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Sensors in CAVs

Sensor Max. Distance H-FoV V-FoV FPS

LiDAR 180 m 360° 26.8° 20 Hz

mmWave LiDAR 70 m 90° 30° 17 Hz

RGB Camera 250 m 90° 60° 15 Hz

RGBD Camera 10 m 58° 58° 90 Hz 4

Connected and Autonomous Vehicles (CAVs)
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Applications for Driving Automations

 Object Detection

◼ Obstacle detection

◼ Congestion analysis

 Semantic Segmentation

◼ Refined analysis

◼ Obstacle detection

 Lane Detection

◼ Lane keeping

◼ Route planning
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Point Cloud Characteristics

 Dimension: A set of points in 3D space, and each point 

has three coordinates, which are high-dimensional data

 Unordered: The points are not in order, and modifying 

the order will not affect the result

 Interaction between points: A single point is 

meaningless, and the features need to consider its 

structure and context

 Invariance under transformations: For points in the 

point cloud, their absolute position does not matter, and 

the overall rotation, transformation, and scaling does not 

modify the structure

6



MOTIVATIONS
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Cooperative Perception

 The field of view from the single vehicle is always limited:

◼ Blind spot

◼ Obstacle occlusion

 CAVs can obtain additional information by data sharing:

◼ Sensor data [1]

◼ Features [2]

◼ High-level results [3]
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[1] Zhang X, Zhang A, Sun J, et al. Emp: Edge-assisted multi-vehicle perception[C]//Proceedings of the 27th Annual International Conference on Mobile Computing 
and Networking. 2021: 545-558.
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Point Cloud more than 100 Mbps
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 More than 1 million points per second [1]

 Streaming uncompressed dynamic point cloud 

dictates more than 100 Mbps

 Difficult to support multiple vehicles [2]

[1] Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[2] Zhang X, Zhang A, Sun J, et al. Emp: Edge-assisted multi-vehicle perception[C]//Proceedings of the 27th Annual International Conference on Mobile 

Computing and Networking. 2021: 545-558.
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Internet of Vehicles Limitations

 C-V2X (Cellular Vehicle-to-Everything)

◼ LTE (4G)

◼ NR (5G)

 DSRC (Dedicated Short-Range Communication)

◼ 5.9 GHz (IEEE 802.11p)

◼ 60 GHz (IEEE 802.11ad)
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Network Data Rate Bandwidth Latency Max. Distance

LTE-V2X <50 Mbps 10 MHz 50 ms 250 m

NR-V2X <1 Gbps 100 MHz 5 ms 500 m

5.9 GHz <27 Mbps 10 MHz 150 ms 250 m

60 GHz <7 Gbps 2 GHz 10 ms 150 m



Packet Loss may lead to misclassification 
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 Packet loss will generate incomplete point cloud 

frame

 Incomplete frames may will produce 

misclassification

 Only 71.43% and 42.85% of vehicles are 

detected when one-fourth and one-third of 

packets are lost

0% 25% 33%



Goals and Challenges

 Goals

◼ Minimize the Chamfer distance between the 

concealed and original point cloud frames

 Challenges

◼ Vehicles are moving, which complicates the 

transformation

◼ Some incomplete frames may contain too many lost 

sectors, Spatial Interpolation (SI) less effective

◼ Incomplete frame degrades the performance of such 

interpolation
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Point Cloud Caching

 Eliminates high latency due to full-scans

◼ Point clouds copy [3]

◼ Iterative closest point (ICP) [4]

 No consideration of LiDAR moving
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[3] Han W, Zhang Z, Caine B, et al. Streaming object detection for 3-d point clouds[C]//Computer Vision–ECCV 2020: 16th European Conference, 
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII. Cham: Springer International Publishing, 2020: 423-441.

[4] Qu C, Shivakumar S S, Liu W, et al. Llol: Low-latency odometry for spinning lidars[C]//2022 International Conference on Robotics and 

Automation (ICRA). IEEE, 2022: 4149-4155.



Point Cloud Completion

 Focus on upsampling sparse point clouds

◼ Estimate the complete geometry of objects and 

scenes

◼ Mostly by deep learning

 No consideration of communication loss

 Rely on semantic labels for object extract
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PoinTr [5]
[5] Yu X, Rao Y, Wang Z, et al. Pointr: Diverse point cloud completion with geometry-aware transformers[C]//Proceedings of the IEEE/CVF 
international conference on computer vision. 2021: 12498-12507.



Point Cloud Interpolation

 Use consecutive frames to generate 

intermediate frame to improve frame rate

◼ Nearest-point query (KD-tree)

◼ Mid-point prediction

◼ Scene flow estimation [5]

 Rely on complete frame

16

[5] Liu X, Qi C R, Guibas L J. Flownet3d: Learning scene flow in 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2019: 529-537.
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Measurements of LiDAR
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 LiDAR samples evenly in horizontal and vertical 

directions

 Calculate distance by the response time of reflected 

laser 

 We can transform 𝑝. 𝛽, 𝑝. 𝛾, and 𝑝. 𝑟 into 𝑝. 𝑥, 𝑝. 𝑦, and 

𝑝. 𝑧, mutually

We can know the orientation of 

each point before scanning!



Problem Statement
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 A complete frame 𝑓𝑖 is split into multiple equal-size 

sectors 𝑠𝑖,𝑗 for transmission

 Each sector is encapsulated in one packets before being 

streamed

 Packet loss will cause sector loss

Our usage scenarios
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System Overview

 Ground removal

◼ RANSAC (Random 

Sample Consensus) [6]

 Encoder/Decoder

◼ Draco [7]

 Classifier

◼ Object detection [8]
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[6] Fischler M A, Bolles R C. Random sample consensus: 
a paradigm for model fitting with applications to image 

analysis and automated cartography[J]. Communications 

of the ACM, 1981, 24(6): 381-395.
[7] Google. Draco (3D DATA COMPRESSION), 2023.

https://github.com/google/draco

[8] Shi S, Wang X, Li H. Pointrcnn: 3d object proposal 
generation and detection from point 

cloud[C]//Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition. 2019: 770-779.
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Message Types

 Location Update (LU): 

reports the latest LiDAR 

center location from GPS 

and IMU

 Point Update (PU): 

contains the point clouds of 

a sector, which is sent once 

the points in that sector are 

encoded

 Classification Result (CR): 

contains the classification 

outcomes produced at the 

edge server
22



Error Concealment Approaches

 Temporal Prediction (TP)

◼ Use previous frame

◼ Least latency

 Spatial Interpolation (SI)

◼ Use incomplete current frame

◼ Highest applicability

 Temporal Interpolation (TI)

◼ Use previous and next frames

◼ Richest information
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Previous frame always 

complete!

1

2
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Temporal Prediction (TP)

 Selectively copies points from sectors of previous frame 

to conceal the lost sectors of current frame.

 Copyover Prediction (CP):

◼ Let Ƹ𝑠 𝑖,𝑗 = 𝑠𝑖−1,𝑗, for any lost sector 𝑠𝑖,𝑗

 Motion-compensated Prediction (MP):

◼ Consider the location/orientation difference between 

LiDARs

◼ Let 𝑀𝑖 be the transformation matrix from 𝑓𝑖−1 to 𝑓𝑖+1 

◼ Let Ƹ𝑠 𝑖,𝑗 = 𝑠𝑖−1𝑀𝑖, for any lost sector 𝑠𝑖,𝑗
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Spatial Interpolation (SI)

 Employs the points in the current frame to estimate the 

measured distance 𝑝. 𝑟 for every given pitch 𝑝. 𝛽 and yaw 

𝑝. 𝛾

 Nearest Neighbor (NN):

◼ Find the closest point 𝑝∗ from all received sectors for 

each point of lost sector 𝑠𝑖,𝑗

◼ Let p. 𝑟 = 𝑝∗. 𝑟

 Least Square (LS):

◼ Fit all received points in frame 𝑓𝑖 to 𝑝. 𝑟 = 𝑤1𝑝. 𝛽 +
 𝑤2𝑝. 𝛾 +  𝑤3 

◼ Use this equation to estimate 𝑝. 𝑟 for all points in lost 

sectors 𝑠𝑖,𝑗 25



Temporal Interpolation (TI) (1/2)

 Analyze frames 𝑓𝑖−1 and 𝑓𝑖+1 to locate the closest point, 

using each pair of points to conceal the lost sectors

 Point Matching (PM):

◼ Find the closest point in 𝑓𝑖+1 for each point in 𝑓𝑖−1. 

Each pair of points is used to estimate a point in the 

concealed frame 𝑓𝑖

 Iterative Closest Point (ICP):

◼ Compute a transform matrix from 𝑓𝑖−1 to 𝑓𝑖+1, denoted 

as 𝑀′𝑖

◼ Let 𝑀′′𝑖 be the transformation matrix that 

shifts/rotates half of the displacement/angles of 𝑀′𝑖

◼ Any lost sector 𝑠𝑖,𝑗 can be concealed by Ƹ𝑠 𝑖,𝑗 = 𝑠𝑖−1,𝑗𝑀′′𝑖 26



Temporal Interpolation (TI) (2/2)

 Scene Flow (SF):

◼ Use FlowNet3D [9] to compute scene flows from 𝑓𝑖−1 

to 𝑓𝑖+1, denoted as 𝑀′𝑖

◼ Let 𝑀′′𝑖be the transformation matrix that shifts/rotates 

half of the displacement/angles of 𝑀′𝑖

◼ Any lost sector 𝑠𝑖,𝑗 can be concealed by Ƹ𝑠 𝑖,𝑗 = 𝑠𝑖−1,𝑗𝑀′′𝑖

 Bidirectional Scene Flow (BSF):

◼ Use PointINet [10] computes scene flows from 𝑓𝑖−1 to 

𝑓𝑖+1 and 𝑓𝑖+1 to 𝑓𝑖−1 

◼ Fuses the two temporally interpolated frames
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[9] Liu X, Qi C R, Guibas L J. Flownet3d: Learning scene flow in 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2019: 529-537.
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LiDAR Error Concealment (LEC)

 Adaptively apply one of the three concealment 

approaches (TP, SI, TI) by incomplete ratios

 Determining the cut-off thresholds is no easy task

 Using ML algorithms

◼ Decision Tree (DT)

◼ Support Vector Machine (SVM)

◼ Random Forest (RF)

28

Using machine learning 

algorithms as our decision 

model

Incomplete Ratios: packet loss rates of previous, current, and next frames
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Pre-recorded dataset

 KITTI Odometry Dataset

◼ Captured in real life

◼ Only one LiDAR-equipped for each sequence

◼ Not propose object detection labels

◼ Can not reflect interactions among nearby vehicles

 For 3-vehicles evaluation:

◼ Duplicate trajectory in sequence 0 three times

◼ Time-shift it by 10 and 20 seconds to create a 3-

vehicle dataset

◼ Use 4071 frames from sequence 8 for LEC model 

training
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Co-Simulator

 We designed and implemented a co-simulator to 

evaluate our error concealment algorithms:

◼ CARLA

◼ NS-3

◼ ZeroMQ

 Our co-simulator support:

◼ Real-time KITTI-compatible and Semantic3D-compatible ground 

truth frames

◼ V2V, V2X, V2I, I2V, etc. communication modes

◼ Multiple network protocol, 5.9GHz DSRC, and NR C-V2X

31



Workflow of Co-Simulator (1/2)
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Workflow of Co-Simulator (2/2)
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CARLA ZMQ NS-3



Experimental Setup

 Datasets:

◼ Co-simulator

◼ KITTI Odometry (real-life)

 Networks:

◼ NR C-V2X:

 Station next to the edge server

◼ DSRC:

 APs separated by 20 m

 Vehicles:

◼ {1, 3, 5, 7}

◼ Velodyne HDL-64E S2 (Ψ=2°)

 Benchmark:

◼ Optimal (OPT): selects the smallest Chamfer distance among all 

TP, SI, and TI algorithms
34

We repeat each simulation 10 times and 

report the average results from a 

random vehicle.



Performance Metrics

 Low-Level

◼ Chamfer distance (m): The average shortest distance between 

the points in the target and ground truth frame

◼ Hausdorff distance (m): The maximal shortest distance

 High-Level

◼ Intersection-over-Union (%): We use the pre-trained PointRCNN 

[9] to detect vehicles in front of CAVs

◼ Detection Accuracy (%): The fraction of detected vehicles

 Running Time (s)

35

The lower the better

The lower the better

We include 95% confidence intervals 

whenever possible.

[9] Shi S, Wang X, Li H. Pointrcnn: 3d object proposal 
generation and detection from point 

cloud[C]//Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition. 2019: 770-779.

The higher the better
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Training of LEC algorithm (1/2)
 Use our co-simulator to generate 10,000 consecutive frames and randomly 

simulate packet loss rates between 0% - 100% for each frame

 Carry out 5-fold cross-validation to find the best hyperparameters

 80% of the frames are used for training and 20% for validation

 Decision Tree (DT)

◼ maximal tree depth: {1, 5, 10, 15, 20}

 Support Vector Machine (SVM)

◼ Kernel: {linear, poly, rbf, sigmoid, precomputed}

◼ Regularization: {1, 5, 10, 25, 20}

 Random Forest (RF)

◼ maximal tree depth: {1, 5, 10, 25, 20}

◼ number of trees: {10, 50, 100, 150, 200}
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Training of LEC algorithm (2/2)

 DT outperforms both SVM and RF by up to 

17.17%, and can save 10.53% and 15.00% 

running time

 Adopts DT as the decision model

38
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Design decision of concealment 

approaches (1/3)

 CP reduce the Chamfer distance by up to 

73.28% compared to MP

 We recommend using MP in TP approach
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Design decision of concealment 

approaches (2/3)

 NN reduce the Chamfer distance by up to 

98.48% compared to LS

 We recommend using NN in SI approach
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Design decision of concealment 

approaches (3/3)

 BSF reduce the Chamfer distance by up to 

71.48% compared to other algorithms in TI 

approach.

 We recommend BSF in TI approach

41
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Low-level Performance of LEC 

with the co-simulator dataset.

 Our LEC algorithm:

◼ Reduce the Chamfer distance by up to 75.77%

◼ Cuts the Hausdorff distance by up to 30.17%

◼ With a small gap of at most 25.55% in Hausdorff 

distance
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High-level Performance of LEC 

with the co-simulator dataset.

 Our LEC algorithm:

◼ Improves the detection accuracy by at most 33.31%

◼ With a tiny gap of at small as 0.75% than OPT in detection 

accuracy

◼ With a small gap of at most 0.04% than OPT in average 
IoU
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Running Time of LEC with the co-

simulator dataset.

 Our LEC algorithm 

terminates in 360-570  

ms throughout our 

evaluations.

 Our LEC algorithm 

can run faster and 

achieves small gaps 

from OPT

44

The running time of OPT is underestimated!



Performance of LEC in a DSRC 

network

 Compared to C-V2X, DSRC network often 

causes longer inter-packet intervals

 Our LEC algorithm outperforms TP, SI, and TI in 

Chamfer and Hausdorff distances by 12.25%-

87.43% and 2.46%-66.58%, respectively.
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Performance of LEC in pre-recorded 

KITTI dataset

 Our LEC algorithm

◼ outperforms TP, SI, and TI in Chamfer and Hausdorff 

distances by 2.56%-92.49% and 0.58%-62.48%, 

respectively

◼ saves 70.72% of the running time compared to OPT, 

with small gaps of 5.56% and 2.59% in Chamfer and 

Hausdorff distances
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Conclusion

 Studied the uninvestigated problem of error 

concealment for dynamic LiDAR point clouds

 Implemented a comprehensive co-simulator of 

CARLA and NS-3

◼ NR C-V2X and DSRC networks

 Proposed our LEC algorithm to adaptively select the 

most promising error concealment approach using 

an ML model.

 Significantly outperform the TP, SI, TI and with a 

small gap for OPT

48
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Future Work
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Smarter ML models

Multi-vehicles feature 

extraction

Large-scale and more 

simulations

1
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Q&A
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Thank you for listening!
Thanks for the help of Prof. Hsu, Chih-Chun Wu, Ching-Ting 

Wang and all lab mates.

Publications:

• Guihua Shi, Chih-Chun Wu, Cheng-Hsin Hsu. Error Concealment for Dynamic LiDAR 

Point Clouds for Connected and Autonomous Vehicles[C]//GLOBECOM 2023-2023 

IEEE Global Communications Conference. IEEE, 2023. (under review)


