
Analyzing	and	Disentangling	Interleaved	
Interrupt-driven	IoT Programs

YUXIA SUN, 	MEMBER , 	IEEE , 	SONG	GUO, 	SENIOR 	MEMBER, 	IEEE , 	SHING-CHI 	
CHEUNG, 	SENIOR 	MEMBER, 	IEEE , 	AND	YONG	TANG, 	MEMBER , 	IEEE
IEEE INTERNET 	OF	THINGS	JOURNAL



Introduction
l In	the	IoT community,	Wireless	Sensor	network	(WSN)	is	a	key	technique	to	enable	ubiquitous	
sensing	of	environments	and	provide	reliable	services	to	applications

lWSN	program	are	interrupt-driven	in	order	to	reduce	energy	comsumption

lWSN	concurrency	mechanism	involves	interrupt	preemption	and	task	scheduling.	For	instance,	
an	interrupt	processing	logic	consist	of	one	interrupt	handler	(which	is	execute	immediately)	and	
several	interrupt-processing	task	(which	is	deferred)

lDue	to	the	concurrency	mechanism	of	WSN,	program’s	behavior	is	difficult	to	predict	and	test.

lWith	the	reasons	above,	using	static	analyses	to	WSN	is	not	effective.	In	contrast,	dynamic	
analyses	can	precisely	examine	the		actual	behavior	of	program

lAlso,	WSN	program’s	behavior	consist	of	collaborative	Interrupt	Procedure	Instances	(IPI),	so	
IPI-based	analyses	is	indispensable.



Introduction
l Furthermore,	online	(real-time)	analyses	can	also	help	uncover	time-related	issue

lConclude	the	reasons	above,	this paper	makes	the	following	contribution:
lPresent	a	formal	definition	of	 Interrupt	Procedure	instance
lPropose	a	generic	algorithm	for	identifying	 IPIs	of	WSN programs
lProve	the	correctness、efficiency	and	real-time	of	the	algorithm
lImplement	a	prototype	of	the	algorithm	and	compare	to	existing	ones



Interrupt	Procedure	Instances	(IPI)	–
Fundemental
l In	this	paper,	they	use	TinyOS,	an	mainstream	operating	system	for	WSN	programming,	as	the	
basis	of	IPI’s	definition.

l In	a	nesC (programming	language)	module	m,		a	task	t()	and	its	task-posting	statement	post(t)	
will	compiled	to	two	function	taskName.runTask()	and	taskName.postTask(),	where	taskName
denotes	m.t

l taskName.postTask():	It	will	post	the	task	into	OS	task	queue

l taskName.runTask():	If	a	task	is	successfully	pushed,	it	will	be	scheduled	in	a	FIFO manner.



Interrupt	Procedure	Instances	(IPI)	–
Definition
l Let	IH	be	the	interrupt	handler	of	an	interrupt	i

lDefinition	1:	The	interrupt-procedure	of	IH	consists	of	the	static	codes	of	three	nesCmodules,		
IH,	the	callees of	IH(or	i),	and	the	tasks	of	IH	where	
(1)	A	callee of	IH	is	a	function	that	is	called	by	IH,	a	callee of	IH,	or	a	task	of	IH.
(2)	A	task	of	IH	is	a	task	that	is	posted	by	IH,	a	callee of	IH,	or	a	task	of	IH.

lDefinition	2.	An	interrupt-procedure-instance	(abbr.	IPI)	of	IH(or	i)	is	one	execution	of	the	
interrupt	procedure	of	IH.	
The	callees of	the	instance	are	the	callees of	IH	that	are	executed	in	the	instance.	
The	tasks	of	the	instance	are	the	tasks	of	IH	that	are	executed	(i.e.,	successfully	posted)	in	the	
instance.



Interrupt	Procedure	Instances	(IPI)	–
Execution	point	&	scenario



Interrupt	Procedure	Instances	(IPI)	–
Execution	point	&	scenario



IPI-Identification	algorithm
lNon-interrupt	instance	:	System	operation	such	 as	system	initialization	and	system	scheduling	 between	task-executions	 are	not	driven	by	
interrupt.	It	doesn’t	 belong	to	any	IPI	and	be	regarded	as	Non-interrupt	 instance.

lTheorem	1:	During	the	execution	of	a	TinyOS program,	instance	switches	only	occur	in	one	of	the	following	 execution	points:	
IHEntry points,	 immediate	successor	 points	 of	IHExit points,	 RunTaskEntry points,	 and	immediate	successor	 points	 of	RunTaskExit points.

lProof:		TinyOS program	switch	into	either	IPI	or	Non-interrupt	 instance.

lOnly	3	cases	that	a	program	will	switch	to	IPI
l An	interrupt	occurs	->	start	Interrupt	Handler	(IHEntry)
l A	task	scheduling	occurs	->		start	to	run	the	task	(RunTaskEntry)
l Preempted	IPI	ended	->	return	to	previous	IPI	(immediate	 successor	 of	IHExit)

lOnly	2	cases	that	a	program	switch	non-interrupt	 instance
l Preempted	IPI	ended	-> return	to	previous	non-interrupt	instance	 (immediate	 successor	of	IHExit)
l A	task	is	ended	->	continue	running	non-interrupt	instance	(immediate	 successor	 of	RunTaskExit)

lProved!



Variable Type Description

INST
<id,type>

Data	
structure

An IPI,	where	id	is	instance	
id	and	type	is	interrupt	
number	of	the	instance’s	
triggering	interrupt

POSTYPE enum Includes START	END and	
INTERM,	indicating	the	
position	 point	 of	the	
instance

i Input Current instruction	being	
executed

curInst Global i’s	 instance, type	is	INST	

instNum Global Instance counter

pInst_S Global Stack	of	INST,	preempted	
instances	by	His

okInst_Q Global Queue	of	INST,	pending	
tasks’	instances

instAfter
Exit

Local Next instruction’s	 instance	
that	is	different	from	i’s	
instance

curPos Local i’s	 position type	in	its	
instance,	type	is	POSTYPE

Output curInst,	curPos



Algorithm	Analysis
l Lemma	1.	When	Algorithm	1	is	processing	an	IHExit execution	point,	the	popped	INST	value	from	the	stack	
pInst_S is	the	instance	information	of	the	immediate	successor	of	the	IHExit point.
üWhen	enter	IHEntry,	system	will	push	the	instruction	been	preempted,	and	pInst_S will	push	instance	information	at	the	
same	time.

üWhen	enter	IHExit,	 system	will	pop	the	preempted	instruction,	and	pInst_S will	pop	the	instance	information	at	the	same	
time.

l Lemma	2.	When	Algorithm	1	is	processing	a	RunTaskEntry execution	point,	the	removed	INST	value	from	the	
queue	okInst_Q is	the	instance	information	of	the	immediate	successor	of	the	RunTaskEntry point.
üWhen	enter	PostOK,	system	will	enqueue the	task,	and	okInst_Q will	enqueue the	instance	information	at	the	same	time.
üWhen	enter	RunTaskEntry,	system	will	dequeue the	task,	and	okInst_Q will	dequeue the	instance	information	at	the	same	
time.			

l Lemma	3.	When	a	tested	TinyOS program	is	executing	an	IHExit or	RunTaskExit point,	if	the	queue	okInst_Q of	
Algorihtm 1	does	not	contain	the	point’s	instance	information,	the	point	is	the	endpoint	of	the	instance.
üAccording	to	Lemma	2,	the	instance	information	in	okInst_Q has	one-to-one	mapping	relation	with	the	task	queue	in	TinyOS.
ü If	an	instance	have	no	instance	information	in	okInst_Q,		meaning	this	instance	have	no	pending	task	in	the	task	queue.
üWhen	the	instance	moves	to	IHExit or	RunTaskExit point,	if	there	is	no	instance	information	in	okInst_Q,	meaning	that	the	
instance	has	arrived	 to	its	endpoint	.



Algorithm	Analysis
l Corollary	1.	The	IPI-identification	of	Algorithm	1	is	correct	and	real-time.
üCorrectness	:	Taking	Theorem	1,	Lemma	1	and	2	together,	we	conclude	this	algorithm	can	trace	the	switch	
correctly.	
With	Lemma	3,	we	conclude	that	this	algorithm	can	identify	startpoint and	endpoint	correctly

üReal-time:	each	instruction	i’s	can	be	identified	its	instance	information		and	position	in	the	instance	by	this	
algorithm	before	next	instruction	is	executed.

l Corollary	2.	Both	the	space	complexity	and	the	time	complexity	of	Algorithm	1	are	constant	O(1).	
üSpace:	mostly	static	variables(curInst,	curPos …).
For	pInst_S and	okInst_Q,	the	size	are	depends	on	the	system,	which	is	a	small	constant,	so	it	can	be	
considered	Θ(1)

üTime:		Mainly	switch	statement.
For	queue	searching	ok_InstQ.contains(curInst),	because	size	of	the	queue	is	considered	Θ(1),	so	the	
operation	is	constant	time.
So	the	time	complexity	is	O(n),	where	n	is	the	total	executed	instruction,	which	will	increase	with	time.

üLet	O(n)	=	O(t*N)	=	O(t),	where	t	is	execution	time	and	N	is	#	of	executed	instruction	per	time	unit	t,	which	is	a	
constant.

üBecause	a	program’s	running	time	is	limited,	namely	t	<	C,	so	let	O(t)	=	O(C),	where	C	is	large	constant.
üFinally,	O(C)=O(1)



Experimental	Study
l Experiment	Setup:
lImplemented	 in	Java,	utilizing	probe	mechanism	of	Avrora,	a	cycle-accurate	instruction	level	simulator	
for	sensor	network.

lThe	existing	instance-identification	technique	 (called	the	old	tool)	 that	is	used	 for	comparison	 is	
Sentomist(or	 T-Morph)

lPerfoming experiment	on	Avrora with	simulated	Mica2(wireless	sensor)	platform	and	ATmega128	
microcontroller,	 with	TinyOS 2.1	in	Cygwin	and	Windows	XP,	which	runs	on	desktop	computer	 that	
conatins Intel	2.7Ghz	dual-core	processor	and	1GB	RAM.



Experiment	test	case
l Sub1-3	is	a	sensor	data	collection	program	using	single-hop	
packet	transmission. Sub	4	is	multi-hop	packet	transmission.
Sub	5	using	collection	tree	protocol	(CTP).

l Each	run	group	Rn	will	run	4	times	with	different	running	time	
{10,	50,	100,	150}(in	second)

l In	Sub	5,	there	is	a	bug	of	stopping	packet-sending.	When	the	
bug	occurs,	the	number	of	concerned	instances	on	the	buggy	
node	might	stop	increasing,	and	it	may	increase	the	overhead’s	
increment	with	the	running	time.



Experiment	results



Improvement	reasoning
l Old	tool	cannot	identify	all	the	execution	points	at	real-time,	so	it	has	to	utilize	a	list	data	
structure	to	keep	the	information.	When	running	time	increased,	list	size	will	keep	increasing	
and	thus	RAM	cost	increased.	For	time	overhead,	list-searching	operation	is	time-consuming.

l Proposed	algorithm	is	real-time,	which	avoids	the	list	data	structure	and	list-searching	
operation.	Also	the	experiment	shows	that	the	theoretical	analyses	of	proposed	algorithm	on	
time	and	space	complexity	are	consistent	with	the	results.


