A Resource-Constrained Asymmetric Redundancy Elimination Algorithm

> Yu-Sian Li June, 2013

Outline

- Introduction
- RCARE Algorithm
- Dynamic Adaptation Algorithm
- Conclusion and Future Work
- Achievements

What We Consider ?

Bandwidth asymmetric channels

What We Consider ?

Capability asymmetric channels

Power line powered

Problem Statement

- We study the problem of increasing uplink goodput gain* in asymmetric communications
- Capitalizing the otherwise wasted downlink bandwidth and/or receiver capability.

* the relative goodput improvement compared to the standard TCP transfer

Existing Asymmetric

Communication Algorithms

- ListQuery^[1]
 - Dictionary: a list of seen messages, in non-increasing order by their frequencies
 - Guessed message: sublist of the t^{1/k} most popular messages
 - Hints: the identification of the matched message in sublist

Recent

Current

- Weakness
 - Cannot identify the partial-matches
 - High downlink cost
 - [1] T. Gagie, "Dynamic Asymmetric Communication," in *Proc. of Information Processing Letters*, 2008

Previous Works

- Trang et al.
 - Implement ListQuery and DBES on NS-2^[2]
 - Simulations on synthetic traces^[2]
 - Implement EndRE^[3] on NS-2

- [2] C. Trang, X. Huang, and C. Hsu, "Pushing Uplink Goodput of An Asymmetric Access Network Beyond its Uplink Bandwidth," in *Proc. of ICC'12*, *Ottawa, Canada, June* 2012
- [3] B. Aggarwal et al., "EndRE: An endsystem redundancy elimination service for enterprises," in *Proc. of NSDI'10*, San Jose, CA, June 2010

Contributions

- Propose an asymmetric redundancy elimination algorithm RCARE
- The first redundancy elimination algorithm tailored for resource-constrained scenarios
- Study the correlation between unlink goodput gain and data stream features
- Design an adaptation algorithm for allocating the cache size

RCARE

- Sits on top of TCP
- Increases the uplink goodput from a sender to one or more receivers
- Flexible matching mechanism to identify partialmatches

RCARE Can be Deployed on

General Idea

- Asymmetric channel with low uplink bandwidth
- Weak capability on sender

During the Transmitting

• Receiver records and analyzes incoming packets

Update Sender Cache

• Receiver sends partial cache based on senders' capability

Compress Data

• Search cache, replace data stream with code word

Partial Match Algorithm

- SAMPLEBYTE^[3]
- 1. Find entrance byte using marker list
- 2. Compute the **representative window** for fingerprint
- 3. Store the fingerprint as key which point to the raw data (if we have not seen it before)

[3] B. Aggarwal et al., "EndRE: An endsystem redundancy elimination service for enterprises," in *Proc. of NSDI'10*, San Jose, CA, June 2010

Partial Match Algorithm (cont.)

- Once the fingerprint exists in the cache
- 1. Try to extend matching stream
- 2. Replace it with <stream ID, offset, length>
- Very Efficient: encoding and decoding time is at most 0.5 and 5 msec on per packet

System Parameters

- **B**_s : Max cache size on sender
- *B*_{*r*} : Max cache size on receiver
- *f* : Updating frequency (number of packets)
- *m* : Marker list size [1, 256]
- $\boldsymbol{\beta}$: Selection policy [0.0, 1.0] (β MRU and 1- β MFU)

Trace-Driven Simulation

- Trace file
 - Tcpdump with payload
 - 5 trace files (T1 ~ T5)
 - Enterprise, home, and university servers
 - Size from 59 MB to 1.2 GB
- Trace-driven simulator
 - RCARE
 - ListQuery
 - EndRE
 - GZip

Results from Different Algorithms

- Fix sender $B_s = B_r = 256$ MB and f = 1 for fair comparison
- RCARE outperforms ListQuery
- Similar to EndRE

Simulation Results (cont.)

- Goodput gain with various receiver cache size.
- With a quarter cache size, we can achieve similar goodput gain.
 Sender Cache Size

Dynamic Adaptation

- Resource-constrained hosts
- How to dynamically adapt cache sizes on individual data streams?

Real-Life Traffic Collection

- Dorm gateway in NCTU
- From 12:00 to 22:00 on February 20th, 2012
- 1,632 GB packet data in total
- 3,358 distinct IPs on the local network
- 3,598,829 distinct IPs from the Internet

Data Stream Features

Port number

- Different protocols may inherently carry different amount of redundancy
- Consider the source port
- ASCII ratio
 - ASCII data generally contains more redundancy compared to binary data
- Entropy
 - Compute the entropy of 32-byte long fixed-length data blocks
- Mean packet length
- Standard deviation of packet length

Data Stream Features - Analysis

• R² value of single-variable regression

Feature	Linear	Quadratic	
Entropy H	0.74	0.85	
ASCII ratio θ	0.08	0.67	
Standard diviation of packet length	0.04	0.16	
Mean packet length	0.28	0.29	

• R² value of two-variable regression

Feature	Linear	Quadratic	
Entropy H and ASCII ratio θ	0.39	0.59	
Entropy H and Mean packet length	0.45	0.61	
ASCII ratio θ and Mean packet length	0.39	0.48	

We use quadratic regression of entropy to build the prediction model

Prediction Model

Use regression of entropy to predict goodput gain

The prediction model closely follows the actual goodput gain.

The interpolated surface of our proposed prediction model.

Adaptation Formulation

- The prediction model can be written as a piecewise linear function
- Formulate the optimization problem
 - Objective: Max goodput gain
 - Decision variable: stream cache size

Adaptation Algorithm

- OPT
 - Solve the optimal problem with CPLEX
- EFF
 - Invests the remaining cache size on the data stream that is estimated to achieve the highest goodput gain
- AVG
 - Equally divides the total cache size to each data stream
 - Baseline

Evaluation on Adaptation

- Goodput gain (normalized to OPT)
 - OPT and EFF outperform AVG
 - EFF achieves very similar goodput than that of OPT

Evaluation on Adaptation (cont.)

Overhead

- EFF algorithm runs as fast as AVG
- OPT may consume more than 20 MB memory

Performance Gain

Deployment configurations

Host based

Proxy based

Performance Gain – Host

- Consider the number of data streams \geq 2 on each host
- There are 876 GB trace data and 1280 hosts in total
- EFF with 4 MB cache size achieves almost the same goodput gain of the AVG with 32 MB cache size
- EFF always outperforms AVG

Performance Gain – Host (cont.)

- Zoom in to the first 10% hosts achieving the highest goodput gain
- EFF algorithm achieves over 40% goodput gain on average

Performance Gain - Proxy

- Update frequency f = 10,000
- Sender cache size **Bs** \in {0.25, 0.5, 1, 4, 16} GB
- EFF is at least 10 times and at most 22 times higher than that of AVG

Algorithm	$B = 0.25 \ GB$	0.5 GB	1 GB	4 GB	$16 \ GB$
AVG	0.13%	0.12%	0.12%	0.12%	0.13%
EFF	0.60%	1.12%	1.78%	2.66%	2.87%

Conclusions

- We proposed a new asymmetric communication algorithm, RCARE
- RCARE outperforms existing Asymmetric Communication Algorithms (ListQuery) by up to 50 times goodput and reduces 384 times downlink traffic amount
- RCARE is flexible on cache size adaptation
- Our adaptation algorithm improves up to 87% uplink goodput gain compared to a baseline

Future Work

- Inter-sender redundancy elimination
 - Share caches among all clients
- User behavioral patterns
 - Employ multiple versions of cache and use them on different days/hours
- Implement RCARE in a real network stack and conduct experiments

Achievements

- Y. Li, C. Trang, X. Huang, C. Hsu, and P. Lin, "CacheQuery: A practical asymmetric communication algorithm," in Proc. of IEEE Global Communications Conference (GLOBECOM'12), Anaheim, CA, December, 2012, TAOS Best Paper Award.
- Y. Li, C. Trang, S. Wang, X. Huang, C. Hsu, and P. Lin, "A Resource-Constrained Asymmetric Redundancy Elimination Algorithm," IEEE/ACM Transactions on Networking, in preparation.
- Y. Li, C. Chen, T. Lin, C. Hsu, Y. Wang, and X. Liu, "An End-to-End Testbed for Scalable Video Streaming to Mobile Devices over HTTP," in *Proc. of IEEE International Conference on Multimedia and Expo* (*ICME*'13), San Jose, CA, July, 2013.

Q & A