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中中中文文文摘摘摘要要要

近年來，物聯網（Internet-of-Things）應用程式所產生的大量數據
皆需要強大的分析方法，例如深度學習，來提取出有用的資訊，而現

有的物聯網應用程式大多將數據傳輸到計算資源豐富的數據中心來進

行分析。但是，大量的數據可能會造成網絡的壅塞、數據中心的嚴重

負擔、以及增加安全上的漏洞。在我的論文中，我設計了一個採用霧

計算概念的平台，將數據中心（服務器）和終端運算裝置（物聯網運

算裝置）的資源進行整合。它有兩個特點：（i）動態部署和（ii）邊
緣分析。我在位於邊端的運算裝置之間執行分佈式的分析應用程式來

對數據進行預處理，而不是將所有資料都完整地發送到數據中心。然

後，我分析了實作這樣一個平台所必須面對的難題，並採用擁有龐大

社群支持的開源專案來克服這些挑戰。最後，我對實作出的的平台進

行全面的測試，結果顯示了：（i）分佈式分析的好處及其局限性，
（ii）當跨多個運算裝置分發應用程式時，工作分配的重要性，以及
（iii）平台中所使用的工具所帶來的額外運算成本。
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Abstract

Modern Internet-of-Things (IoT) applications produce a large amount of
data and require powerful analytics approaches, such as using Deep Learning
to extract useful information. Existing IoT applications transmit the data to
resource-rich data centers for analytics. However, it may congest networks,
overload data centers, and increase security vulnerability. In my thesis, I
implement a platform, which adopts the concept of Fog Computing, inte-
grating resources from data centers (servers) to end devices (IoT devices). It
has two features: (i)dynamic deployment and, (ii) edge analytics. I launch
distributed analytics applications among the devices to pre-process the data,
rather than sending everything to the data centers. I analyze the challenges to
implement such a platform and carefully adopt popular open-source projects
to overcome the challenges. I then conduct comprehensive experiments on
the implemented platform. The results show: (i) the benefits/limitations of
distributed analytics, (ii) the importance of decisions on distributing an ap-
plication across multiple devices, and (iii) the overhead caused by different
components in my platform.
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Chapter 1

Introduction

The Internet of Things (IoT) is getting popular all over the world. There are 6.4 billion

IoT devices deployed in 2016, 30% more compared to 2015, and the number is expected

to increase to 20.8 billion in 2020 [6]. Currently, the devices are used to sense/collect

data and send them to powerful servers, such as cloud servers through the Internet for

processing and further analysis. The analyzed results are then sent to IoT users for various

IoT applications, such as smart cities, smart homes, and smart hospitals.

The incredible growth of the number of IoT devices results in severe network conges-

tion and surging server loads under the huge amount of incoming data streams generated

by many IoT devices. To solve these problems, we may try to pre-process the data using

the IoT devices to extract some higher-level features for reducing the data size. Then send

the reduced data to the server for analysis.

For example, assume there are a few IoT devices, and one of them captures an image.

By sending this image directly to the data center, the size of data will be huge. But if

pre-processing the image by the other devices on local to get the result first, such like the

number of people or the plate of a car in this picture, then the size of data will be reduced

drastically. In other words, the pre-processing idea will reduce the network traffic and the

load of data centers significantly.

Therefore, analyzing those sensor data and extracting useful information on IoT de-

vices is critical. Nowadays, such large amount of data is usually analyzed by Machine

Learning (ML) approaches, especially using Deep Learning (DL). However, DL is too

complicated for a single IoT device. Hence, a platform supporting distributed analytics

is required to solve the aforementioned issues. We adopt fog computing [23] , which

integrates resources from data centers to end devices to run applications in a distributed

manner. That is, in fog computing platforms, we leverage resources from data centers,

edge networks, and end devices. For brevity, we call these devices as fog devices.
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Figure 1.1: Overview of my fog computing platform.

1.1 Challenges

In cloud computing, devices refer to virtual or physical machines that have a lot of com-

puting, memory and data resources. Devices carry out the actual workloads. Devices in

the cloud usually hide in faraway data centers, which are vulnerable to insufficient band-

width, long latency, and high product cost rate. Hence, cloud computing is less friendly

to multimedia applications or the applications in the intermittent Internet. Recently, fog

computing paradigm pushes devices toward edge networks. I adopt a generalized def-

inition, which devices may be owned by the crowds. Such fog paradigm provides the

resources closer to the users and reduces the cost. Unfortunately, managing the devices

in the fog is challenging, e.g., end devices may move into wireless dead-zones, run out of

battery, or be turned off. These factors lead to severe uncertainty. In this thesis, two major

challenges are focused upon:

• Heterogeneous devices. There are many kinds of fog devices, such as desktops,

laptops, and smartphones owned by different fog workers. This results in high het-

erogeneity, so implementing a fog computing platform that supports heterogeneous

devices is really challenging because of the actual configurations of the devices and

inter-connected networks need to be carefully optimized. Furthermore, fog devices

on the edge usually have limited resources, thus I have to split applications into

smaller operators running on the devices. Let them collaborate with one another to

fulfill the complex job.

2



• Large amount of data. When the number of IoT devices is getting higher, the

amount of data is incrementing. Because IoT devices usually have limited re-

sources, sensor data tend to be sent to powerful data centers for processing. Send-

ing large sensor data to the data centers may congest the networks and overload

the data centers. The key to the solution is to collaborate several fog devices and

pre-processing the data before transmitting them over the Internet. Therefore, how

to analyze those sensor data and extract useful information is critical. Nowadays,

such large amount of data is usually analyzed by Machine Learning (ML) approach,

especially using Deep Learning (DL). However, DL is too complicated for a single

fog device. Hence, a platform supporting distributed analytics is required to solve

the aforementioned issues.

In this thesis, to overcome these challenges and implement a functional fog computing

platform, I adopt three open-source projects: TensorFlow [18], Docker [4], and Kuber-

netes [9].

• TensorFlow is a library for numerical computations using data flow graphs. This

idea of graphs suits the structure of distributed IoT devices; fog devices are nodes

and the sensor data flows are edges in a graph. Hence, a cluster of weak devices can

work together to perform resource-consuming analytics. Moreover, TensorFlow

supports a wide spectrum of state-of-the-art DL approaches, which are useful to

analyze a large amount of sensor data.

• Docker is a light-weight virtualization technology compared to traditional virtu-

alization technologies, such as Xen [22] and KVM [10]. Although Docker can-

not perfectly isolate virtualized applications, it is light enough to be used on the

resource-limited IoT devices.

• Kubernetes is a state-of-the-art management tool of Docker. It plays two important

roles in the tested fog computing platform for monitoring fog devices and deploying

virtualized applications.

1.2 Contributions

In this thesis, I make the following contributions:

• I survey the existing problems of Internet of Things, which point that large amount

of IoT devices and sensor data burdens the server and the network. So I propose

a solution conducting the fog computing concept in IoT environment. Moreover,

3



I list and describe carefully two additional powerful features which fog computing

can achieve In the end, I also study others research about IoT and fog computing

and then compare them with my works.

• I implement a real fog computing platform. Figure 1.1 shows the big picture of

this platform. Kubernetes monitors the information and resource status, such as

CPU, memory and what sensor that fog devices have. Such information allows

us to figure out which devices are more suitable to deploy the IoT applications.

The applications are split into smaller pieces in TensorFlow, and these pieces are

virtualized by Docker and deploy on multiple fog devices.

• I conduct extensive experiments to quantify the performance and limitations of the

platform. My results show that: (i) running a complex analytics application in a dis-

tributed way achieves higher performance, (ii) deciding the splits of an application

is critical to yield better performance, and (iii) the overhead caused by the container

is rather low even on resource-limited devices.

1.3 Thesis Organization

In the rest of this thesis, I survey the current situation and challenges of the Internet of

Things and discuss some possible solution in Chap. 2. After that, I propose a fog com-

puting platform which can dynamically and scalably deploy the IoT analytics application.

This platform has two major features: (i) dynamic deployment and (ii) edge analytics,

which I will introduce in Chap. 3 and Chap. 4. Then I explain the overview of my fog

computing platform in Chap. 5. Next it will be describing the tools I used to build the

platform and giving some usage scenarios of the IoT applications in Chap. 6. In Chap.

7, I will implement the real fog computing platform and measure the performance of it.

Lastly, the resulted works in Chap.8 and conclusions in Chap. 9.

4



Chapter 2

Background

In this chapter, I will survey the situation of current Internet of Things environment and

conclude some challenges it encounters. Then I will analyze the fog computing which can

solve IoT complications. In the end, I introduce the edge analytics which is the perfect

implementation of IoT combined fog computing.

2.1 Internet of Things

The origin of the term ”Internet-of-Things” (IoT) can be traced back to 1999, which is

first said by Kevin Ashton [24]. Originally, the Internet-of-Things was about using Radio

Frequency Identification (RFID) to tag entities and connect them to the Internet. Their

first obstacle was to expand the content of the Internet, because the data in the past were

mostly produced by the human through recording, typing, capturing, and etc, making the

types and the amount of information restricted. Therefore, if the things can automatically

generate the data, the environment of the Internet would change significantly.

After a few years later, the concept of ”Internet-of-Things” become more completed [25,

40]. It not only covers the RFID technology, but also contains the wider field, such as

sensors, actuators, Wi-Fi, 5G, LoRa, etc. With those technologies, the physical devices

around our life can form a heterogeneous net, and all the entities in it can have their own

unique identifications. Through these identifications and network technology, we will

be able to control and manage them remotely. In addition, devices can exchange data

themselves, to achieve the goal of automation.

The Internet-of-Things is becoming increasingly popular in our daily life. We see

IoT applications everywhere, such as smart homes, smart factories, and smart cities. The

ubiquitous IoT applications significantly change standard of living. For example, Echo [1]

is a new IoT application manufactured by Amazon, which connects humans to other IoT

devices via voice commands. With the growing IoT market, a forecast from Gartner says

5



that 8.4 billion IoT devices will be in use worldwide in 2017, 31% more than that in 2016,

and the number will increase to 20.4 billion by 2020 [5]. However, this incredible number

makes the development of the Internet of Things much challenging.

Along with the increase of IoT devices, the amount of data is also getting larger. Be-

cause IoT devices usually have limited resources, sensor data tend to be sent to powerful

data centers for processing. However, sending large sensor data may congest the networks

and overload the data centers. To solve this problem, collaborating several IoT devices

and pre-processing the data before transmitting them over the Internet are the keys. For

example, compared to sending large multimedia content, such as videos, to the data center

for analysis, extracting the real meaning data on the IoT devices significantly reduces the

amount of network traffic.

2.2 Fog Computing

Figure 2.1: Architecture of the fog computing.

The fog computing concept is proposed and generalized by Vaquero et al. [26,

41], which has been employed for sensor-intensive applications [30] and computational-

intensive applications [32]. Many researchers [28, 38, 43], thus, start to leverage the con-

cept of fog computing to address IoT’s issues. Fog computing leverages fog devices in

data centers, edge networks, and end devices simultaneously in a distributed way.

Compared with the cloud computing, fog computing is proposed after the rise of the

Internet of Things. As shown in Figure. 2.1., fog computing extend the cloud computing

from the data center to the edge. Not only leveraging the powerful devices in the cloud but

6



also the less powerful IoT devices on the edge. fog devices can be the cars, refrigerators,

street lamps, mobile devices or single-board computers which are diverse and scattered

around the environment.

Because leveraging the edge side devices which are much closer to users than cloud

side devices, fog computing can supply more kind of services near to the users. The

advantages, such as unloading computing jobs from the data center to the edge network

for low latency, location awareness, and adaption of the mobility and so on, are really

crucial for IoT applications, especially when the type of sensed data is multimedia. For

example, smart electric vehicles may take many pictures of the environment to determine

the state of the road. Instead of sending the pictures to the cloud side, the car should

process those pictures on the local side to achieve the goal of real-time response.

Unlike centralized cloud computing, fog computing is in the distributed architecture.

It collects the computing resources that are closer to the user, and uses them to store or

process the data, rather than pushing all the jobs to the cloud. Therefore, this also encour-

ages users to share their idling resources of devices, including storage space and com-

puting resources. The idea of outsourcing workloads to other fog devices can be viewed

as the concept of crowdsourcing, which is benefits both parties. End device owners can

efficiently utilize their idling resource and earn some remuneration. On the other hand,

the users who outsource the workload can also finish the job at lower cost because they

don’t need to purchase the expensive server; and the negative externalities will decrease

because of lower consumption of data center which results to less carbon footprint.

2.3 Edge Analytics

It is critical to analyze the sensor data and extract useful information on IoT devices.

Nowadays, huge amount of data is usually analyzed by machine learning approaches,

especially using deep learning. However, deep learning is too complicated for a single IoT

device. Hence, using fog computing, which integrates resources from data centers to end

devices, to support distributed analytics is required to solve the aforementioned issues.

As a result, in fog computing architecture, we can leverage resources from several fog

devices around the edge at the same time. It collects those resources to run complicated

deep learning to pre-process and analyze the raw data before sending them to the cloud

side.

Figure 2.2 is an example, in which we can split a complicated object detection applica-

tion into three parts——image collector, features extractor, object classification——that

goes onto three different fog devices. Let them cooperate with each other to finish the

application. If we use the traditional way, sending the whole image to the data center di-

7
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Figure 2.2: A graphical representation of a scenario that pre-processes the images before

sending them to the cloud data center.

rectly, more network traffic is generated, and the response time may be longer. Therefore,

following fog computing approach, pre-processing the images among the fog devices and

send the concise reports to the data center will reduce the network traffic and the burden

of data centers.

To implement a platform which using fog computing to support edge analytics, we

have to overcome many challenges. First, we need a suitable programming model for

distributed analytics. Second, because of the heterogeneity of fog devices, which have

different capabilities, hardware, and software specifications, we need virtualization tech-

nologies to transparently deploy the IoT edge analyses applications. Third, to manage

large numbers of IoT applications and fog devices, a centralized server in the headquarter

is required to keep track of their status, and have the capabilities to dynamically deploy

the applications on to those heterogeneous fog devices.

8



Chapter 3

Dynamic Deployment

IoT devices are prevalent in our daily lives and they usually are embedded systems. The

embedded system is dedicated to specific tasks, the devices are specifically made for a

particular goal. So the hardware on the system is usually fixed. Although such architec-

ture can greatly optimize the execution performance and reduce the hardware size and

production cost, it also leads to many problems: i) Limited flexibility of application and

inability to handle more complex tasks, (ii) difficult management and monitoring needed

for several embedded devices centrally, (iii) inefficiency when unmounting before con-

ducting maintenance or update every time, which takes considerable labor costs and time,

and (iv) inefficiency when embedded devices can not be re-use under different situations.

In order to solve above problems, I developed a fog computing platform which dynami-

cally and remotely deploy the applications onto any fog devices, so the users can launch

whatever application whenever and any they want. Therefore, the software on the devices

can also be updated or corrected in real time.

To achieve the goal of dynamic deployment, I subdivide this big challenge into couples

of tasks. First, I need to virtualize the applications so the applications can be put on any

heterogeneous devices directly. Thus, developers don’t have to consider the setup of

the running environment because all the setting already been packaged into the virtual

machine. Second, as shown in figure 1.1, we need a centralized headquarter to remotely

manage all the fog devices and applications running on them. From this I can monitor

the resource usage and status of applications and fog devices and record the sensors that

devices have and locations of the devices. After that, according to the information, I can

dynamically deploy the applications which are packaged in the virtual machine onto the

suitable devices. As a result, all fog devices can be managed centrally, which allows

remote the maintenance.

Third, after implementing dynamic deployment, we also developed the event-driven

mechanism that allows application developers to design a series of logical decisions that

9



automatically deploy another application to the right devices when a specific event is

triggered. This increases the elasticity and ability when we deploy the applications on fog

devices.

In the following subsections I will describe these three tasks in details.

3.1 Container-Based Virtualization

If all the applications are executed or updated directly on the same operating system, it has

the risk of some conflicts due to library dependency, and the resources usage and permis-

sions are also not easy to manage, even worse, the fails of the application also may cause

the crash of operating system. In order to avoid this kind of situation, I separated each

application that I planned to execute, and used virtualization technology to encapsulate

them and put them into virtual machines. Each virtual machine is independent. They will

not interfere with each other, so the developers can also limit their authority and available

resources. In this way, the problematic situations mentioned previously can be solved

smoothly.

Virtualization technology also brings several additional benefits. (i) Virtual machines

can be started, stopped, or even migrated optionally, which improves the flexibility of

various applications on the fog devices. (ii) The library, required by the application, will

also be packaged in the virtual machine with the application, which means that library

does not exist when the user doesn’t have that virtual machine on fog devices. It saves

lots of space, in particular, some large library such as OpenCV. (iii) The library required

by the application can only be compiled once before being packaged. After that, the same

virtual machine can be reused. It does not have to take another hour to recompile, which

will save a lot of time.

Virtualization technologies, such as Xen [22] and KVM [10] need entire guest oper-

ating systems, the necessary binaries, and libraries to create a virtual machine. It needs

powerful server to launch a virtual machine, which consumes a lot of storage space and

computing power. These disadvantages make the traditional virtualization technology

unsuitable for fog devices because fog devices usually have fewer computing resources.

Using traditional virtualization technology, only less than ten virtual machines can be

executed simultaneous on one fog devices with low efficiency. In addition, some IoT

applications require real-time response, but traditional virtualization technologies need a

long time to startup, which leads to a significant increase in time inefficiency. Therefore,

I used a more lightweight virtualization technology in the difficult IoT environment.

Currently, an emerging virtualization technology called containers, such as LXC [12]

and Docker [4], is used in several areas. Compared to the virtual machine, container
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Figure 3.1: Difference of architecture between container and traditional virtual machine.

requires fewer resources and can be set-up in a short time span, due to its architecture

containers omit the guest operating systems. As shown in figure 3.1, multiple containers

can run on the same host, share the same operating system kernel and use the namespaces

to distinguish one from another. Rather than including the full operating system, It allows

applications running in containers with mandatory services they need. This design gets rid

of the non-essential library, leaving only the library that applications need. Therefore, the

resource required for building a container is relatively less, and the required computing

resources are almost the same as bare metal. This allows the container to be boot up

in a really short time even in a resource-constrained environment. As summarized in

Table 3.1, these advantages surpasses the traditional virtualization technology and are the

perfect choice in the IoT environment.

Table 3.1: The comparisons of efficiency between container and traditional virtual ma-

chine
Container Traditional Virtual Machine

Start Up Seconds Minutes

Capacity MB GB

Efficacy Almost native Slow

Scalability Thousands Dozen

3.2 Orchestration Tool

A premise of dynamic deployment is that we must know which fog device has enough

computing resources to execute the application we want. In addition, the platform must

also have the authority to control the fog devices, so it can assign the applications onto

any devices directly. Therefore, a central headquarter to monitor various resources of the

devices, including the CPU and the memory, and push the applications, packaged into the
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containers mentioned in the previous section onto the suitable devices. However, there

are heterogeneous fog devices in the cluster of the fog computing platform, and the net-

work interfaces conducted by the devices are usually not the same. Therefore, managing

them using the same method will be challenging. Furthermore, the applications are pack-

aged by virtualization technology, so extracting the information inside the containers and

maintaining the current status is another problem. When the application or container fail,

it should be corrected in the short time. But it will take a lot of time if it needs to wait for

the manual modification. This kind of circumstance is not allowed to happen especially at

the factory or hospital. Therefore, only if we dynamically deploy the applications onto the

right fog devices, the platform should have the ability to automatically repair and correct

the applications.

To achieve the goal I mentioned, the fog computing platform needs an orchestra-

tion tool to monitor and control all the devices and containers. SaltStack [16], Docker

Swarm [17], OpenStack [15], and Kubernetes [9] are all possible open-source projects as

the starting point to implement my fog computing platform. Following I will introduce

them briefly.

• SaltStack is lightweight management software written in Python to remotely con-

figure and execute parallel commands on many computers. SaltStack adopts a mas-

ter/minion architecture. Master is a centralized server to control all the end devices

as known as minions. SaltStack supports multiple operating systems and has been

integrated with Docker [4].

• Swarm is a native clustering system for Docker. This makes Swarm simpler for

the developer to learn and use, thus reducing the cost of development. Swarm

assembles multiple containers into a cluster which provides the services. It uses

the standard Docker API to manage the life cycle of the container to schedule the

container. Swarm has two major component: Manager and Node, which is similar

to the master/minion architecture.

• OpenStack is one of the most widely used cloud management systems. It helps

cloud service providers to efficiently manage their large pools of machines in data

centers. OpenStack offers management services for virtual machines (Nova), im-

ages (Glance), networking (Neutron), storage (Swift and Cinder), and security (Key-

stone). Moreover, OpenStack provides Web-based interface (Horizon) to control all

the services. OpenStack supports different virtualization technologies, including

Xen [22], KVM [10], and LXC [12].

• Kubernetes is a framework proposed by Google to manage a cluster of Docker

containers. Kubernetes also consists of a master and many minions, but it is more
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comprehensive than SaltStack, e.g., Kubernetes helps users to ensure redundancy

for better fault tolerance. Each minion can hosts several containers, and these con-

tainers can gather together and form the base unit of Kubernetes, termed pod. Fur-

thermore, Kubernetes has many different types of controllers to assist developers

to manage the pods in the flexible way, such as making sure there is at least one

certain pod running in the cluster; if one of the containers failed, the Kubernetes

will automatically reboot another one. This feature is really useful for automatic

reparation and correction.

I selected Kubernetes to implement the fog computing platform because it supports

Docker, the latest and the most popular light-weight virtual machine. It follows a mas-

ter/slave architecture, and slaves don’t need to install too many packages on it which is

suitable for fog devices. Furthermore, this project is developing rapidly, many exten-

sions have been implemented for Kubernetes. And its various and powerful controller

also allows developers to manage their containers more efficiently. For those reasons,

Kubernetes is my best choice for implementing the platform.

3.3 Event-Driven Mechanism

The former two sections fulfilled the capability of the dynamic deployment mechanism

of my fog computing platform. But what kind of applications should be deployed on fog

devices and before the deployment what is the minimum amount of resource will man-

ually designated by the users every time. Therefore, the platform can not automatically

deploy another application when an urgent and unpredictable situation occurs. For ex-

ample, when something is detected by the passive infrared (PIR) motion sensor of the

security system, the platform should automatically trigger another application to recog-

nize the object and distinguish whether it is an intruder and whether to notify the relevant

people. Of course, making this application always run in the background is also a possible

solution. However, if most of the time no one passes through this particular space, then

the object detection application is mostly idle and wastes substantial computing resources

that could be used for alternatives. Therefore, in this scenario, we need to develop an

event-driven mechanism so that the application, triggered manually at a certain point, can

be automatically deployed to an appropriate fog device when any event happens.

There are two different way to implement an event-driven mechanism: (i) all the

event-driven rules are managed in one single decision unit, or (ii) the first application

drive the next application autonomously. The first method is able to centrally manage

all the event-driven rules and establish the rules intuitively in one-to-one correspondence.

In other words, the corresponding B application is launched directly when the event A
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occurs. This method is simple because there is a standard template for developers to

follow; however, on the contrary, because of it, it is relatively rigid and non-flexible. And

the second method is to trust each application to decide when to drive the corresponding

application. The logic of the decisions are made in the first application, so developers are

not constrained to any template of the rules. They can establish the rules as complex as

they want. Both methods have their advantages. On my platform, in order to maintain the

high flexibility of the IoT environment, the second method is adopted. Therefore, an API-

Server which allows the application communicate with the headquarter is crucial. In other

words, this API-Server provides IoT applications in the fog computing platform a way to

send the request to headquarter for some manipulations such as deploy an application on

another device.
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Chapter 4

Edge Analytics

In this chapter, I’m going to describe another feature of my fog computing platform: edge

analytics. Edge analytics enables IoT devices process the complex deep learn application

on the edge. Pre-processing the raw sensor data before transmitting them to the cloud

server, so that reducing the burden of data center and even shortening the response time.

Processing deep learning application usually consumes lots of computing resource, so

most of the fog computing system dispatch this job to the cloud side. Under that kind of

architecture, all the raw data needs to be sent to the server, which is far away from the

users, to not only occupying much bandwidth, but also lengthening the response time. In

order to solve these problems, I made IoT devices, which use deep learning to support an-

alytics applications. Futhermore, in order to distribute the workload, I conduct distributed

architecture which split one complex analytic application into several operators.

There are many distributed computing studies, and some of these studies focus on col-

lecting computing resources from volunteers around the world, which are relative to fog

computing. By effectively using the idle devices such like desktops, laptops, or smart-

phones to do computations, even if these devices are far less capable than a powerful

server. Futhermore, they can still accomplish quite a few tasks after they cooperate with

each other. Not only does it avoid the waste of idle resources, but also eliminates the

cost of building the servers. Such concept can also be applied to my platform. By com-

bining multiple IoT devices, I am able to effectively use the remaining idle computing

resources to process some complex analytic applications and relief the workload of the

cloud servers.

In the following sections, I will introduce the distributed computing in my platform,

and describe how it adapts with the IoT applications which are location-based and sensor-

based. In the end, I will explain how resource-constrained IoT devices handle power-

consuming analytic application in the distributed way.
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4.1 Location-based and Sensor-based Services for the In-

ternet of Things

Different from the general distributed computing. I run the IoT analytic applications on

the decentralized IoT devices, which derives many limitations. The types of IoT devices

are often different and scattered around the environment, and the applications are mostly

location-based services. Therefore, it is necessary to select the IoT device located in

the correct geographical position when executing the application. In addition, different

applications require different sensors. It is import to consider the suitable sensor each

device is equipped with. For example, when we need to deploy a license plate recognition

application, we would like to select an IoT device that is located at the side of the road

rather than inside the building. The device should akso be equipped with a sensor with

camera function rather than a microphone function so that the application can complete

its work.

Some of the IoT devices are not fixed at the fixed position, such as the devices that

are installed on a bus or carried around by the users. Sensors on the devices may also

change due to various factors. Therefore, this information will not be the same forever.

So the issue is: how the fog computing platform dynamically get the current metadata of

these devices so the platform can deploy the applications correctly. In addition, among a

large number of IoT devices another challenge is how to quickly and efficiently filter out

devices that meet the requirements.

In order to confirm whether the IoT device meets the location and sensor requirements

of the application. The most practical method is to tag the IoT devices with various labels

and keep this data on the master, which allows the deployment of applications on the

right IoT devices base on this information. Therefore, the devices can be classified in a

simple and intuitive way, and even find out devices that satisfy multiple conditions at the

same time directly and logically. In order to solve the problem of outdated information,

each IoT device also needs to be able to update the label independently to the master for

maintaining the correctness of the information.

4.2 Distributed Computing

Many existing distributed computing studies focus on splitting an amount of data into

several parts which are similar. For example, separating one video into multiple frames

or dividing thousands of data into ten equal batches, and then processing each part by

different device in the same way. Then the results from the different devices will all be

gathered together at the same cloud server, which the server will aggregate them and get
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the final conclusion. In this method, there is not much interaction between the devices and

the server, which is more suitable for the applications with high computational complexity

and a abundance repetitive data. However, in the IoT environment, the diversity of the

data is high, so it is difficult to integrate them. In addition, the IoT sensor data usually are

time-sensitive and have to be processed in real-time. Therefore, it is critical to allocate

different jobs according to the characteristics of heterogeneous devices and get the results

in a short time. For example, the license plate recognition application can be divided into

two tasks: taking pictures and recognizing the numbers of license plate. The first job is

performed by a device equipped with a camera, and the second job is performed by a

device with more computing resources. In this way, it can effectively use the advantages

of each device to improve the computing efficiency.

If an application is divided into multiple operators based on the characteristics of dif-

ferent jobs, and assigning them to different devices, this means that a pipelined execution

structure is formed. The previous operator will calculate a preliminary result, and then

transmitting it to the next operator. Therefore, this also leads to two problems: (i) where

are the cutting points of the applications, and (ii) how the operator and operator commu-

nicate with each other?

The result of each operator must yield a productive result, such as the temperature, an

image, the name of the object on the picture, etc. The advantage of doing so is that the

application can be disassembled, modularized, and used effectively. For example, both

the garden irrigation system and the weather prediction service can obtain data from the

same operator that senses the humidity. Thus, we can save resources by only deploying a

humidity operator.

As mentioned in the previous paragraph, there are situations that multiple operators

need the data from the same operator at the same time. Therefore, transferring the data

one-to-one is inefficient. In order to solve this problem, we adopted publish/subscribe

communication model. All the results of the operators are published to the broker. In

other word, the operators that need these data subscribe them from the broker themselves.

Futhermore, because the data are all sent and received through the broker, between the

operators, they do not need to build their own communication channels; the complexity

of developing the applications can be reduced.

4.3 Pre-processing with Deep Learning

It is time-consuming to run the edge analytic application to pre-process the raw data,

which uses complex deep learning, on the resource-constrained IoT devices. If we further

cut the edge analytic application into multiple operators properly, then deploy them on
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Figure 4.1: The architecture of my fog computing platform.

several devices to run the application, it will get better efficiency comparing to run the

whole application on only one device. Continuing our license plate recognition example

in Sec.4.2, this section further splits the second job, plate recognizing, into parts, based

on the layers of the neural network, variables, or the functions. Throug this, we then

delivering them to multiple IoT devices for processing, so that complex deep learning can

also be executed well on the resource-constrained IoT devices.

The difficulties of pre-processing in distributed system with deep learning is similar

to Sec.4.2: (i) where are the cutting points of the applications, and (ii) how the operator

and operator communicate with each other. Even so, the differences of cutting degree(a

complete job versus one single neural network layer) makes it a more difficult challenge.

The library used for deep learning must be able to separate the complete neural network

into multiple layers, and support these layers so can be processed on heterogeneous IoT

devices. Although the heterogeneous IoT devices problem can be solved by virtualization

technology, the communication between layers cannot be solved by pub/sub model. So

the deep learning library should handle the communication issue itself.

TensorFlow is a library for numerical computations using data flow graphs, originally

developed by Google’s Machine Intelligence research organization. It has a very an ex-

tremely flexible architecture that can be implemented on desktops, servers, or mobile de-

vices. TensorFlow helps developers build data flow graphs by breaking up the application

into smaller operators. These operators are then deployed on decentralized IoT devices,

which allow them to use Multi-Dimensional Data Arrays, or tensors, to communicate with

another device. As shown in Figure 4.1, we can combine the results of the Chapter 3 to

package the operators generated by TensorFlow using container virtualization technology,
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and then deploy them to the appropriate IoT devices through Kubernetes.
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Chapter 5

System Overview

Figure. 5.1 gives an overview on my fog computing platform, which consists of the fol-

lowing major components.

Figure 5.1: The fog computing platform proposed for IoT analytics.

5.1 Master

• Device manager. In the fog computing cluster, we need to monitor the status of

every fog device (minions), the data such as: CPU, RAM usage etc. We extend the

Heapster and cAdvisor in Kubernetes [9] to collect crucial device status, including:

(i) the resource utilization, e.g., CPU and RAM usage, (ii) the device locations, e.g.,

GPS readings, and (iii) sensor availability and capability, e.g., existence of depth
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cameras at VGA resolution. These information not only enable user to understand

the situation of cluster, but also allow optimization algorithm component compute

the best strategy to deploy the applications.

• Image Pool. Application developers package each operator of IoT analytic appli-

cation into a Docker image. These images may be stored on the online servers, such

as Docker Hub, or in image pool on the master or fog devices to avoid download-

ing duplicated images. Image pool also enables version control, and leverages the

dependency among Docker images to further reduce the resource consumption.

• Optimization algorithm. For all IoT analytics requests, the algorithm makes de-

cisions that deploy which operators on which fog devices. On my platform, the

algorithm can be replaced on-demand. Users can switch the algorithms to which

satisfies their usage scenario. Such as the one processes maximum number of the

requests, the one finishes the requests fastest, or the one can sort the priorities of

requests, and etc.

In this thesis, the requests come with diverse QoS targets and deployed locations.

As shown in Figure. 5.2, the goal of the algorithm is to maximize the number of

satisfied requests, while considering: (i) the expected resource consumptions (sys-

tem models), (ii) the spatial requirements of requests, (iii) the required sensors, and

(iv) the available resources of fog devices. A request is satisfied if the target QoS is

achieved at its specified location. Due to the space limitations, the details are given

in our paper [31].

Figure 5.2: The overview of our operator deployment algorithm.

• Deployment manager. We build a deployment manager on Kubernetes to remotely

launch specific Docker images on chosen fog devices, and support other manage-

ment tasks, such as killing, restarting, and migrating containers.
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Figure 5.3: User Interface

• User interface. As illustrated in Figure. 5.3, we also provide the dashboards for

the user to operate or monitor the fog computing platform conveniently.
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The open source project Kubernetes dashboard is an extension of the Kubernetes,

which allows the users using the user interface to manipulate Kubernetes API di-

rectly. Therefore, we can check the status of every node or container on the plat-

form, and deploy the application in any methods Kubernetes provided. However in

IoT environment, we need more features. So I extend the Kubernetes dashboard,

add a map to visualize the positions of every device. As Figure. 5.3(b) shows, when

fog devices scattered around the city, we can easily find the fog devices on the map

through their locations, rather than searching by latitude and longitude. Further-

more, infowindows of the markers also display what sensors that fog devices have

and the status of the applications that run on the fog devices. These information help

users to decide which fog device is suitable for their requirements more efficiently.

I also implemented a panel to display the results which is subscribed from the an-

alytics applications through MQTT. As Figure. 5.3(c) shows, the panel visualizes

the information, so the users can read the data efficiently. Such as which gate is

being intruded, the picture of the intrusion scene, or the motion chart of the air pol-

lution values. This panel gathers the results from different analytics applications

and put them on one single page, so the users can check all the results directly and

efficiently.

5.2 Minions

• TensorFlow-enabled container. Containers are light-weight virtual machines suit-

able for IoT analytics, because of their smaller footprints and shorter initialization

time. We include TensorFlow and its analytics libraries in Docker containers.

• Client Agent. An agent that runs on each minion in the cluster. It makes sure

that containers are running in a pod. And also report the resource usage of minion

and the containers running on it to device manager periodically. The kubelet takes

a set of PodSpecs that are provided through various mechanisms and ensures that

the containers described in those PodSpecs are functioning healthily. The kubelet

doesn’t manage containers that were not created by Kubernetes.
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Chapter 6

Implementation and Demo Scenarios

6.1 Implementation

In this thesis, I adopted TensorFlow [18] as my programming model which is responsible

for edge analytics, Docker [4] as my virtualization tool, and Kubernetes [9] as my orches-

tration tool. Docker and Kubernetes——are responsible for dynamic deployment, which

I will describe in detail in the following.

6.1.1 TensorFlow

TensorFlow helps us build the data flow graph by splitting an application into multiple

smaller operators, which are the units of deployments. TensorFlow deploys those oper-

ators on distributed fog devices and allows them to communicate with one another using

multi-dimensional data arrays, called tensors. TensorFlow has a flexible architecture that

can deploy applications on desktops, servers, or mobile devices with the same API. My

fog platform leverages on that and deploys various operators on heterogeneous fog de-

vices.

With TensorFlow, each applications can be written as a graph of multiple operators,

which has several advantages, compared to the single-operator ones. First, they allow

fog devices to only perform the jobs they are good at, which solve the problem that fog

devices are not capable of due to resource limit. Second, multi-operator applications

can save the resources by reducing the amount data transferred. For example, if there

are two operators on different fog devices needing for same input data, they can get the

data from the same operator, and reuse the operator rather than collecting data separately.

Last, running TensorFlow applications to pre-processing the raw data on the fog devices

reduces the burden of networks and servers. IoT applications usually transmit the data to

the cloud side, but the incredible amount of data could congest the network and overload
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the server. Multi-operator applications can perform pre-processing, such as filtering or

merging when the data goes through the operators, to yield results at the edge to reduce

the size of data that are transmitted to the server.

Figure 2.2 is an example, in which we split a crowdedness-detection application into

three operators: image collector, face detector, crowdedness monitor. If we use the tradi-

tional way, more network traffic is generated, because send the whole image to the data

center. Following my fog computing approach, we pre-process the images among the fog

devices and send concise reports to the data center, which reduces the network traffic.

6.1.2 Docker

Each operator may require different libraries, but we can’t install all the libraries on ev-

ery fog device, which takes too much time and storage. For example, some multime-

dia libraries, such as OpenCV, is large for fog devices. Therefore, my platform adopts

Docker containers to package the operators with their required libraries into Docker im-

ages. Hence, we do not need to install libraries on my fog devices. The operators and

libraries are packaged as a container for on-demand deployment.

Similar to traditional virtualization technologies, container technology is the solution

to transparently deploy tasks on heterogeneous devices. However, container technology is

lighter and more scalable. It is suitable for fog devices which don’t have enough comput-

ing resources. Besides, the short startup time is also helpful for real-time IoT applications

and fast deployments. Also, if developers want to change some algorithms of an applica-

tion or the configuration of operator graphs, they can easily launch a whole new container,

since the overhead of restarting a container is small.

6.1.3 Kubernetes

For those containers running on heterogeneous devices at different locations, we need

a tool to manage and monitor them, such as Kubernetes [9], OpenStack [15], Docker

Swarm [17], and SaltStack [16]. We selected Kubernetes because of its popularity. We

gain full control over all the operators in every application using Kubernetes. It has an

extension, named Heapster, which enables container cluster status monitoring, resource

monitoring and error recovery. For example, when a fog device runs out of batteries or is

disconnected from the Internet, Kubernetes can automatically relaunch the new containers

on another fog device to keep serving our applications.

As illustrated in Figure 4.1, Kubernetes plays the role of the centralized server in the

headquarter. It monitors the status of fog devices and deploys virtualized operators on

them according to the monitored information. Every fog device runs multiple containers,
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which are part of different applications. If one of the applications needs to be modified,

we simply replace that container, which avoids interrupting other applications.

6.2 Scenarios

Application 

Developers

Server

Fog Devices

Figure 6.1: The ecosystem of my fog computing.

In the thesis, we envision an ecosystem that consists of the centralized server, fog de-

vices, and the applications which are developed by developers. Developers use Docker

and TensorFlow to develop the applications which can process the distributed analytics.

Upon getting the requests, the centralized server deploys the applications onto heteroge-

neous fog devices through Kubernetes. As shown in Figure 6.1, this structure build trust

about the details of the deployment, so they can focus on the developing of the applica-

tions.

I implement the multi-operator IoT analytics using TensorFlow [18], in which every

application is represented as a graph consisting of nodes and links. The nodes can be

simple tasks, such as additions and subtractions, or very complex machine learning tasks.

The links are the data flows among nodes. I use TensorFlow tags to split every graph

into multiple smaller subgraphs, where each subgraph contains one or multiple nodes

and associated links. These subgraphs are essentially the operators in our fog computing

platform, which are the units of deployments.

However, IoT analytics may require some features that are not available in Tensor-

Flow. For example, OpenCV [14] is needed for processing images and librosa [11] is

needed for analyzing audios. These additional libraries are quite large and take hours to

compile. Therefore, installing these libraries on-the-fly is infeasible. On the other hand,

reimplementing the features in TensorFlow incurs high engineering overhead, which may

26



Figure 6.2: The SCALE box with various sensors installed.

not be worth it. Fortunately, our fog computing platform achieves short deployment time

using Docker images. Furthermore, TensorFlow does not natively support stream pro-

cessing, and we add a queue between any two adjacent operators to increase the overall

performance.

SCALE [39] (Safe Community and Alerting Network) is a project that aims to use

available, cheap sensors to build an affordable, practical security system. The sensors

could be motion detection sensors, gas sensors, temperature sensors, or heartbeat sensors.

The sensor data are published via the lightweight messaging protocol MQTT [13] to a

broker. Devices can get those data by subscribing them from the broker. The devices

then pre-process those raw sensor data to get meaningful results. We enhance this project

to support two crucial sensors: camera and microphone. We then put the Raspberry Pi

which installed the SCALE in a 3D-printed box (illustrated in Figure 6.2) and putting it

at a fixed position such like streetlight. Another way is to attach the boxes onto bikes and

collect sensor data along the path where the biker passes. In the rest of this section, we

present three applications based on SCALE.

6.2.1 Object Detection

You Only Look Once (YOLO) [35] is a real-time object detection application. It applies a

neural network to an entire image, and performs both classification and localization. The

recognized objects are marked by bounding boxes. This network divides the image into

multiple grid cells and predicts the bounding boxes and the probabilities for each cell. In

the end, it marks the object as a category that has the highest score. We pre-train a model

that can detect dogs, buses, motorcycles, human beings, and etc. We use this model to

analyze the images that are captured by the camera on SCALE box. Figure 6.3 shows the
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Figure 6.3: A sample result from YOLO.

results we yielded from an image.

There are two ways to distribute jobs of YOLO. The first one is distributing an image

to multiple nodes, which concurrently analyzes different grids of the same image. But

the YOLO application needs OpenCV library, which is too large to be installed on all

nodes. Therefore, in this thesis, we use an alternative way: we split YOLO into multiple

operators, one of them is responsible for the OpenCV part, and the others are responsible

for TensorFlow’s built-in DL algorithms. Thus, every image will be pre-processed by

multiple operators among multiple devices as a distributed pipeline. Doing so avoids the

situation of filling up the storage space with libraries and it even increases its efficiency if

we put the operators on the right devices.

6.2.2 Sound Classification

Urban sound classifier application implements Multilayer Neural Networks using Tensor-

Flow. It can classify the sound recorded by the SCALE box. I already trained a model

which can determine 10 classes [19]: air conditioner, car horn playing children, dog barks,

drilling, idle engines , gunshots, jackhammers, sirens, and street music. The classes are

drawn from the urban sound taxonomy. We can use these results to do many things, such

as notifying the police when the microphone records the sound of a gunshot, or marking

the address as a potential construction project when the microphone records the sound of

jackhammer and drilling. We split this application into multiple operators according to its
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Multilayer Neural Networks, every operator is responsible for one layer. Similar with the

YOLO application, distribute layers are more storage-efficient, and faster if we put the

operators on the right devices.

6.2.3 Air Quality Monitor

Air Pollution Detection subscribes the sensor data from gas sensors and calculates the

moving average values of each type of sensor data, such as natural gas, carbon monoxide,

or smoke. When the average value exceeds a threshold, which implies the air quality is

harmful to health, then we will alert the citizens or inform the government. There are

quite a few gas sensors working at the same time, and the amount of sensor data is non-

trivial. Therefore, this application needs to classify the data type and distribute them to

multiple operators first. Every operator is responsible for one sensor and calculates the

average value of it. My fog computing platform will put those operators on different fog

devices, which lowers the risk of excessive burden is incurred on a single device.

Figure 6.4: Three different edge analytic applications.

As shown in Figure 6.4, I already introduced the applications that I run on my fog

computing platform. As you can see, it contains the different type of data: string, im-

age, and audio. And each application has their own features and challenges. In the next

section, I will measure the resource usage of those applications, which run in containers

and evaluate the performance of my platform, to determine if the structure is suitable for
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distributed analytic.
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Chapter 7

Evaluations

In this chapter, I conducted real experiments to evaluate my fog computing platform.

7.1 Setup

Dashboard

Switch

Server

Fog Devices

Figure 7.1: Architecture of our experiment setup.

As illustrated in Figure. 7.1, I have implemented a testbed of the proposed fog com-
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puting platform. It consists of: (i) an Intel i5 workstation running Ubuntu, Docker, and

Kubernetes as the server and (ii) 5 Intel PCs (1.8 GHz 8-core i7 CPUs) and 5 Raspberry

Pi 3 model B(1.2 GHz 4-core ARM CPUs) as the fog devices. Raspberry Pis provide

several interfaces for us to attach various sensors, such as camera, microphone, and gas

sensors. I use HypriotOS [7] as the operating system, which has docker container (version

17.05.0-ce) on it. I implement the software components presented in Fig. 5.1 on the server

and fog devices. The server and devices are connected with an Ethernet switch in a pri-

vate network. In order to emulate WiFi-based IoT networks, I adopt a traffic shaper [20]

to throttle the bandwidth at 8 Mbps [27]. To avoid overloading the fog devices, I reserve

20% of resources for operations other than IoT analytics, e.g., OS scheduling and resource

monitoring.

I built several Docker images the applications implemented in Sec. 6.2, split the ap-

plications into several parts, and put them on multiple devices. To make decisions on

splitting our applications, including the Air Quality Monitor and YOLO application, I

analyze the code for possible cutting points. Take YOLO as an example, YOLO imple-

ments neural networks, so the cutting points are located between any two layers, and so

is the Sound Classification. For the Air Quality Monitor application, because it support 4

different sensors, the cutting points are between the code for different sensors.

In order to benefit from distributed analytics, I have to continuously process the in-

put data from sensors to fully utilize multiple devices. However, TensorFlow does not

support continuously processing. There are three ways to achieve full utilization: (i)

multi-threading, (ii) pipeline, and (iii) multiple applications.

In the experiments, if not otherwise specified, I run an application using multiple

threads to fully utilize the fog devices. I run each experiment 5 times and present the

average results.

7.2 Results

Transfer data to the cloud leads extra network overhead. To emulating the network

situation when IoT devices transfer the data from local to the cloud through the Wi-Fi,

I use the iperf [8] to measure the network bandwidth from our lab (Taiwan) to Amazon

AWS in USA California, and estimate the latency by CloudPing.info [3]. Furthermore, I

also calculate the packet loss rate using netstat [21]. After that, I set up a Raspberry Pi as

an access point, and install the tool Augmented Traffic Control (ATC) [2] on it. ATC can

simulate the network condition easily by config the parameter such as bandwidth, packet

loss rate, latency, and etc.

In this experiment, there are two network situations. The bandwidth of the network
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Figure 7.2: Compare the number of transfer units between transfer them to cloud or trans-

fer them in local.

in the local is 18.08Mbits/s. On the other side, the network between local and cloud, the

bandwidth is 3.18Mbits/s, latency is 223ms, and the packet loss rate is 0.00279%. I set

two PCs which are connected to the Raspberry Pi access point, so I can simulate two

network situation I just mentioned. And making one PC keep sending a certain type of

data to another one. There are three different types of data: image, audio, and string. The

average size of the image is 159KB, audio is 356KB, and JSON struct string is 260Byte.

In each iteration of the experiment, I calculate how many transfer units be sent.

Figure 7.2 shows sending data to the devices which are in the local is much efficient

than sending data to the remote cloud devices. When the data type is image and audio, the

number of transfer data in the local network situation is almost 8 times than in the local

to cloud situation. And when the type of the data is the string which is small, the gap

between two different network situation is 22 times. In the common situation, cloud side

usually has more powerful devices so it can process the data faster, although, this huge

network overhead still a critical trade-off which needs to concern carefully.

Docker container leads to low overhead. Virtualization always yields overhead es-

pecially on resource-limited devices. We quantify the virtualization overhead in Fig-

ure 7.3, which shows that the Docker container virtualization overheads are merely 4.9%,

2.9%, and 1.4% in terms of CPU, RAM, and number of processed images, respectively.

Operators are deployed fast in our platform. Figure 7.4 reports the average deploy-

ment time of operators on PCs in each iteration (system models in optimization algorithm

will be updated based on the actual resource consumptions, more details are given in our

paper [31]). The figure reveals that 37 operators take less than 60 seconds on average to

be deployed, which is sufficient for most IoT analytics. IoT analytics that need to have

even shorter response time can be pre-deployed.
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Figure 7.3: Overhead caused by Docker virtualization.
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Figure 7.4: Number of deployed container and deployment time in each iteration.

Event-driven in Short Time. I use SCALE box which attached a Passive Infrared

(PIR) sensor to responsible for monitoring the motion in the environment and publishes

the sensor readings through MQTT [13]. When motion signals become positive, the de-

ployments of the image capture application and object detection application will be trig-

gered. It totally took 32.9 seconds when PIR sensor sensing the motion and then trigger

analytic applications and then get the result indicates what object just passes through. And

it only tooks 4.8 seconds for event-driven (launches the capture application and object de-

tection application). Comparing to the traditional way that uploads whole surveillance

video and checks the video manually, this is more efficient.

TensorFlow achieves low collaboration overhead. We quantify the collaboration

overhead, which is handled by TensorFlow automatically in Figure 7.5. To avoid the side-

effects due to threading and virtualization, we use a single thread in the experiments. The

34



1 Device 2 Devices 3 Devices

0

5

10

15

20

25

N
o.

P
ro
ce
ss
ed

Im
ag
es
/m

in

Figure 7.5: Number of processed images per minute without threading and container to

quantify collaborating overhead.

results show that adding one more device results to only up to 10% overhead.

Benefits from our distributed analytics. Figure 7.6(a) reports the number of pro-

cessed data per minute of the Air Quality Monitor application using different number of

devices. With this application, distributed analytics does not results in better performance,

rather, it leads to worse performance while running in the distributed way. It is because

this application’s analytics is quite simple: computing moving average. It can be observed

in Figure 7.6(b), which shows that the CPU usage always lower then 45%. In summary,

such light analytics application can be launched on a single fog device. Running it in the

distributed way results in overhead among multiple devices.

For heavy analytics applications, such as our YOLO application, distributed analytics

results in large improvements as illustrated in Figure 7.6(c). As shown in the figure, hav-

ing one more device gives 35.5% and 54.1% improvements. Because this thesis focuses

on running state-of-the-art complex analytics applications, we present the results from the

YOLO application in the rest of the thesis.

Decisions of cutting an application is critical in distributed analytics. Since we

split an application into multiple operators to run it in the distributed way, we next quantify

the influence of cutting the application at different points. Figure 7.7(a) shows the number

of processed images per minute while YOLO runs on two devices with 8 different cutting

points. YOLO implements a 9-layers network, so we make cuts between layers. When

the cutting point goes from 1 to 8, more complicated operators are put on the first device.

The first device processes images before the second device.

As shown in Figure 7.7(a), cutting points 4 and 5 result in the best performance. It

can be explained by Figure 7.7(b), which tells us that cutting an application into smaller
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Figure 7.6: Benefits from distributed analytics: (a) the number of processed data of our

Air Quality Monitor application, (b) the CPU usage of our Air Quality Monitor applica-

tion, and (c) the number of processed images of our YOLO application.

operators with equal complexity results in the best performance. Moreover, Figure 7.7(c)

reports the network overhead caused by distributed analytics. It shows that if we put
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Figure 7.7: Different service quality caused by different cutting points: (a) the number

of processed images, (b) the CPU and RAM usages, and (c) the network overhead of our

YOLO application.

more loads on the first device, it results in lower network overhead. Hence, when network

resources is the bottleneck, we may not prefer equally-loaded splitting decisions. We note

that because the YOLO application is CPU-intensive, we do not plot RAM usage, which
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only consumes 21.2% (169 MB) on average.
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Chapter 8

Related Work

In this chapter, I am going to survey related literature under tow directions: (i) fog com-

puting platform and (ii) edge analytics in the Internet of Things.

8.1 Fog Computing Platform

Several studies [26,41,44] present the concepts/definitions of fog computing. These stud-

ies also discuss the challenges, potential applications, and benefits of using fog comput-

ing. Building the programming model for fog computing platform is one of the challeng-

ing tasks. Hong et al. [34] proposes a hierarchical fog programming model. The first layer

of the hierarchical structure is the cloud server and the leaves are end devices. The sensing

data collected by the devices can be processed in the nodes which are placed in the middle

layers of the hierarchical structure. If it can be processed in a node near to end devices,

the latency becomes much lower. However, this work [34] only proposes the high level

programming model without considering the practical deployment and implementation

issues, so this solution only provides the big picture without practical details.

Designing and implementing fog platforms, which can offload some tasks from end

devices to edge servers is studied [36, 42]. Cloudlet [36] is proposed before the fog com-

puting concept, but it is somehow similar to the concept of the fog devices. Cloudlet

uses a powerful machine, placed near to users for reducing latency, which offers more

resources. Users can push virtualized images to the machine to perform their tasks. Un-

like my work, the machines running Cloudlets are powerful workstations or small clusters

with abundant resources. ParaDrop [42] is a fog device implemented on end-user gate-

ways. ParaDrop framework also has a centralized server to manage the devices. Different

from my work, ParaDrop does not consider decomposition of requests and the problem

of module deployment.
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8.2 Edge Analytics in the Internet of Things

Cisco [26] proposes fog computing, which has been employed for sensor-intensive appli-

cations [30] and computational-intensive applications [32]. Many researchers [28,38,43]

start to leverage the concept of fog computing to address IoT’s issues. However, these

studies do not consider running applications in a distributed way. For example, our earlier

work [32] considers the deployment problem of lighter-weight fog applications, which

can be hosted by a single fog device. In contrast, the current paper presents a platform

capable to split any fog application into smaller pieces for multiple fog devices.

There are several studies [29, 33, 37] presenting their programming models for dis-

tributed fog computing. They also discuss how fog computing benefits IoT regarding

its mobility, short response time, and low cost. In particular, Hong et al. [33] propose

a PaaS programming model for IoT applications. It supports heterogeneous fog devices

and allows applications to dynamically scale in terms of the computing resources. Giang

et al. [29] propose a distributed dataflow programming model for IoT applications in fog

platforms. Their framework provides an efficient way to develop IoT applications and

coordinate distributed resources. Saurez et al. [37] propose a programming model that

is implemented using container technology for fog platforms. It provides APIs split ap-

plications to communicate with one another. It also includes the algorithms that take the

computing resources into account for deployment. Because of the mobility of fog devices,

QoS and workload sensitive migrations are supported.

The programming models proposed by these studies are not designed for complex

analytics applications in their programming model.
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Chapter 9

Conclusion and Future Work

In this thesis, I propose a fog computing platform for distributed analytics. This platform

integrates resources from data center to end devices. I leveraged these devices to run

IoT and multimedia applications, which take different sensor data, including camera, mi-

crophone, and etc. In this thesis, I focused on implementing a platform, which supports

complicated analytics, such as Deep Learning to avoid sending a large amount of raw

data to powerful data centers for analyzing. I adopt three popular open-source projects,

including TensorFlow [18], Docker [4], and Kubernetes [9] to implement my fog comput-

ing platform. I conduct extensive measurement studies to quantify the performance. The

results show that: (i) Docker container leads to lower than 5% overhead in terms of CPU,

RAM, and number of processed images per minute, (ii) operator deployment time, which

is less than 20 secs on average in the platform, (iii)running analytics in the distributed

way can achieve up to 54.1% performance improvements, and (iv) equal complexity of

operators results in the best performance in distributed experiments.

The results in this thesis sheds some lights of distributed analytics on fog devices

with limited resources. However, there are some critical issues that have to be considered

for my future work. First, the decisions of splitting an application into operators is tricky

because different decisions result in different performance and overload. Second, I need to

make optimal deployment decisions to serve more IoT applications on the fog computing

platform. Third, in order to create an state-of-art IoT ecosystem, I need to let user can

operate the fog computing platform more instinctively and the developers can build their

own applications running on the platform more flexibly.
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