Analyzing and Disentangling Interleaved
Interrupt-driven loT Programs

YUXIA SUN, MEMBER, IEEE, SONG GUO, SENIOR MEMBER, IEEE, SHING-CHI
CHEUNG, SENIOR MEMBER, I[EEE, AND YONG TANG, MEMBER, IEEE
IEEE INTERNET OF THINGS JOURNAL

Introduction

® In theloT community, Wireless Sensor network (WSN) is a key technique to enable ubiquitous
sensingof environments and provide reliable services to applications

®\WSN program are interrupt-drivenin order to reduce energy comsumption

®\WSN concurrency mechanisminvolvesinterrupt preemption and task scheduling. Forinstance,
an interrupt processinglogic consist of one interrupt handler (which is execute immediately) and
several interrupt-processing task (which is deferred)

®Due to the concurrency mechanism of WSN, program’s behavior is difficult to predict and test.

®With the reasons above, using staticanalyses to WSN is not effective. In contrast, dynamic
analyses can precisely examine the actual behavior of program

®Also, WSN program’s behavior consist of collaborative Interrupt Procedure Instances (IPl), so
IPI-based analysesisindispensable.

Introduction

® Furthermore, online (real-time) analyses can also help uncover time-related issue

®Concludethereasons above, this paper makes the following contribution:
®Present a formal definition of Interrupt Procedure instance

®Propose a generic algorithm for identifying IPIs of WSN programs
®Prove the correctness -~ efficiency and real-time of the algorithm

® Implement a prototype of the algorithm and compare to existing ones

nterrupt Procedure Instances (IPIl) —
-undemental

® In this paper, they use TinyOS, an mainstream operating system for WSN programming, as the
basis of IPI's definition.

® In a nesC(programminglanguage) module m, ataskt() anditstask-postingstatement post(t)
will compiled to two function taskName.runTask() and taskName.postTask(), where taskName
denotes m.t

® taskName.postTask(): It will post the task into OS task queue

® taskName.runTask(): If a taskis successfully pushed, it will be scheduled in a FIFO manner.

nterrupt Procedure Instances (IPIl) —
Definition

® Let IH be the interrupt handlerofaninterrupti

®Definition 1: The interrupt-procedure of IH consists of the staticcodes of three nesC modules,

IH, the callees of IH(or i), and the tasks of IH where
(1) A callee of IH is a function thatis called by IH, a callee of IH, or a task of IH.

(2) A task of IH is a task thatis posted by IH, a callee of IH, or a task of IH.

®Definition 2. An interrupt-procedure-instance (abbr. IPI) of IH(or i) is one execution of the

interrupt procedure of |H.
The callees of the instance are the callees of IH that are executed in the instance.

The tasks of the instance are the tasks of IH that are executed (i.e., successfully posted)in the

instance.

nterrupt Procedure Instances (IPIl) —
-xecution point & scenario

TABLE I: Execution Point types of IPIs

Execution-point type Description

IHEntry Entry of an interrupt handler

IHEXit Exit of an interrupt handler

Entry of a taskName$runTask(), where
RunTaskEntry taskName is a complete task name in
post-compiling format

Exit of a taskName$runTask(), where

RunTaskExit taskName is a complete task name in
post-compiling format
PostTaskEntry Entry of a taskName$postTask()

Point indicating a successful task posting

PostOk to the system task queue

Point indicating a failed task posting to
the system task queue

PostFail

IHEntry

PostTaskEntry

PostOK

IHEXxit

RunTaskEntry E
RunTaskExit

Preemption —
IHEntry
PostTaskEntry
PostFail
IHEXxit

(a)

IHEntry
PostTaskEntry
Preemption
IHEntry
PostTaskEntry
PostOK
IHExit
———————— Returmr—=-—-=--=----~
PostFail
IHExit
RunTaskEntry
RunTaskExit
(b)

Fig. 1: Examples of Interleaving IPIs

IPl-ldentification algorithm

® Non-interrupt instance : System operation such as system initialization and system scheduling between task-executions are not driven by
interrupt. It doesn’t belong to any IPland be regarded as Non-interrupt instance.

®Theorem 1: During the execution of a TinyOS program, instance switches only occur in one of the following execution points:
IHEntry points, immediate successor points of IHExit points, RunTaskEntry points, and immediate successor points of RunTaskExit points.

® Proof: TinyOS program switch into either IPl or Non-interrupt instance.

®Only 3 cases that a program will switch to IPI
® Aninterrupt occurs -> start Interrupt Handler (IHEntry)
® A task scheduling occurs -> start to run the task (RunTaskEntry)
® Preempted IPl ended ->return to previous IPI (immediate successor of IHExit)

®0Only 2 cases that a program switch non-interrupt instance
® Preempted IPl ended ->return to previous non-interruptinstance (immediate successor of IHExit)

® A task is ended -> continue running non-interruptinstance (immediate successor of RunTaskExit)

®Proved!

INST Data An IPI, where id is instance

<id,type> structure id andtype is interrupt
number of the instance’s
triggering interrupt

POSTYPE enum Includes START END and
INTERM, indicating the -
position point of the
instance

i Input Current instruction being
executed

curlnst Global i's instance, type is INST

instNum Global Instance counter

pinst_S Global Stack of INST, preempted
instances by His

oklnst._ Q Global Queue of INST, pending
tasks’ instances

instAfter Local Next instruction’s instance

Exit that is different from i’s
instance

curPos Local i's position type inits
instance, type is POSTYPE

Output curlnst, curPos

begin

instA fterExit < NULL;
curPos + INTERM,;
curlnst < (0,0);
instNum < 0;
pInst_S < NULL; okInst_Q <+ NULL;
switch i’stype is: do
case [HEntry:
pInst_S.push(curlnst);
increase instNum by 1;
curlnst < (instNum, IH’s interrupt number); /* create a new instance */
curPos & START; /* i is the start point of its instance */
ndsw
case [HExit:
if (- okInst_Q.contains(curlnst)) then
| curPos < END;
end
instA fterExit < plnst_S.pop();
endsw
case PostOk:
| okInst_Q.add (curlnst);
endsw
case RunTaskEntry:
| curlnst < oklInst_Q.remove();
endsw
case RunTaskExit:
if (- oklInst_Q.contains(curlnst)) then
| curPos < END;
end
instAfterExit < (0,0);
endsw
endsw
output curlnst, curPos;
if (i's type==IHExit || i's type==RunTaskExit) then
| curlnst < instAfterExit;
end

/* NULL means instAfterExit is not set yet*/
/* i’s default position type in its instance */
/* i is Non-interrupt-instance */

/* save current instance to plnst_S */

[¢']

/* i is the endpoint of its instance */

/* next instance is the preempted instance retrieved */

/* i is a successful task-posting point */

/* save PostOk’s instance, also the task’s instance */

/* get the task’s instance */

/* 1 is the endpoint of the current instance */

/* next instruction is of Non-interrupt-instance */

/* i’s instance, and i’s position type in its instance */
/* instance-switch occurs, from i’s instance */
/* update current instance with next instance */

end

Algorithm Analysis

® Lemma 1. When Algorithm 1 is processing an IHExit execution point, the popped INST value from the stack
pinst_Sis the instance information of the immediate successor of the IHExit point.
v"When enter IHEntry, system will push the instruction been preempted, and plnst_S will push instance information at the
same time.

v"When enter IHExit, system will pop the preempted instruction, and pInst_S will pop the instance information at the same
time.

® Lemma 2. When Algorithm 1 is processing a RunTaskEntry execution point, the removed INST value from the
gueue okinst_Qis the instance information of the immediate successor of the RunTaskEntry point.

v"When enter PostOK, system will enqueue the task, and okinst_Q will enqueue the instance information at the same time.

v"When enter RunTaskEntry, system will dequeue the task, and okinst_Q will dequeue the instance information at the same
time.

® Lemma 3. When a tested TinyOS program is executing an IHExit or RunTaskExit point, if the queue oklinst_Q of
Algorihtm 1 does not contain the point’s instance information, the point is the endpoint of the instance.

v According to Lemma 2, the instance information in okinst_Q has one-to-one mapping relation with the task queue in TinyOS.
v'If an instance have no instance information in oklnst_Q, meaning this instance have no pending task in the task queue.

v"When the instance moves to IHExit or RunTaskExit point, if there is no instance information in okinst_Q, meaning that the
instance has arrived to its endpoint.

Algorithm Analysis

® Corollary 1. The IPl-identification of Algorithm 1 is correct and real-time.

v'Correctness : Taking Theorem 1, Lemma 1 and 2 together, we conclude this algorithm can trace the switch

correctly.
With Lemma 3, we conclude that this algorithm can identify startpoint and endpoint correctly

v'Real-time: each instruction i’s can be identified its instance information and position in the instance by this
algorithm before next instruction is executed.

® Corollary 2. Both the space complexity and the time complexity of Algorithm 1 are constant O(1).

v'Space: mostly static variables(curinst, curPos ...). o
For pinst_S and okinst_Q, the size are depends on the system, which is a small constant, so it can be

considered ©(1)

v'Time: Mainly switch statement.
For queue searching ok_InstQ.contains(curlnst), because size of the queue is considered © (1), so the
operation is constant time.
So the time complexity is O(n), where n is the total executed instruction, which will increase with time.

v'Let O(n) = O(t*N) = O(t), where t is execution time and N is # of executed instruction per time unit t, which is a
constant.

v'Because a program’s running timeis limited, namely t < C, so let O(t) = O(C), where C is large constant.
v'Finally, O(C)=0(1)

Experimental Study

® Experiment Setup:

® Implemented in Java, utilizing probe mechanism of Avrora, a cycle-accurate instruction level simulator
for sensor network.

®The existing instance-identification technique (called the old tool) that is used for comparison is
Sentomist(or T-Morph)

® Perfoming experiment on Avrora with simulated Mica2(wireless sensor) platform and ATmegal28
microcontroller, with TinyOS 2.1 in Cygwin and Windows XP, which runs on desktop computer that
conatins Intel 2.7Ghz dual-core processor and 1GB RAM.

Experiment test case

® Sub1-3is asensordata collection program usingsingle-hop TABLE II: Subject programs and running settings
packet transmission. Sub 4 is multi-hop packet transmission. Subject RunGroup Sampling period Node Monitored
Sub 5 using collection tree protocol (CTP). No. (ms)
® Each run group Rn will run 4 times with different runningtime Subl ~ —% 100 Source noje
{10, 50, 100, 150}(in second) % %80 gﬁﬁiii noce
® In Sub 5, thereis a bug of stopping packet-sending. When the Sub2 R4 20 Source node
bug occurs, the number of concerned instances on the buggy Subd RS Default of Avrora ~ Source node
node might stop increasing, and it may increase the overhead’s Subd R6 100 Intermed@ate node
increment with the runningtime. R7 20 Intermediate node
b5 N8 Set by TestCTP Benign node
R9 Set by TestCIP Buggy node

gl X
REEEA A ROu
geeerszzlll
I
[5 (AR LLER AR Ak
-------- =
...... g
o]
Q
Q
@
g =
s (]
Wo]
g &
2)
3 >
m (@)
:m]
. E
E K
o A~
. .m w
=
: <
=
e =
_ .H
| - - " - " o~ - o
- - N o % P (o] (o] (]
pu003g/ UOIBOYIUAPI-0dULISUI 10 AUL],
B
0p) l
t -
d
q
D) .
g
g .
2.
....-
....h ;
e g m
L m
r o [
4 .]
[~ : a
. *
l ------] r
n e R [
oco‘ m V
....... ot m 0
A — v heerent cm w
... :
-uou- .m p
:....- E S
..]
| £ =
R : ©
r -..... w N—
e B N Weeooas hA ER T R
Q . 3
= %)
O 15
> _ !
] ~ b K ¥ 3 2
o o~ N 2 2 2 2

A/ UOIEOLI) U PI-00Ue)SUl 10J dFesn AIOWIA

Improvement reasoning

® Old tool cannotidentify all the execution points at real-time, so it has to utilize a list data
structure to keep the information. When runningtimeincreased, list size will keep increasing
and thus RAM cost increased. For time overhead, list-searching operationis time-consuming.

® Proposed algorithm is real-time, which avoids the list data structure and list-searching
operation. Also the experiment shows that the theoretical analyses of proposed algorithm on
time and space complexity are consistent with the results.

