently re-

quest for regular tiled segments at lower priorities and urgent tiled segments

at higher priorities as multiple streams over a single QUIC connection. Sev-

eral core components, including the fixation prediction algorithm, fast tile

selector, and Adaptive Bit Rate (ABR) algorithm are designed for this new

architecture. Compared to streaming 2D planar videos, streaming 360° tiled

videos using DASH to head-mounted displays is much more challenging. To

the best of our knowledge, most existing DASH ABR algorithms are not de-

signed for multiple and concurrent streams. Therefore, we design an ABR

algorithm tailored for preemptive multiplexed DASH streams carrying 360°

tiled videos. A suite of design decisions are made for three design objec-

tives: (i) preventing buffer under-run, (ii) avoiding large quality jumps, and

(iii) maximizing average quality. Capitalizing a few open-source projects, we

implement our proposed solutions in a real end-to-end Linux system. Our

experiment results show that compared to the baseline algorithms, our algo-

rithm: (i) averagely reduces the rebuffering counts by up to 3.2 and rebuffer-

ing time by up to 2.54 s when the bandwidth is limited, (ii) achieves at most

40.02% higher bandwidth utilization, and (iii) delivers good average V-PSNR

at 39–49 dB under 5–15 Mbps bandwidth.
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中中中文文文摘摘摘要要要

我們使用QUIC / UDP協議設計，設計、實作、評估用於360度視頻

的方塊DASH串流媒體系統，其中利用多路復用和優先串流來發送即

將錯過其播出時間的緊急方塊視頻。 我們設計了一個新架構， 可以

同時向伺服器端利用較低優的順位索取常規方塊視頻和 較高順位索

取的緊急方塊視頻，讓單個QUIC連線上有多個串流。我們為這個新

架構設計了幾個核心組件， 包括眼球注視預測演算法、快速方塊視

頻挑選器、動態調整視頻畫質(ABR)的演算法。與串流2D平面視頻相

比，使用DASH將360度方塊視頻傳輸到頭戴式顯示器更具挑戰性。據

我們所知，大多數現有的DASH的ABR演算法不是針對多個串流而設

計的。因此我們設計了一種針對串流360度方塊視頻的搶占式多路復

用DASH串流的ABR算法。我們的演算法設計基於三個目標：（i）防

止影片緩衝區無內容、（ii）避免影片間畫質的差異太大、以及（iii）

最大化平均影片畫質。我們利用一些開源專案在Linux系統中實現我們

提出的解決方案。我們的實驗結果顯示，與其他基準演算法相比，我

們的算法：（i）當網路資源有限時，平均將緩衝計數減少3.2次，緩衝

時間最多減少2.54秒， （ii）最多達到網路資源利用率提高40.02％，

以及（iii）在5-15 Mbps頻寬下提供39-49 dB的良好平均V-PSNR。
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Chapter 1

Introduction

360◦ videos enable interactive experience of watching video content in arbitrary orien-

tations determined by viewers, which have become very popular nowadays. Viewers no

longer sit still in front of laptops and TV sets, but freely turn their heads to experience 360◦

videos in Head-Mounted Displays (HMDs) [46]. Because of the immersive experience

provided by HMDs, HMDs have become the dominating displays/devices to consume

360◦ videos. To cope with the extremely high bandwidth consumption of streaming the

complete 360◦ videos encoded at very high resolutions, most 360◦ DASH (Dynamically

Adaptive Streaming over HTTP) streaming systems employ tiled streaming [15, 52, 27]

to selectively send the tiles in viewers’ viewports (typically 67◦×67◦–100◦×100◦ [15]).

Achieving high streaming quality in such systems is very challenging, because con-

ventional DASH streaming suffers from long response time as: (i) each segment typically

lasts for a few seconds, and (ii) large buffer is required to absorb the network dynamics.

Therefore, 360◦ tiled DASH video streaming clients must predict each viewer’s future

viewports, so that the required tiles can be requested in advance. Such prediction is done

by some fixation prediction algorithms [19, 8, 31] proposed in the literature, which calcu-

lates the viewer’s expected viewport centers in the future. To our best knowledge, these

prediction algorithms are not 100% accurate. Therefore, when predicted viewport cen-

ters are different from the actual viewport centers, the DASH client has to either stall

the playout or omit some tiles in the actual viewports referred to as missing tiles. This

in turn results in playout freezes or black holes: both dramatically degrade the viewing

experience.

The missing-tile issue is further amplified by the dominating streaming protocol: Dy-

namic Adaptive Streaming over HTTP (DASH) [43], which employs HTTP over TCP

for video streaming. While DASH is quite suitable for presentational or unidirectional

video streaming, it is not suitable for 360◦ tiled video streaming that is more interactive,

because of its inherent extra delay. As illustrated in Fig. 1.1, the HMD orientations or
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Figure 1.1: 360◦ video streaming needs high bandwidth, low latency.

sensor data determine the tiles that will fall in the viewports, and the corresponding re-

quests must be sent to the streaming server in time. Therefore, naively applying DASH for

360◦ video streaming may result in suboptimal streaming quality. Based on this observa-

tion, we may switch to another extreme design and adopt Real-time Transport Protocol

(RTP) for high responsiveness. Doing so however complicates the 360◦ video streaming

systems, because of the UDP-related details, such as flow/congestion control and reliable

transmission.
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Algorithms
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Figure 1.2: 360◦ tiled streaming systems with/without urgent tiles.

A better approach to cope with the long response time is to have the DASH client ur-

gently request the missing tiles (due to imperfect fixation predictions) at a higher priority

than the regular requests. By doing so, the problematic playout freezes and black holes

might be mitigated. We adopt the QUIC protocol [23] to optimize 360◦ video DASH

streaming to HMDs. QUIC was initially created by Google, and has been adopted as

an IETF standard. QUIC runs on UDP, and was designed to replace the HTTP/2, TLS,

and TCP protocols in the HTTPS stack. The emerging QUIC has three main features:

(i) secured communications, (ii) multiplexed streams with prioritized schedulers, and (iii)

low latency at the time of writing. We make a critical observation: stream multiplex-

ing and low latency are the key enablers to optimize 360◦ tiled video DASH streaming.

This is because when a viewer suddenly rotates his/her head, QUIC allows the system to

2



quickly send urgent tiles at high priority to mitigate the negative impacts due to missing

tiles. This approach provides higher interactivity while retaining the simplicity of DASH

streaming. More specifically, we request the tiles in predicted viewports in low-priority

QUIC streams. These tiles are referred to as the regular tiles. We then frequently search

for any required tiles that have not been requested due to imperfect fixation prediction

and request those tiles in high-priority QUIC streams. These tiles are referred to as urgent

tiles.

The illustrations of the 360◦ tiled streaming with/without urgent tiles are shown in

Fig. 1.2. With the help of urgent tiles, black holes (or playout freezes) may be avoided

in the viewports. Several DASH components, however, need to be optimized for capi-

talizing the unique QUIC features. For example, existing Adaptive Bit Rate (ABR) al-

gorithms [22] are designed for unprioritized/sequential video streaming, which may not

work well with QUIC protocol. We first slightly augments the DASH ABR algorithms

that were not designed for multiplexed QUIC sessions [22, 42, 41] for our proposed sys-

tem. Such an approach, however, may suffer from suboptimal performance (as we will

show later). Therefore, we further design and evaluate a new ABR algorithm for multi-

plexed DASH streaming1 of 360◦ tiled videos to HMDs. This is not an easy task because

of the following challenges:

• Viewer dynamics and imperfect fixation prediction algorithms. HMD viewers

may change their viewports any time, leading to viewport mismatches, where the

earlier predicted viewports are different from the actual viewports. How to quickly

adapt to the viewer dynamics and minimize their negative impacts become a unique

challenge for 360◦ tiled DASH streaming.

• Network dynamics and varying workloads. Unlike traditional ABR algorithms,

360◦ tiled video streaming suffers from huge workload variations due to factors like:

(i) non-uniform pixel density of projected tiles and (ii) sudden viewer head move-

ments in diverse degrees and frequency. How to faithfully measure the throughput

for available bandwidth estimation under varying workloads becomes more difficult

in 360◦ tiled video streaming.

• Complex human visual systems. Traditional ABR algorithms trade off absolute

visual quality and its variation across consecutive video frames, as human eyes are

sensitive to visual quality jumps [7]. Tiled DASH streaming amplifies this challenge

in both temporal (across adjacent video frames) and spatial (across adjacent tiles in

1While we often use QUIC protocol as a sample protocol for concrete discussion in this thesis, we en-

vision that the multiplexed DASH streaming may be realized by other protocols, including those developed

in the future.
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the same video frame) domains. In addition, human eyes are more sensitive to the

details at the vision center [16], which renders a uniform quality level for all tiles of

a video frame less efficient. How to properly assign quality levels of individual tiles

to avoid impairments such as large quality jumps, low vision-center quality, and

missing tiles, being noticed by human visual systems becomes the key of intelligently

allocating precious resources in 360◦ tiled DASH streaming.

Our ABR algorithm aims to address the challenges mentioned above through a few

key design decisions:

• Organize the DASH requests into multiple prioritized streams in a single DASH

session. This is to: (i) allow us better estimate the available throughput, (ii) give

the ABR algorithm finer controls over individual DASH requests.

• Employ the preemptive DASH requests to facilitate urgent DASH requests with

significantly closer playout time. By preemptive, we refer to pausing the ongoing

transfers on low-priority streams, so as to temporarily allocate all available band-

width to the urgent tiles on high-priority streams. This allows us to better adapt to

viewer dynamics and imperfect fixation predictions.

• Assign tile quality levels based on the properties of human visual systems. For

example, through careful buffer management, we avoid the playout freezes and

black holes. We also cap the temporal/spatial quality jumps and assign higher qual-

ity levels to tiles closer to the vision center.

The resulting ABR algorithms are implemented on top of a real preemptive multi-

plexed DASH streaming system for 360◦ tiled videos. Our open-source implementation

not only allows us to evaluate and fine-tune our ABR algorithms using real experiments,

but also enables researchers and engineers to reduce their prototyping efforts when eval-

uating their multiplexed 360◦ DASH streaming solutions.

1.1 Contributions

We tackle the aforementioned challenges and make the following contributions:

• We design and implement a QUIC-based DASH streaming system on a few

open-source projects [39, 11, 6]. We then evaluate our system through real exper-

iments driven by a public HMD viewer dataset [26]. To our best knowledge, 360◦

tiled video DASH streaming over QUIC has not been experimentally evaluated.

4



• We optimize the proposed system by realizing a few key components: (i) fix-

ation predictor that predicts the user viewports in the future, (ii) tile selector that

maps (future) viewports to tiles for DASH requests, and (iii) ABR algorithms that

decide video quality level and control prioritized streams.

• We design an ABR algorithm that is specific for 360◦ tiled video DASH stream-

ing over preemptive multiplexed streams. Our experiment results reveal the mer-

its of our proposed ABR algorithm in preemptive multiplexed DASH streaming

of 360◦ tiled videos to HMDs. For example, compared to the state-of-the-art algo-

rithms, our ABR algorithm: (i) averagely reduces the rebuffering counts by up to 3.2

and rebuffering time by up to 2.54 s when the bandwidth is limited, (ii) achieves at

most 40.02% higher bandwidth utilization, and (iii) delivers good average V-PSNR

at 39–49 dB under 5–15 Mbps bandwidth.

1.2 Thesis Organization

This thesis is structured as follows. We give an introduction and list down the challenges

of 360◦ video streaming in Chapter 1. Chapter 2 provides the background knowledge of

360◦ videos. Our proposed system architecture is given in Chapter 3. Chapter 4 presents

our design decisions and the proposed ABR algorithms. We evaluate our proposed solu-

tions using real experiments in Chapter 5. The related works of streaming protocols and

360◦ videos are surveyed in Chapter 6. Chapter 7 concludes the contributions of the thesis

and discusses future works.
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Chapter 2

Background

2.1 360◦ Videos Pre-processing

360◦ videos can be generated based on camera arrays or a single camera with multiple

lens to cover the entire scenes surrounded by the cameras. For example, 360◦ images can

be acquired by a fisheye camera with a curved mirror. Some algorithms are then further

required to stitch two or more images from the cameras into a seamless panoramic image.

As a result of the combination of multiple frames, 360 videos become high resolution and

high frame rates. However, this makes the video transmission a challenging work due to

the high bandwidth requirement and sensitivity to latency to prevent sickness. Therefore,

video pre-processing including projecting, encoding, and tiling are required in order to

fluently stream 360◦ videos on the modern Internet.

360◦ video encoding and projection. To cope with the large file size of 360◦ videos,

some efficient compression algorithms need to be employed to mitigate the network traf-

fic. There are several coding standards for 360◦ videos such as Advanced Video Cod-

ing (H.264/AVC), Scalable Video Coding (H.264/SVC), High Efficient Video Coding

(H.265/HEVC), and Scalable High-Efficient Video Coding (H.265/SHVC). Among the

coding standards, HEVC is widely used in the literature. Due to the property of 360◦

videos, viewers are able to view surrounding scenes in arbitrary orientations at any time

known as omnidirectional videos. Therefore, 360◦ videos need to be projected from

spherical fields to two-dimensional (2D) image planes for omnidirectional video com-

pression. The coding techniques of omnidirectional videos leveraging different projec-

tion strategies are widely studied in the literature [2, 10, 21, 30]. There are two projection

strategies commonly used in existing 360◦ video system, including equirectangular pro-

jection (ERP) and cubemap projection (CMP). Besides, in 2016, Facebook detailed a

novel projection technique, pyramid projection (PRP). Among the projection strategies,

equirectangular projection (ERP) is the most popular one due to its properties of being

6



both rectangular and straightforward to visualize. Moreover, its relative ease of employ-

ment makes it widely supported by both hardware and software. Hence, based on the

properties mentioned above, we employ equirectangular projection (ERP) as our default

projection.

Tile-based 360◦ videos. Although 360◦ videos allow users to view video content in

arbitrary orientations, users can only see a small part of the entire videos in the viewport

(about one-third of the whole videos). To avoid wasting unnecessary network bandwidth

resources, a 360 video can be split into several equal-size pieces known as tiles. Only

tiles overlapping with the viewports are sent to viewers, where each tile is independently

decodable and a basic transmission unit. The illustration of the tile-based video is shown

in Fig. 2.1. The selected tiles are transmitted from the server to the client, and then

the player decodes the tiles and render the content to HMD viewers. In this way, more

resources can be applied to viewport tiles which significantly improve the video quality

and enhance the user viewing experience.

Figure 2.1: Illustration of tile-based 360◦ videos. A video is cut into 12 × 6 tiles. A

viewer watches 360◦ videos with HMDs, and only part of the content (mark with 1) is

shown inside the viewport.

2.2 360◦ Video Streaming

There are two main protocols streaming media over the modern Internet. One is Real-

Rime Transport Protocol (RTP) over UDP and the other HyperText Transport Protocol

(HTTP) over Transmission Control Protocol (TCP). TCP guarantees data delivery from

the server to users and vice versa. In contrast, UDP is implemented to confirm the time

delivery from the server to users. Compared to HTTP, RTP is intended for the use in

latency-critical scenarios. RTP (RTCP) is a stateful protocol which means that once the

connection between the server and the user is built, the information and status of the

7



user will be continuously checked by the server until the connection is interrupted, in

order to make corresponding interactions. Moreover, RTP is a push-based protocol which

means that once the session between the user and the server is established, the server can

proactively transmit the data to the client without any requests from the user. Although

RTP provides streaming over TCP, it is usually streaming over UDP to ensure timely

delivery. However, RTP over UDP does not guarantee the data delivery to users. On the

other hand, HTTP is a stateless and pull-based protocol. Each request is handled as a

unique and independent one-time transaction. For instance, if a user requests the video

content from the server over the HTTP protocol, the server transmits corresponding data

based on the request. Then the transaction is terminated, and the server is unable to retain

any information of the user.

Due to the unreliable transmission of RTP over UDP, most existing systems employ

HTTP over TCP for 360◦ video streaming to make sure that users can receive video con-

tent. Moreover, HTTP does not suffer from NAT traversal issue, and media can be sent

over Content Distribution Networks (CDNs). To adapt to the dynamic network, Dynamic

Adaptive Streaming over HTTP (DASH) is widely adopted. DASH works by cutting

the entire video content into multiple segments and then a few segments are sent each

time over HTTP instead of the entire video, where each segment is a few seconds long.

In general, each segment is encoded with multiple bitrates (video quality) and stored in

the server. The information of the segments with available bitrates are then described in

the Media Presentation Description (MPD) file. Based on the network bandwidth and

the MPD file, the client can select the most suitable video quality level of the required

segment to prevent buffer under-run and playout stall.

There are two main versions of the HTTP protocol, including HTTP/1.1 and HTTP/2.

HTTP/1.1 is widely used in traditional video streaming. In HTTP/1.1, only one packet

can be transmitted in one connection at any time, which means that a packet cannot be

delivered until its preceding packet finishes sending. Compared to HTTP/1.1, HTTP/2

supports additional three main features: (i) multiplexing, (ii) stream termination, and (iii)

server push. In HTTP/2, each packet is delivered by a stream and one connection can

contain multiple streams at the same time referred to as multiplexing. Besides, users can

decide the priority of each stream. The streaming order/speed of each stream depends

on the weight given to the stream, and the weight can be dynamically updated during the

video streaming. HTTP/2 also allows users to terminate the ongoing streams. In terms

of server push, only one request is required to request multiple files. In this way, only

one round trip time (RTT) is needed for multiple requests, which reduces the network

overhead. Due to the popularity of tile-based 360◦ videos, HTTP/2 is widely used to

optimize tile-based 360◦ video streaming systems.
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2.3 QUIC Protocol

In addition to HTTP, there is an emerging experimental transport layer protocol, QUIC,

which provides encrypted, multiplexing, and low-latency data transfer. The goal of QUIC

is to provide the same service as a TCP connection, but reduce network latency compared

to that of TCP. QUIC allows multiple streams of data to reach all the endpoints indepen-

dently, and thus independent of packet losses do not involve other streams. In contrast,

since HTTP/2 runs on TCP, it can suffer head-of-line (HOL) blocking delays during the

video transmission if any of the TCP packets are delayed or lost.

QUIC runs on UDP, however, QUIC guarantees the data delivery, where loss packets

are retransmitted at the level of QUIC instead of UDP. QUIC was initially created by

Google, and made available as part of Chromium project [11]. Since then, it has moved

to IETF for standardization. Although most of the concepts of QUIC are decided, all the

details are changed in IETF QUIC. Google’s implementation is in the process of updating

to be IETF compliant. Besides, each stream can also be prioritized in QUIC protocol, but

the area of stream priority is still a work in progress. At the wire format level, Google’s

QUIC priorities were originally based on SPDY and later moved to HTTP/2. They aim to

replace HTTP/2 with HTTP/3 in the future.
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Chapter 3

Proposed Preemptive Multiplexed

System

In this section, we present our proposed architecture. Fig. 3.1 summarizes the components

in our proposed streaming system. We classify these components into two parts including

DASH server and DASH client, and briefly introduce the individual components below.

Figure 3.1: The architecture of the 360◦ video streaming using preemptive multiplexed

streams over each DASH session.

3.1 DASH Server

• Tiled-segment encoder contains an HEVC encoder and an MPEG DASH content

generator, which first cuts each 360◦ video into tiles, and then compresses them into

tiled segments. Each tiled segment is: (i) a few seconds long, (ii) independently

decodable, and (iii) a basic transmission unit.

• Encoded video pool stores the encoded tiled segments of each video at different

quality levels, which are determined by control parameters like Quantization Pa-
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rameters (QPs), resolutions, or bitrates.

• Preemptive multiplexed DASH server is an enhanced web server, which also sup-

ports HTTPS/QUIC and schedules the transfer of tiled segments based on their pri-

ority levels. By a tiled segment, we refer to a DASH segment consisting of a single

tile which is the basic unit for scheduling. The tiled segments are encoded by the

tiled-segment encoder, and each of them is sent through one of the multiplexed

streams.

3.2 DASH Client

• Preemptive multiplexed DASH client generates the regular/urgent tiled segment

requests. The tiled-segment requests are transmitted over the regular and urgent

streams within a DASH session, where each stream carries only one tile request.

• Video player decodes and shows the 360◦ videos to the viewer and provides the

buffer status to the ABR algorithm.

• Head tracker computes the viewer orientations and sends the results to the fixation

prediction algorithm.

• Fixation prediction algorithm predicts the future viewport center based on the

HMD orientation and video content. Different state-of-the-art fixation prediction

algorithms [19, 8, 31] may be adopted here.

• Adaptive Bit Rate (ABR) algorithm is the core component of our system. It

decides: (i) the quality level and priority level of each tiled segment and (ii) the

time to request each of them. We present the details of our ABR algorithm design

in the rest of the thesis.

• Tile selector determines the tiled segments to request based on the fixation predic-

tion results to avoid missing tiles.

• Tiled-segment decoder decodes the tiled segments received from the server. It also

synchronizes the tiled segments of the same segment duration.

The components operate as follows. Each 360◦ raw video is encoded and segmented into

tiled segments at multiple quality levels. In each streaming session, the ABR algorithm

takes inputs from several components (client, video player, fixation prediction algorithm,

and tile selector) and determines the priority/quality levels of the tiled segments. The

selected tiles are then passed to the DASH client, which are requested as regular tiled
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segments. Due to sudden head movements (mismatch viewports), some tiles that were not

requested earlier may become urgently needed because of the approaching playout time.

Therefore these tiles are requested with higher priority as urgent tiled segments. To be

more precise, by invoking the fixation prediction algorithm multiple times (see Fig. 1.2),

our ABR algorithm gets updates on predicted viewports (which are more accurate), and

generates the appropriate urgent tiled segment requests.

3.3 Component Designs

3.3.1 Fixation Predictor

Several algorithms can be used for fixation prediction, e.g., Dead-Reckoning (DR) [29]

and neural-network [8, 31] based algorithms. We implement a DR algorithm based on

speed and acceleration [29]. Let θc and φc be the yaw and pitch (in degrees) of the

viewport center. We write their angular speeds at time t as vθ
c

t and vφ
c

t ; and their angular

accelerations as aθ
c

t and aφ
c

t . These values are computed as weighted moving averages,

where the sampling rate is 500 ms, and the weight of the latest measurement is 0.9, if

not otherwise specified. The DR algorithm predicts the viewport center τ s later than the

current time t as:

θ̂ct+τ = θct + vθ
c

t τ + (1/2)aθ
c

t τ 2; (3.1a)

φ̂c
t+τ = φc

t + vφ
c

t τ + (1/2)aφ
c

t τ 2. (3.1b)

We note that some DR algorithms omit the acceleration terms. We empirically test both

versions with the dataset [26] and find that skipping the acceleration terms results in fewer

missing tiles1. Thus we report the results from the DR algorithm without considering

acceleration.

3.3.2 Tile Selector

The HMD viewport can be described by the center (θc, φc) and the radius rv. The tile

selector finds the required tiles by: (i) creating a viewport plane that is tangent to the

sphere at the viewport center, (ii) projecting the points from the viewport to the sphere,

(iii) mapping the points from the sphere to the 360◦ video content, and (iv) identifying

the overlapped tiles. The process is however time-consuming, and we propose a real-time

algorithm to approximate it. We consider the popular equirectangular projection in our

discussion, while the same concepts can be applied to other projections.

1Probably because there are quite a few sudden head movements.
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Figure 3.2: Illustration of tile selector process.

The key idea is to approximate the viewport on the video content with the center

as (xc, yc) and the width as a function of the pitch value φǫ as shown in Fig. 3.2. The

derivation of the center is straightforward: xc = W θc+180◦

360◦
and yc = H 90◦−φc

180◦
, where

W ×H is the resolution in pixel. The pitch values in the viewport are between φc ± rv,

and we approximate the width at φc − rv ≤ φǫ ≤ φc + rv as:

w(φǫ) =
2rv

√

1− cot2 rv · tan
2(φǫ − φc)

cosφǫ

W

360◦
. (3.2)

Having (xc, yc) and w(φǫ), we can compute the overlapped tile set S(rv). More specif-

ically, we start from the center and move up/down at integer number of tiles without

exceeding the viewport. At each tile row, we compute w(φǫ) to determine the width of

the viewport on the video content. In rare cases where φǫ < −90◦ or φǫ > 90◦, we let

w(φǫ) = W . We note that while the viewport radius rv should be no smaller than that of

the HMD; it can be set slightly larger to accommodate the imperfect fixation prediction.
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Chapter 4

Preemptive Multiplexed Adaptive Bit

Rate Algorithms

In this section, we discuss the existing solutions and present our proposed ABR algo-

rithms.

4.1 Existing Solutions

There have been quite a few ABR algorithms [42, 22, 41] that adapt to network dynamics

by selecting suitable video quality levels for better user experience. Unfortunately, most

existing ABR algorithms are designed for 2D planar video streaming over HTTP/1.1.

They are not designed for tiled streaming, and thus cannot allocate diverse quality lev-

els among tiles in the same video frame. Sending all the tiles at the same quality level

prevents the ABR algorithms from allocating more resources to the tiles in the viewport.

That’s why a preemptive multiplexed ABR algorithm is required for tiled 360◦ videos.

We first augment an existing ABR algorithm to adapt to the tiled video streaming and

verify the effectiveness of urgent tile streams. After that, we design a new preemptive

multiplexed ABR algorithm to further optimize the results.

4.2 Design Criteria

We design our ABR algorithms based on the following criteria:

• Achieve high average video quality. This is crucial to the visual quality experience.

• Avoid large quality jumps. In addition to maximizing the average video quality of

the tiles in the viewport, avoiding large spatial/temporal jumps is also important.

This is because large quality jumps negatively affect the viewing experience [7].
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Fig. 4.1 shows the illustration of the high spatial quality jump. We see that the

video quality at the upper side is relatively lower than that of at the other area,

which severely degrades the user viewing experience.

• Avoid buffer under-run. Once the video starts playing, buffer under-run leads to

playout stalls or black holes, which severely affect viewer experiences [7]. Some

minimal buffer occupancy should be maintained and the ABR algorithm should be

responsive to network and viewer dynamics.

Figure 4.1: Illustration of the large spatial quality jump.

While achieving each of the three optimization criteria is already difficult, the real

challenge comes from the complex interplay among them. In this thesis, our proposed

ABR algorithm focuses on striking a good balance among the three criteria.

4.3 AE ABR algorithm

We augment an existing ABR algorithm to design our first solution denoted as AE. Our

AE ABR algorithm consists of two flows: (i) regular tile flow, which is event triggered

and (ii) urgent tile flow, which is time triggered. More precisely, the regular tile flow is

activated only when: (i) all previously requested regular tiled segments are received and

(ii) the current buffer occupancy doesn’t exceed the buffer high watermark Bh, which is

a system parameter. Otherwise, the regular tile flow sleeps until both conditions are met.
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The urgent tile flow is triggered once every U s if the current buffer occupancy is not

lower than the buffer low watermark Bl, where the urgent window U and Bl are system

parameters.

Upon being invoked at time t, the urgent tile flow requests for the tiled segments from

S(rv) in time [t, t+U ] that are not yet received. These urgent requests are made at a high

priority. The quality level of the urgent tiled segments is determined by the throughput

estimation T . T is calculated as the weighted moving average of the download size over

the time period U , where the weight of the latest measurement is 0.9, if not otherwise

specified. Given T , we set the urgent tiled segments at the highest possible quality level,

while ensuring these tiled segments can be downloaded within the urgent window U . If

the total segment size of the lowest quality level still exceeds T ·P , we skip tiled segments

from the viewport edge until the total segment size fits the throughput.

The regular tile flow is built upon existing ABR algorithms [22], and we employ a

popular buffer-based algorithm [17] denoted as NETFLIX in our discussions. NETFLIX

only considers buffer occupancy to decide the suitable video quality level. Because we

adopt a strict priority scheduler in QUIC, the urgent tiled segments can always be sent

before the regular ones. Let Bo be the buffer occupancy (in time) and D be the total

download time of urgent tiled segments between now and the preceding triggered time

of the regular tile flow. Using D to approximate the time occupied by urgent requests

in the upcoming round of regular requests, we consider Bo − D as the effective buffer

occupancy and pass it to the adopted ABR algorithm. The regular tiled segments are

requested at low priority. Last, we note that the above principles can be augmented and

applied to throughput-based and hybrid ABR algorithms [22].

4.4 PM ABR algorithm

4.4.1 Design Decision

Diverse tile priority levels based on proximity to the fixation center. Although all tiles

in the viewport are visible by users, human visual systems have diverse sensitivity levels

to tiles with different distances to the fixation center [16, 44]. We assume the fixation point

is at the center of the viewport. This assumption can be lifted if an HMD with the eye-

tracking capability [9] is adopted. Based on the survey of peripheral vision, Strasburger et

al. [44] show that human can clearly see a colorful image only in a small 10◦ radius circle

around the center and the visual acuity decreases as the radius increases. Based on this,

we divide the viewport into three areas: foveal, intermediate, and outer areas as shown in

Fig. 4.2. Tiles in the foveal area are assigned the highest quality and the highest streaming
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Intermediate: 30°

Outer: 55°

Foveal: 15°

Figure 4.2: Illustration of three areas in the viewport with radii of 15◦, 30◦, and 55◦.

The radii are sample values from Oculus Rift [37], which can be adjusted by the system

administrators.

priority; the tile in the intermediate area are assigned lower quality and priority; and the

tiles in the outer area have the lowest quality and priority.

Parallel and independent flows for regular and urgent requests. Unlike traditional

ABR algorithms that have a sequential flow. In this work, we employ two independent

flows for: (i) regular, and (ii) urgent tiled segments. To be more precise, the regular

flow aims to maintain buffer occupancy to prevent buffer under-run. The regular flow

is event triggered. It is activated only when the following two conditions are both met:

(i) all previous requested regular tiled segments are received and (ii) the current buffer

occupancy does not exceed the buffer high watermark Bh. Bh is a system parameter to

prevent buffer over-run. The urgent flow kicks in when some tiles in the future viewports

are bound to be missing, which arise from imperfect fixation predictions. The urgent flow

is time triggered and invoked every urgent window that is U s long, if the current buffer

occupancy is not lower than the buffer low watermark Bl. Both U and Bl are system

parameters. Capitalizing the advantage of multi-round fixation predictions, upon being

invoked at time t, the urgent flow requests for the urgent tiled segments in the playout

time [t, t+U ], which are not yet requested in the regular flow. Notice that, tiles of urgent

requests will always have higher priority than tiles of regular requests during the video

streaming.

Preemptive multiplexed streams to ensure timely delivery of urgent segment tiles.

We opt for the preemptive multiplexed streaming over the weighted (non-preemptive, con-

current) one for two reasons. First, the urgent tiled segments typically have much closer

playout time than most of the outstanding regular tiled segments. Second, each tiled seg-

ment is decodable only if it is completely received. For example, two half-completed tiled

segments are totally useless; while a completed tiled segment can be decoded and shown
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to the viewer. Therefore, preemptive multiplexed streaming is employed to maximize the

number of decodable tiled segments with approaching playout time.

0 5 10 15

6

8

10

12

Figure 4.3: Throughput estimation with different requested size under 12 Mbps network

bandwidth.

Estimating the network throughput with regular requests only. Throughout es-

timation is done by the DASH client when receiving the tiled segments. In our pilot

experiments, we observe that the throughput estimation from the urgent requests often

underestimates the available throughput. We record the estimated throughput over a 12

Mbps link (enforced by the Linux tc command) in Fig. 4.3. The figure illustrates that the

estimated throughput deviates more from the ground truth (12 Mbps) when the requested

size is smaller. Since urgent flow contains the missing tiles in the viewport, urgent re-

quests usually contain fewer tiled segments and are smaller. Insufficient workloads could

lead to the underestimation of available throughput. Hence, we only estimate the through-

put using regular (larger) requests. We note that similar observations were reported in the

literature [47].

4.4.2 Pseudo Code of PM ABR Algorithm

Overview. Table 4.1 summarizes the notations used in the thesis. Fig. 4.4 presents the

block diagram of our proposed preemptive multiplexed (PM) ABR algorithm. The PM

algorithm gets the latest throughput estimation T and prior requests information from the

18



Table 4.1: Notations Used in The Thesis

Symbol Description

T Estimated throughput

rv Viewport radius

Bh High watermark

Bl Low watermark

U Urgent window size

J Maximum quality jumps

Vc Viewport center

Bo Buffer occupancy

Bt Target buffer occupancy

Qi Quality level of segment i

S(Vc, rv) Output set from tile selector given Vc and rv

Rr
i Regular request set of segment i with < tile, quality, priority > tuples

Sr
i Regular tile set of segment i

Ru
i Urgent request set of segment i with < tile, quality, priority > tuples

Su
i Urgent tile set of segment i

bqj Bitrate of tile j at quality q

DASH client. The PM algorithm also gets the current buffer occupancy Bo from the video

player and the predicted viewport center Vc from the fixation prediction algorithm. With

these inputs and the system parameters from the system administrator, The PM algorithm

generates the results and passes the segment number, tile numbers, quality levels, and

priority to the DASH client. There are four levels of tile priority (from high to low):

1. Tiles in the foveal area for the urgent requests.

2. Tiles in the intermediate area for the urgent requests.

3. Tiles in the outer area for the urgent requests.

4. Tiles for the regular requests.

Moreover, we need to determine the tile set within a given viewport. Making tile selector

as a function, for viewport center Vc and viewport radius rv, the overlapped tile set is

written as S(Vc, rv).

Tiled segments in the regular flow. We give the pseudo code of the regular flow

in Algorithm 1. For segment i, given viewport center Vc and radius rv, we obtain the
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Figure 4.4: Block diagram of our proposed PM algorithm.

overlapped regular tile set Sr
i from S(Vc, rv) (line 3). Then total download budget Tb

is computed, which considers T , Bo, Bt, and D (line 4). Here, Bt is the target buffer

occupancy and D is the total download time of urgent requests between now and the pre-

ceding invocation time of the regular flow. This step is to the maintain buffer occupancy

at Bt, in order to prevent buffer under-run. Moreover, Bh prevents buffer over-run. The

quality Qi is the maximum quality determined by summing bitrate of tiles in Sr
i at quality

qq∈[0:Qi−1+J ] with the total the bitrate less than Tb, where J is the maximum quality jumps

(line 5). The constraint prevents viewers from suffering large temporal quality changes.

The information of each tile is added to Rr
i , which is a regular request set of segment i

with <tile, quality, priority> tuples (line 6). Then, Tb is computed as the delta between

the total throughput and the sum of the tile bitrates (line 7). Let Tb be the residual down-

load budget, we increase rv by 5◦ each time and decide the quality of tiles that have not

yet assigned (lines 8-18). The steps avoid black holes in the viewport. Note that, the

quality of these tiles are limited [Qi − J : Qi], which is to prevent large spatial quality

jumps due to imperfect fixation predictions. Last, we pass Sr
i and Rr

i to the DASH client,

which then submits the requests.

Tiled segments in the urgent flow. We give the pseudo code of the urgent flow

in Algorithm 2. For segment i, tile sets of the three regions, foveal, intermediate, and

outer, are generated based on Vc, the corresponding region sizes, and Sr
i (lines 4-7). The

tiles in three sets are first assigned quality at Qi − J. They are then added to Ru
i at the

predefined priority levels, where Ru
i is the urgent request set of segment i with < tile,

quality, priority> tuples (line 8). This initial assignment guarantees that all tiles can be

streamed to the client earlier and the different priority levels ensure that more important

tiles are streamed to viewers sooner. The remaining Tb is then computed considering U
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Algorithm 1 Regular Flow

1: Input: T , J , Vc, Bo, i

2: Output: Sr
i , Rr

i

3: Sr
i ← S(Vc, rv)

4: Tb ← T × (Bo −D −Bt)

5: Qi ←maxq∈[0:QN−1+J ] q s.t.
∑

j∈Sr

i

b
q
j ≤ Tb

6: Rr
i = {(j,Qi, 4) ∀j ∈ Sr

i }

7: Tb ← Tb −
∑

j∈Sr

i

b
Qi

j

8: while Tb > 0 do

9: rv ← rv + 5◦

10: St ← S(Vc, rv) \ S
r
i

11: Qt ←maxq∈[Qi−J :Qi] q s.t.
∑

j∈Sr

i

b
q
j ≤ Tb

12: if Qt exits then

13: Sr
i ← Sr

i ∪ St

14: Rr
i = Rr

i ∪ {(j,Q
t, 4) ∀j ∈ St}

15: Tb ← Tb −
∑

j∈Sr

i

b
Qt

j

16: else

17: break

and the total bitrate allocated to the tiles (line 8). If there is still Tb left, we upgrade the

quality from the foveal to the outer area; and the highest possible quality level is limited

at Qi to avoid large spatial quality jumps (lines 10-17). Last, we pass Su
i and Ru

i to the

DASH client, which then submits the requests.
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Algorithm 2 Urgent Flow

1: Input: T , i, J , Vc, Qi, U , Sr
i

2: Output: Su
i , Ru

i

3: F (i), tile sets of foveal (0), intermediate (1), and outer (2)

4: foveal = 15◦, intermediate = 30◦, and outer = 55◦

5: F (0)← S(Vc, foveal) \ S
r
i

6: F (1)← S(Vc, intermediate) \ (Sr
i ∪ F (0))

7: F (2)← S(Vc, outer) \ (S
r
i ∪ F (0) ∪ F (1))

8: Su
i ← F (0) ∪ F (1) ∪ F (2)

9: Ru
i ← {(j,Qi − J, n+ 1) ∀j ∈ F (n) and n ∈ {0, 1, 2}}

10: Tb ← T × U −
∑

j∈Su

i

b
Qi−J
j

11: for n in {0, 1, 2} do

12: Qt ←maxq∈[Qi−J :Qi] q s.t.
∑

j∈F (n) b
q
j ≤ Tb

13: if Qt exits then

14: Tb ← Tb −
∑

j∈F (n) b
Qt

j

15: Update Ru
i ← {(j,Qt, n+ 1) ∀j ∈ F (n) and n ∈ {0, 1, 2}}

16: else

17: break
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Chapter 5

Implementations and Evaluations

In this section, we evaluate our solution through a real testbed.

5.1 Implementations

We build a preemptive multiplexed DASH streaming testbed of 360◦ tiled videos using

the following open-source projects: (i) QUIC client/server in Chromium [11], which in-

cludes a QUIC stack written in C++, (ii) AStream, which is a python-based DASH player

including several ABR algorithms. Our PM, AE, and other baseline ABR algorithms are

implemented on this testbed for evaluations. Since the player and QUIC client are run

on multiple processes, ipc messages and shared memory [25] are employed to pass data

back and forth. Moreover, we extend the MPD files to transmit individual tiled segment

sizes at various quality levels, which are needed by the PM algorithm.

5.2 Setup

We execute the DASH client and server on two workstations with Intel i7 CPU and 16 GB

RAM running Ubuntu 18.04. The two workstations are connected by our wired campus

Intranet. We leverage tc [3] in Linux to emulate the diverse network conditions. More-

over, tcpdump [28] is used to collect network traces during video streaming for analysis.

In order to compare different ABR algorithms, we adopt a public 360◦ dataset [26]. In par-

ticular, we randomly select 10 users among 50 users watching 10 videos from the dataset.

Each video lasts for 60 s. Figures plot the average results with 95% confidence intervals

over 10 runs if possible. In addition to our two ABR algorithms, we also implement the

other baseline ABR algorithm [40] (denote as PSHD17). We focus on the ABR algorithm

without considering the server push. Following their spirit, each frame is divided into

three regions: viewport (55◦), adjacent (65◦), and background (the rest). All the tiles are
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first assigned the lowest quality level; they are upgraded to the highest possible quality

from the viewport to the background until the available throughput is used up.

Several parameters are varied in our experiments. From the network aspects, we set

the end-to-end network bandwidth C ∈ {12,10, 8}Mbps, network delay d ∈ {5, 10, 30}

ms, and packet loss rate L ∈ {0.5,1, 2}%, respectively. Bold font is used to indicate

default value. In terms of system parameters, the initial buffer time is set to be 2 s, urgent

window size U = 0.5 s, buffer high/low watermarks Bh = 3 s, Bl = 1 s and viewport

radius rv = 55◦. The videos are encoded at 9 quality levels {15, 14, 12, 11, 10, 9, 8, 6, 5}

Mbps with 10× 10 tiles. We evaluate the results by considering the following metrics:

• Throughput utilization. The ratio between the throughput and the available band-

width.

• Missing ratio. The fraction of tiles within the viewport (based on the ground truth)

that are not received in time.

• Video quality. The Viewport-PSNR (V-PSNR) [51] values based on the ground truth

and we set the viewport radius as 50◦ as measured in Fan et al. [8].

• Rebuffering time and counts. The playout freeze duration and instances due to

buffer under-run.

5.3 Results

5.3.1 Benefit from QUIC Protocol

We first compare the DASH streaming quality over different protocol stacks: HTTP/1.1,

HTTP/2, and QUIC. We focus on the performance results of rebuffering counts/time from

a random user; results from other users are similar. For fair comparisons, HTTP/2 and

QUIC do not enable their prioritized schedulers. We instruct our DASH client to request

the tiles overlapping with the ground-truth viewports at the highest quality level. We

consider different L and C values and plot the results in Fig. 5.1. This figure reveals that

HTTP/1.1 gives too many rebuffering counts: as high as 39 times in each 60 s video.

This can probably be attributed to the fact that HTTP/1.1 doesn’t support multiplexing.

Figs. 5.1(c) and 5.1(d) also confirm that HTTP/1.1 leads to high rebuffering counts/time,

even when the network bandwidth is less limited. Moreover, these two figures also reveal

that HTTP/2 is slightly more sensitive to packet loss rates; when the packet loss rate is

2%, HTTP/2 suffers from buffer under-run. This can be explained by the head-of-line

blocking, extra retransmission packets, and longer latency caused by the underlying TCP
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protocol. In summary, compared to QUIC, streaming over HTTP/1.1 and HTTP/2 results

in higher rebuffering counts and longer rebuffering time. Hence, we no longer consider

HTTP/1.1 and HTTP/2 stacks in the rest of the experiments.
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Figure 5.1: Comparison among protocol stacks under 5 Mbps network bandwidth: (a)

rebuffering counts and (b) rebuffering time; under 8 Mbps network bandwidth: (c) re-

buffering counts and (d) rebuffering time.

5.3.2 Effectiveness of Urgent Requests

We next compare the streaming performance with and without urgent tile streams, denoted

as AE and NETFLIX respectively, and plot the results in Fig. 5.2. Fig. 5.2(a) presents the

V-PSNR over time of a sample user on a sample video under 10 Mbps network bandwidth.

This figure clearly shows the superior performance with urgent tiles in video quality. We

next consider more metrics under diverse network bandwidth in Figs. 5.2(b). These fig-

ures show that our urgent tile streams are useful under diverse network bandwidth: as

high as 21.5% missing ratio drop and 15.29 dB V-PSNR improvement on average are ob-

served without excessive bandwidth utilization. To understand if the above observations
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hold across users with diverse head movement patterns, we plot the aggregate results of

individual users in Figs. 5.3. These two figures confirm that urgent tile streams are effec-

tive for all users. Furthermore, we also plot the aggregate results of individual videos in

Fig. 5.4, and confirm that urgent tile streams work for all videos. In summary, our urgent

tiles effectively and constantly reduce missing ratios and increase the video quality with-

out incurring excessive bandwidth utilization under different network bandwidth, user

behavior, and video characteristics. Last, we note that no rebuffering events are observed

in these experiments.
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Figure 5.2: Effectiveness of our urgent tile streams, results from a sample user and a

sample video: (a) V-PSNR over time at 10 Mbps, (b) average missing ratio, (c) average

V-PSNR, and (d) average bandwidth utilization.

5.3.3 Enhancing Viewing Experience by the PM ABR Algorithm

Our proposed PM algorithm strikes a balance between video quality and buffer

under-run. After verifying the effectiveness of urgent tiles, we next consider PM ABR

algorithm and PSHD17 to compare the results. We first evaluate the performance of the
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Figure 5.3: Effectiveness of our urgent tile streams, results from different users (with all

videos): (a) average missing ratio and (b) average V-PSNR.
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Figure 5.4: Effectiveness of our urgent tile streams, results from different videos (with all

users): (a) average missing ratio and (b) average V-PSNR.

ABR algorithms under different network bandwidth settings. In this experiment, we ran-

domly choose one sample viewer watching video Shark Shipwreck. We repeat the DASH

streaming session ten times and report the results in Fig. 5.5. From Fig. 5.5(a), we see

that under 5 Mbps, there are some playout stalls: the rebuffering counts are 1.8 times

for PM, 5 times for PSHD17, and 1.3 times for AE on average. A similar trend is also

observed in the rebuffering time results in Fig. 5.5(b). These two figures show that our

PM algorithm does not suffer from high rebuffering counts/time compared to PSHD17

that always transmits all tiles, which leads to too much network traffic.

In Fig. 5.6(a), we observe some missing ratios in the viewports. More precisely, the

missing ratios of 3.95% and 10.09% are recorded with the PM and AE algorithms under

5 Mbps network bandwidth. This reveals that AE aggressively skips some of the tiled
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segments that are less likely to be watched. This may back-fire at AE for higher miss-

ing ratios. In summary, the proposed PM algorithm achieves a good balance between

video quality and buffer under-run, compared to the baselines. Last, we note that the PM

algorithm makes good use of the available throughput as shown in Fig. 5.6(b).
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Figure 5.5: Comparisons of rebuffering counts (time) among ABR algorithms under 5,

10, and 15 Mbps network bandwidth.

Our proposed PM algorithm leads to good video quality unless the network band-

width is highly constrained. We report the V-PSNR in Fig. 5.7. Fig. 5.7(a) gives the V-

PSNR in different areas (Foveal, Intermediate, and Other). We find that PSHD17 trades

frequent buffer under-run (Figs. 5.5(a) and 5.5(b)) for slightly higher video quality, when

all three regions are considered. This is not a huge concern for our PM algorithm, in

fact, its video quality levels of (the more noticeable) foveal and intermediate regions are

the same as those of PSHD17. Fig. 5.7(b) plots the video quality of the whole viewport

under 5, 10, and 15 Mbps bandwidth. This figure reveals that the proposed PM algo-

rithm outperforms the baselines under 15 Mbps (or more) bandwidth. At 15 Mbps, the

achieved V-PSNR values are 49.04 dB for PM, 46.82 dB for PSHD17, and 37.02 for AE

on average. The gap of at least 2.22 dB is a nontrivial boost. We note that the edge of

our PM algorithm diminishes when the bandwidth is limited. This may be attributed to

the encoded video bitrate of 7.73 Mbps, which may be too high to 5 Mbps bandwidth.

PSHD17 achieves higher video quality after spending 5 s (5/60 = 8.33% of the session)

on rebuffering, which results in degraded viewer experience.

The PM algorithm adapts to different viewers and videos. We first randomly se-

lect ten viewers watching Shark Shipwreck. Fig. 5.8 shows the results under 10 Mbps

network bandwidth. In Fig. 5.8(a) we observe that the PM algorithm consistently utilizes

available throughput with an average of 85.46%. In addition to zero missing ratios shown

in Fig. 5.8(b), the PM algorithm also provides the best quality to all viewers among three
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Figure 5.6: Comparisons among ABR algorithms under 5, 10, and 15 Mbps network

bandwidth: (a) missing ratio, and (b) throughput utilization.
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Figure 5.7: Comparisons of V-PSNR among ABR algorithms: (a) in different areas at 5

Mbps and (b) the whole viewport under 5, 10, and 15 Mbps.

ABR algorithms as revealed in Fig. 5.8(c): 47.20 dB for PM, 46.00 dB for PHSD17, and

34.28 dB for AE on average. We next select a viewer watching 10 different videos, and

report the results in Fig. 5.9. The results show similar trends. We conclude that the PM

algorithm adapts to various videos and viewers well. Compared to AE, our PM algorithm

dynamically increases the viewport radius to achieve better viewing experiences.

The PM algorithm maintains a good video quality level. Fig. 5.10 reports the

video quality levels over time under different network bandwidth. Fig. 5.10(a) plots the

results at 5 Mbps network bandwidth. We see that although the PM algorithm sometimes

suffers from slightly lower video quality, compared to AE, the PM algorithm recovers

from those unfortunate events pretty fast. That is, the PM algorithm achieves video quality

levels comparable to those of PSHD17 most of the time. When the network bandwidth is
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Figure 5.8: Comparisons among ABR algorithms from 10 different viewers under 10

Mbps network bandwidth: (a) average throughput utilization, (b) average missing ratio,

and (c) average V-PSNR.

sufficient, PM constantly delivers good quality without large quality jumps as evidenced

in Figs. 5.10(b) and 5.10(c).

5.3.4 Comparation of Imperfect Fixation Prediction

Among the causes of missing tiles, the imperfect fixation prediction (due to complex video

content and user behavior) is the main one that may be further improved. More specif-

ically, we next consider different viewport radius rv values, because larger rv results in

more requested tiles, which essentially build some cushion/buffer zones to accommodate

imperfect fixation predictions. Fig. 5.11 gives the missing ratios under different rv at 10

Mbps. Fig. 5.11(a) gives the results from 1 sample user with a video, and Fig 5.11(b)

gives the sample results from 10 users with a video; while Fig. 5.11(c) gives the results

from 10 videos with a user. We observe that Different viewport radii have a very slight

influence on PM. However, in terms of AE, there is a large gap between 52.5◦ and 55◦,
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Figure 5.9: Comparisons among ABR algorithms from 10 different videos under 10 Mbps

network bandwidth: (a) average throughput utilization, (b) average missing ratio, and (c)

average V-PSNR.

while the slopes beyond 55◦ are flatter. The average V-PSNR values from 52.5◦ is at least

2.74 dB lower than that of 55◦.

5.3.5 Implication of Urgent Window Size

Next, we study how urgent window size affects the performance. We plot the results under

different urgent window size U in Fig. 5.12. This figure reveals that frequently activating

the urgent flow does not necessarily lead to low missing ratios. More precisely, the acti-

vation rate is empirically observed at a U value of about 0.5 s. The higher missing ratios

when U is reduced could be attributed to: (i) shorter/more fragmented urgent window size

may limit the (integer) number of tiled segments requested and (ii) shorter window size

also turns urgent downloads more sensitive to network bandwidth fluctuation. Last, we

observe that different user behavior, network condition, and fixation prediction algorithms

affect the optimal U values. Adaptation of the urgent window size is among our future
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Figure 5.10: Comparisons of V-PSNR over time in the whole viewport among ABR al-

gorithm under network bandwidth of: (a) 5, (b) 10, and (c) 15 Mbps.

tasks.

5.3.6 Approximation Approach of Tile Selector

We compare the approximated tile selector presented in Sec. 3.3.2 against the ordinary

one. We compute the average prediction time and the number of different tiles between

them using 100 random viewports. The approximation approach terminates in 0.06 ms,

while the ordinary approach takes several seconds. The average number of different tiles

is 1.73, which is not serious as also evidenced in the video quality (V-PSNR) results

reported above.
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Figure 5.11: Missing ratios under diverse viewport radius: (a) a sample user with a sample

video, (b) 10 users with a sample video and (c) 10 videos with a sample user.
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Figure 5.12: Missing ratios under different urgent window size: (a) a sample user with a

sample video, (b) 10 users with a sample video and (c) 10 videos with a sample user.
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Chapter 6

Related Work

6.1 Video Streaming over QUIC

Several studies in the literature investigate the potentials of QUIC on video streaming. For

instance, Arisu and Begen [1] evaluate the performance of QUIC video streaming over

wireless and cellular networks. They find that QUIC over UDP outperforms HTTP/2 over

TCP, especially when the network is congested. Timmerer and Bertoni [45] also quantita-

tively compare the performance of video streaming over QUIC with other transport proto-

cols. Bhat et al. [5] consider several state-of-the-art ABR algorithms to compare the video

quality delivered by QUIC and HTTP/2. They find that existing ABR algorithms tend to

switch to lower quality levels when QUIC is used. To address the problem, they propose

retransmission over QUIC [4] to reduce the number of quality switches and increase the

average bitrate. Palmer et al. [38] extend QUIC to support unreliable streams, and their

proposed solution outperforms the ordinary HTTP/2 over TCP and QUIC over UDP. The

aforementioned studies do no target 360◦ video DASH streaming, where extremely high

bandwidth is required. Hayes et al. [12, 13, 14] partially solve the bandwidth problem

with MultiPath TCP (MPTCP) and employ QUIC to mitigate the network congestion and

fluctuation problems due to the large reordering buffers of MPTCP. Their studies, unfor-

tunately, do not utilize the advantages of tiled streaming and always transmit the whole

360◦ video frames.

6.2 ABR Algorithms for 2D Planar Videos

There are many ABR algorithms for optimizing 2D planar video streaming [22, 41] and

most of them are devised for HTTP/1.1. These ABR algorithms can be roughly classified

into three types: (i) throughput-based, (ii) buffer-based, and (iii) hybrid algorithms. The

throughput-based algorithms utilize the throughput estimations for making decisions. For
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example, Jiang et al. [18] propose to select suitable video quality levels while striving

for a balance among stability, fairness, and efficiency. Buffer-based algorithms only con-

sider video buffer occupancy when determining proper video quality levels. For instance,

Huang et al. [17] propose to build a rate map based on the available video bitrates and

pick the most suitable rate according to the current buffer occupancy. Hybrid algorithms

utilize both throughput and buffer level to make decisions. For example, Li et al. [24] pro-

pose to detect the congestion by observing throughput variations and consider the average

buffer occupancy and target video rate when selecting the quality levels.

6.3 360◦ Tiled Video DASH Streaming

Streaming systems over multiple prioritized streams. Several 360◦ tiled video stream-

ing studies [36, 48, 49, 33, 50] in the literature adopt HTTP/2 over TCP and leverage

prioritized streams to better handle network and viewer dynamics. Tiles are assigned

weights based on their algorithms. HTTP/2 allocates bandwidth resources to each prior-

itized stream based on its weight. As an example, Nguyen et al. [36] proposes to divide

a video frame into multiple regions and assign tiles in the same region the same weight.

After that, they monitor the download progress and estimate instantaneous throughput to

determine whether some streams should be aborted to prevent buffer under-run. Xiao et

al. [48] also utilize prioritized streams to determine the quality levels and weights of indi-

vidual tiles in both spatial and temporal domains. To further capitalize on these prioritized

streams, Ben Yahia et al. [49] and Nguyen et al. [33] propose to update stream weights

during streaming sessions. In particular, in Nguyen et al. [33], each tile is assigned a

weight when being requested. During the streaming sessions, the ongoing streams are

monitored, and their weights may be dynamically updated. Ben Yahia et al. [49] propose

to run the fixation prediction algorithm twice for better video quality due to the more

accurate predictions. The aforementioned papers [36, 48, 49, 33, 50] present streaming

systems, while the current thesis focuses on the ABR algorithm design.

ABR algorithms for 360◦ tiled streaming. While the above ABR algorithms [18,

17, 24] are not designed for 360◦ tiled streaming, some recent works specifically target

360◦ tiled streaming. Nguyen et al. [32] propose a client-based framework that trade off

video bitrate and video quality when making decisions on tile’s quality levels. Nguyen et

al. [36] propose a throughput-based ABR algorithm, which partitions each 360 video into

multiple regions. The tiles in each region are assigned a predetermined weight. Nguyen et

al. [34, 35] take the prediction error of past frames into consideration when determining

the quality levels of individual regions. To capitalize on HTTP/2, Petrangeli et al. [40]

divide the video into tiles and classify them into three regions: viewport, adjacent, and
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background. Based on their quality decision method, all tiles are first assigned the lowest

quality level. The viewport tiles are first upgraded to the highest possible quality level,

and the adjacent tiles are then upgraded if there exists residual bandwidth. The same

procedure is then repeated between the adjacent and background tiles. They also leverage

the server push to reduce the network overhead. We note that Petrangeli et al. [40] is the

closest to our proposal. Hence, we employ it as the baseline algorithm in our evaluations.

In contrast to prior studies, the thesis is the first work developing an ABR algorithm for

preemptive multiplexed streams in each DASH session.
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Chapter 7

Conclusion and Future Work

In this thesis, we designed an ABR algorithm for 360◦ tiled videos leveraging preemptive

multiplexed streams. We built a real 360◦ tiled streaming testbed to evaluate our ABR

algorithm with two start-of-the-art baseline ABR algorithms. The evaluation results show

the merits of our proposed PM algorithm compared to the baseline algorithms: (i) Our al-

gorithm averagely reduces the rebuffering counts by up to 3.2 and rebuffering time by up

to 2.54 s, under constrained network bandwidth; (ii) Our algorithm achieves higher band-

width utilization on average: at most 40.02% higher than the baseline algorithms; (iii)

Our algorithm delivers good average V-PSNR at 39–49 dB under 5–10 Mbps bandwidth.

The evaluation results also shed some lights on future research directions.

• More detailed performance comparison. In the thesis, the experiments are run

under stable network bandwidth, and thus video streaming performance under dy-

namic network has not been evaluated. Besides, due to the rise of machine learning,

several state-of-the-art ABR algorithms employ Reinforcement Learning (RL) [20,

53] to stream 360◦ tiled videos and decide video quality level for the individual tile.

We plan to implement their solutions and conduct more experiments to make the

evaluation results more comprehensive.

• Comparison among various prioritized schedulers. Real-world Internet has dy-

namic network bandwidth and latency that complicates video streaming, especially

360◦ tiled video streaming. In this thesis, we utilize strict prioritized scheduler

to optimize 360◦ tiled video streaming. However, different prioritized schedulers

have inconsistent streaming performance under diverse network conditions. There-

fore, we will compare streaming performance with different prioritized schedulers

to identify the pros and cons.

• Adaptation mechanisms for system parameters. Most of the parameters in our

system are empirically determined and remain the same value during the video
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streaming. However, the adaptation algorithms for the system parameters are cru-

cial for deploying our solutions in live networks. We plan to leverage machine

learning to optimize the value of system parameters and dynamically change the

value during video streaming.
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