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Introduction

* More and more mobile applications adopt deep
learning techniques to provide accurate, intelligent
and effective services

* Limited resources - execution speed of deep
learning models on mobile devices is a bottleneck

* Goal: improving the execution efficiency of deep
learning models with minimum accuracy loss



Time Fraction

Findings of execution time
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(a) AlexNet (b) GoogleNet (c) ResNet-50

* Tensor layer: contain tensor-type parameters, i.e. fully
connected layers, convolutional layers
Non-tensor layer: no contain tensor-type parameters, i.e.

RelLU, pooling



Findings of execution time

Network Intel x86 Arm Titan X
AlexNet 32.08% 25.08% 22.37%
GoogleNet 62.03% 37.81% 26.14%
ResNet-50 55.66% 36.61% 47.87%
ResNet-152  49.77% N/A 44.49%
Average 49.89%  33.17% 35.22%
% Latency — Time spent on Non-tensor layer

Time spent over the entire network’

* The execution time of non-tensor layer in Intel x86 CPU is
the highest

* Although non-tensor layers do not have as high affect on the
mainstream ARM CPUs, on average they still cost about 1/3
of the computing time



Approaches in this paper

* Streamline Slimming:
merge the consecutive Branch
Slimming
non-tensorand tensor - T,
layer vertically ' '

* Branch Slimming:
merge non-tensor and
tensor branches
horizontally Streamline

Slimming




Streamline Slimming

* Observation:
1. non-tensor layers usually follow a tensor layer such as

convolution layer
2. several consecutive layers can be viewed as a black box

and can be replaced by a new tensor-layer by parameter
learning

* Method:
- Pooling Layer: remove the poolinglayer and set the stride
value of the new convolution layer as the product of the
stride values for both the original poolinglayer and the
convolution layer
- Non-Pooling Layer: directly prune those layers from the
original deep neural network



Streamline Slimming: example

Top Layers

Output Shape
56x56x192

pool2/3x3_s2 Top Layers
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Stride: 2 Output Shape
56x56x192
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(Convolution)
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Bottom Layers




Branch Slimming

* Observation:
- GoogleNet has 4 branches: 3 convolution branches take
feature maps from the bottom layer at various scales (1x1,
3x3 and 5x5 ) and one 3x3 poolingbranch

* Method:
- recreate a new tensor layer (i.e., slim layer) by fusing the
non-tensor branch and a tensor unit with relatively small
latency to output the feature maps that were originally
generated by the non-tensor branch
- the picked tensor branch’s kernel size should be at least
the size of the non-tensor branch
- reduce feature maps channels



Branch Slimming: example

55.2 ms =
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/1x1
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Retraining

 Set the learning rate of new layers 10 times over those in
other layers



Evaluation: GooglLeNet

* Accuracy:
Step Slim Layer(s) Top-5 Accuracy
0 N/A 88.89%
1 convl 88.73%
2 conv?2 88.82%
3 inception_3a 88.50%
- inception_3b 88.27%
5 inception_4a 88.60%
6 inception_4b-4d 88.61%
7 inception_4e 88.43%
8 inception_Sa 88.41%
9 inception_5b 88.43%

Tucker Decomposition ALL 86.54%



Evaluation: GooglLeNet

* Speed (different layer):

Step Slim Layer(s) Top-5 Accuracy
0 N/A 88.89%
1 convl 88.73%
2 conv?2 88.82%
3 inception_3a 88.50%
- inception_3b 88.27%
5 inception_4a 88.60%
6 inception_4b-4d 88.61%
7 inception_4e 88.43%
8 inception_Sa 88.41%
9 inception_5b 88.43%

Tucker Decomposition ALL 86.54%



Evaluation: GooglLeNet

* Speed (different method):

Device GoogLeNet G?,gﬁi‘lfget Go?églliﬁlNet -SGI?I(I)E’II:ECNIS ;r SqueezeNet

Moto E 1168.8 ms 897.9 ms 406.7 ms 213.3 ms 291.4 ms
Samsung Galaxy S5 651.4 ms 614.9 ms 210.6 ms 106.3 ms 136.3 ms
Samsung Galaxy S6 424.7 ms 342.5 ms 107.7 ms 65.34 ms 75.34 ms
Macbook Pro (CPU) 91.77 ms 78.22 ms 23.69 ms 15.18 ms 17.63 ms

Titan X 10.17 ms 10.74 ms 6.57 ms 7.68 ms 3.29 ms



Evaluation: GooglLeNet

e Storage and memory:

Max Batch Size
Model Energy Storage = Memory on Titan X
GooglLeNet 984 mJ 26.72MB 33.2 MB 350
GoogleNet-Tucker 902 mJ 1438 MB 35.8 MB 323

GoogleNet-Slim 447 mJ (2.2x) 23.77MB 13.2 MB 882 (2.52x)
GoogLeNet-Slim-Tucker 226 mJ (4.4x) 11.99 MB 14.8 MB 785 (2.24x)
SqueezeNet 288 mJ 472 MB  36.5 MB 321



Evaluation: AlexNet

Step Slim Layer(s) Top-5 Accuracy Speed-up Energy Cost
0 N/A 80.03% 445 ms 688 mJ
1 convl+norml — convl 79.99% 343 ms (1.29x) 555 mJ (1.24x)

2 conv2+norm2 — conv2 79.57% 274 ms (1.63x) 458 mJ (1.51x)



Evaluation: ResNet

Step Slim Layer(s) Top-5 Accuracy Speed-up Runtime-Mem Batch32

0 N/A 92.36% 189 ms 2505 MB

1 convl 92.13% 162 ms (1.17x) 2113 MB (1.19x)
2 res2a_branchl 92.01% 140 ms (1.35x) 1721 MB (1.46x)
3 res2a_branch2a-2c 91.88% 104 ms (1.82x) 1133 MB (2.21x)



Conclusion

e DeepRebirth is proposed to speed up the neural networks with
satisfactory accuracy, which operates by re-generating new tensor
layers from optimizing non-tensor layers and their neighborhood
units

* Future work: integrate DeepRebirth with other state-of-the-art
tensor layer compression methods and also extend our evaluation to
heterogeneous mobile processors



