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Connected and Autonomous Vehicles (CAVS)

Sensors In CAVS

LIDAR 180 m 360° 26.8° 20 Hz
mmWave LIDAR 70 m 90° 30° 17 Hz
RGB Camera 250 m 90° 60° 15 Hz

RGBD Camera 10 m 58° 58° 90 Hz




Applications for Driving Automations

Object Detection
= Obstacle detection
= Congestion analysis

Semantic Segmentation
= Refined analysis
= Obstacle detection

Lane Detection
= Lane keeping
= Route planning




Point Cloud Characteristics

Dimension: A set of points in 3D space, and each point
has three coordinates, which are high-dimensional data

Unordered: The points are not in order, and modifying
the order will not affect the result

Interaction between points: A single point is
meaningless, and the features need to consider its
structure and context

Invariance under transformations: For points in the
point cloud, their absolute position does not matter, and
the overall rotation, transformation, and scaling does not
modify the structure







Cooperative Perception

The field of view from the single vehicle is always limited:

= Blind spot
m Obstacle occlusion

CAVs can obtain additional information by data sharing:

= Sensor data [1]
= Features [2]
= High-level results [3]
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Point Cloud more than 100 Mbps

More than 1 million points per second [1]

Streaming uncompressed dynamic point cloud
dictates more than 100 Mbps

Difficult to support multiple vehicles [2]
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Internet of VVehicles Limitations

C-V2X (Cellular Vehicle-to-Everything)

= LTE (4G)

B NR (5G)

DSRC (Dedicated Short-Range Communication)

= 5.9 GHz (IEEE 802.11p)
= 60 GHz (IEEE 802.11ad)

Data Rate |_Bandwidth

LTE-V2X <50 Mbps 10 MHz 50 ms 250 m
NR-V2X <1 Gbps 100 MHz 5 ms 500 m
5.9 GHz <27 Mbps 10 MHz 150 ms 250 m

60 GHz <7 Gbps 2 GHz 10 ms 150 m
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Packet Loss may lead to misclassification

Packet loss will generate incomplete point cloud

p

frame
Incomplete frames may will produce 9 9
misclassification

Only 71.43% and 42.85% of vehicles are
detected when one-fourth and one-third of
packets are lost
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Goals and Challenges @
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Goals
= Minimize the Chamfer distance between the
concealed and original point cloud frames
Challenges

= Vehicles are moving, which complicates the
transformation

m Some incomplete frames may contain too many lost
sectors, Spatial Interpolation (Sl) less effective

m Incomplete frame degrades the performance of such
interpolation
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Point Cloud Caching

Eliminates high latency due to full-scans
= Point clouds copy [3]
= |terative closest point (ICP) [4]

No consideration of LIDAR moving

High Latency
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Glasgow, UK, August 23-28, 2020, Proceedings, Part XVIIl. Cham: Springer International Publishing, 2020: 423-441.
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Point Cloud Completion

Focus on upsampling sparse point clouds

= Estimate the complete geometry of objects and
scenes

= Mostly by deep learning
No consideration of communication loss
Rely on semantic labels for object extract

PoinTr [5]

[5] Yu X, Rao Y, Wang Z, et al. Pointr: Diverse point cloud completion with geometry-aware transformers[C]//Proceedings of the IEEE/CVF
international conference on computer vision. 2021: 12498-12507.



Point Cloud Interpolation

Use consecutive frames to generate
Intermediate frame to improve frame rate

= Nearest-point query (KD-tree)
= Mid-point prediction

= Scene flow estimation [5]
Rely on complete frame
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point cloud 1: n;X3
> point cloud 2: n,X3

[5] Liu X, Qi C R, Guibas L J. Flownet3d: Learning scene flow in 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019: 529-537.

scene flow: n; X3

Time
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Measurements of LIDAR

LIDAR samples evenly in horizontal and vertical
directions

Calculate distance by the response time of reflected
laser

We can transform p. g, p.y, and p.r into p.x, p.y, and
p.z, mutually

Rotating

R\l p We can know the orientation of
each point before scanning!
g p.x = p.r x cos(p.B) X cos(p.v); (la)
e p(B,7,T) p.y = p.r X cos(p.B) x sin(p.y); (1b)

0, p.z = p.r X sin(p.j), (lc)
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Problem Statement

A complete frame f; is split into multiple equal-size
sectors s; ; for transmission

Each sector is encapsulated in one packets before being
streamed

Packet loss will cause sector loss
Si,1
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System Overview

Ground removal
= RANSAC (Random

Sample Consensus) [6]

Encoder/Decoder
= Draco [7]

Classifier

= Object detection [8]=

[6] Fischler M A, Bolles R C. Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography[J]. Communications
of the ACM, 1981, 24(6): 381-395.

[7] Google. Draco (3D DATA COMPRESSION), 2023.
https://github.com/google/draco

[8] Shi S, Wang X, Li H. Pointrcnn: 3d object proposal
generation and detection from point
cloud[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019: 770-779.
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Message Types

Location Update (LU):
reports the latest LIDAR
center location from GPS
and IMU

Point Update (PU):
contains the point clouds of
a sector, which is sent once
the points in that sector are
encoded

Classification Result (CR):

contains the classification
outcomes produced at the
edge server
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Error Concealment Approaches

Temporal Prediction (TP)
= Use previous frame

= Least latency

Spatial Interpolation (SI)
= Use incomplete current frame
= Highest applicability
Temporal Interpolation (TI)

= Use previous and next frames
= Richest information

Previous frame always
complete!
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Temporal Prediction (TP)

Selectively copies points from sectors of previous frame
to conceal the lost sectors of current frame.

Copyover Prediction (CP):
m Let$;;=s;_4, forany lost sector s; ;

Motion-compensated Prediction (MP):

m Consider the location/orientation difference between
LIDARS

= Let M; be the transformation matrix from f;_, to f; 4
m Let$;;=s;_1M;, for any lost sector s; ;
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Spatial Interpolation (SlI)

Employs the points in the current frame to estimate the
measured distance p.r for every given pitch p. 8 and yaw
p-Y
Nearest Neighbor (NN):
= Find the closest point p* from all received sectors for
each point of lost sector s; ;

mletp.r=p*r
Least Square (LS):

= Fit all received points in frame f; to p.r = wyp.f +

WoD.Y + W3
= Use this equation to estimate p.r for all points in lost
sectors s; ;
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Temporal Interpolation (TI) (1/2)

Analyze frames f;_; and f;,, to locate the closest point,
using each pair of points to conceal the lost sectors

Point Matching (PM):

m Find the closest point in f;,; for each pointin f;_;.
Each pair of points is used to estimate a point in the
concealed frame f;

Iterative Closest Point (ICP):

= Compute a transform matrix from f;_, to f;,,, denoted
as M';

= Let M"; be the transformation matrix that
shifts/rotates half of the displacement/angles of M’;

= Any lost sector s; ; can be concealed by § ;= s;_;;M";




Temporal Interpolation (T1) (2/2)

Scene Flow (SF):

m Use FlowNet3D [9] to compute scene flows from f;_,
to f;,1, denoted as M’;

= Let M";be the transformation matrix that shifts/rotates
half of the displacement/angles of M’;

= Any lost sector s; ; can be concealed by §; ;= s;_; ;M";

Bidirectional Scene Flow (BSF):

= Use PointINet [10] computes scene flows from f;_; to
fis1 @nd fi14 t0 fi_4
= Fuses the two temporally interpolated frames

[9] Liu X, Qi C R, Guibas L J. Flownet3d: Learning scene flow in 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2019: 529-537.

[10] LuF, Chen G, Qu S, et al. Pointinet: Point cloud frame interpolation network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 27
2021, 35(3): 2251-2259.




LIDAR Error Concealment (LEC)

Adaptively ap

nly one of the three concealment

approaches (TP, SI, Tl) by incomplete ratios

Determining t

ne cut-off thresholds is no easy task

Using ML algorithms

= Decision Tree (DT) algorithms as our decision
= Support Vector Machine (SVM) ™Mode!
= Random Forest (RF)

Using machine learning
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Pre-recorded dataset

KITTI Odometry Dataset
= Captured in real life

= Only one LIDAR-equipped for each sequence

= Not propose object detection labels

m Can not reflect interactions among nearby vehicles

For 3-vehicles evaluation:
= Duplicate trajectory in sequence 0 three times

= Time-shift it by 10 and 20 seconds to create a 3-
vehicle dataset

m Use 4071 frames from sequence 8 for LEC model
training
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Co-Simulator

We designed and implemented a co-simulator to
evaluate our error concealment algorithms:

s [0 NS-3 @MQ

m ZeroMQ C€ARLA

Our co-simulator support:

= Real-time KITTI-compatible and Semantic3D-compatible ground
truth frames

m V2V, V2X, V21, 12V, etc. communication modes
= Multiple network protocol, 5.9GHz DSRC, and NR C-V2X

Vehicle-to-Vehicle Vehicle-to-Everything Vehicle-to-Infrastructure Infrastructure-to-Vehicle

(V2V) (V2X) (V2D) (12V)
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Workflow of Co-Simulator (1/2)

—l start CARLA I:I connect socket .

start NS-3
- >
I:I connect socket
<
<
loop J
loop
[Interrupt I= True] oyneti * sendposition, - -
synclime> packet messages
collectionTime] > schedule

save ground
truth frames

mobility event

I

schedule
packet event

break send resume signal |
> resume

send network
results

tick ()

I

Y

i

A

pause

i

send resume signal

break J M disconnect . :
socket M r

close | mmmmmmmmmee disconnect
socket

A

close




Workflow of Co-Simulator (2/2)
CARLA ZMQ NS-3

send position, . -

[syncTime> packet messages
collectionTime] > schedule
save ground —»| | mobility event
truth frames
D —
, schedule
tick 0 packet event
<«
<

|
break send resume signal
> y| | resume

send network

results <
<
< pause
send resume signal | |¢——
< <
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Experimental Setup §&l=

Datasets:

= Co-simulator
= KITTI Odometry (real-life)

Station - Server|

F LR -

Networks:
m NR C-V2X:
Station next to the edge server
= DSRC: We repeat each simulation 10 times and
APs separated by 20 m report the average results from a
Vehicles: random vehicle.
= {1,3,5 7} |
= Velodyne HDL-64E S2 (W=2°) F
Benchmark: .

= Optimal (OPT): selects the smallest Chamfer distance among all
TP, SlI, and TI algorithms 34




Performance Metrics

Low-Level The lower the better

= Chamfer distance (m): The average shortest distance between
the points in the target and ground truth frame

= Hausdorff distance (m): The maximal shortest distance
High-Level The higher the better

= [ntersection-over-Union (%): We use the pre-trained PointRCNN
[9] to detect vehicles in front of CAVs

m Detection Accuracy (%): The fraction of detected vehicles
Running Time (S) The lower the better

We include 95% confidence intervals

min ; — |2 whenever possible.
o p%: Imin Ip — 213 p;iﬁgllp Pl5 P
d (fzafz)_ ~ —I_

2 n;

[9] Shi S, Wang X, Li H. Pointrcnn: 3d object proposal
generation and detection from point
cloud[C]//Proceedings of the IEEE/CVF conference on

H, 7 computer vision and pattern recognition. 2019: 770-779.
d” (fi, fi) = max < sup inf Hp p H2,sup mf Hp P H2
pef, V'Sl pESfip
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Training of LEC algorithm (1/2)

Use our co-simulator to generate 10,000 consecutive frames and randomly
simulate packet loss rates between 0% - 100% for each frame

Carry out 5-fold cross-validation to find the best hyperparameters
80% of the frames are used for training and 20% for validation
Decision Tree (DT)

= maximal tree depth: {1, 5, 10, 15, 20}
Support Vector Machine (SVM)

m Kernel: {linear, poly, rbf, sigmoid, precomputed}

= Regularization: {1, 5, 10, 25, 20}
Random Forest (RF)

m maximal tree depth: {1, 5, 10, 25, 20}

= number of trees: {10, 50, 100, 150, 200}

DT SVM RF

Training Acc. (%) T 83.12 80.52 84.09
Validation Acc. (%) T 76.14 79.21 78.34 -




Training of LEC algorithm (2/2)

DT outperforms both SVM and RF by up to
17.17%, and can save 10.53% and 15.00%

running time
Adopts DT as the decision model
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Design decision of concealment
approaches (1/3)

CP reduce the Chamfer distance by up to
73.28% compared to MP

We recommend using MP in TP approach
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Design decision of concealment
approaches (2/3)

NN reduce the Chamfer distance by up to
98.48% compared to LS

We recommend using NN in S| approach
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Design decision of concealment
approaches (3/3)

BSF reduce the Chamfer distance by up to
71.48% compared to other algorithms in Tl

approach.
We recommend BSF in Tl approach
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ow-level Performance of LEC
with the co-simulator dataset.

Our LEC algorithm:

= Reduce the Chamfer distance by up to 75.77%
= Cuts the Hausdorff distance by up to 30.17%

= With a small gap of at most 25.55% in Hausdorff

distance
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High-level Performance of LEC
with the co-simulator dataset.

Our LEC algorithm:
= Improves the detection accuracy by at most 33.31%
= With atiny gap of at small as 0.75% than OPT in detection

accuracy
= With a small gap of at most 0.04% than OPT in average
loU
EEE TP N TI OPT BN TP TI OPT
70 SI mmgy LEC 2 2z ql SI mmm LEC B
X 60 : : :
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Running Time of LEC with the co-
simulator dataset.

Our LEC algorithm
terminates in 360-570

ms throughout our W= TP TI s OPT
evaluations. @2 ]
Our LEC algorithm 5:4

can run faster and 2

achieves small gaps  £;

from OPT “o e Ham Ehm B

Number of Vehicles

The running time of OPT Is underestimated!
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Performance of LEC 1n a DSRC
network

Compared to C-V2X, DSRC network often
causes longer inter-packet intervals

Our LEC algorithm outperforms TP, SI, and Tl in
Chamfer and Hausdorff distances by 12.25%-
87.43% and 2.46%-66.58%, respectively.

TP SI TI LEC | OPT

Chamfer D. (m) | 0.98 6.84 3.23 0.86 0.79
Hausdorff D. (m) | 8.95 26.12 20.92 | 873 | 8.55
Run. Time (ms) | 589 1130 570 589 | 2307
IoU (%) 1 66.59 66.34 66.38 | 66.75| 66.79
Accuracy (%) 1 52.52 4596 5291 [5391| 54.36
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Performance of LEC in pre-recorded
KITTI dataset

Our LEC algorithm

= outperforms TP, SlI, and Tl in Chamfer and Hausdorff
distances by 2.56%-92.49% and 0.58%-62.48%,
respectively

m saves 70.72% of the running time compared to OPT,
with small gaps of 5.56% and 2.59% in Chamfer and
Hausdorff distances

P SI TI LEC | OPT
Chamfer D. (m) |  5.06 1.37 039 | 038 | 0.36
Hausdorff D. (m) | 31.93 14.08 12.05 |11.98 | 11.67
Run. Time (ms) | 50 820 420 380 | 1298




CONCLUSION &
FUTURE WORK
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Conclusion

@ Studied the uninvestigated problem of error
concealment for dynamic LIDAR point clouds

@ Implemented a comprehensive co-simulator of
CARLA and NS-3
= NR C-V2X and DSRC networks

@ Proposed our LEC algorithm to adaptively select the

most promising error concealment approach using
an ML model.

@ Significantly outperform the TP, SlI, Tl and with a
small gap for OPT
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Future Work

Smarter ML models

Multi-vehicles feature Large-scale and more
extraction simulations
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Thank you for listening!

Thanks for the help of Prof. Hsu, Chih-Chun Wu, Ching-Ting

Wang and all lab mates.

Publications:
Guihua Shi, Chih-Chun Wu, Cheng-Hsin Hsu. Error Concealment for Dynamic LIDAR
Point Clouds for Connected and Autonomous Vehicles[C]//GLOBECOM 2023-2023
IEEE Global Communications Conference. IEEE, 2023. (under review)
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