Turning Mininet/Open vSwitch into A Detailed OpenFlow Emulator

YI-JUN CHENG OCTOBER, 2015

Emerging Network Architecture

- Software-Defined Networking provides network programmability and efficient network management
- Researchers from academia and industry worked on developing innovative network services on SDN and OpenFlow

OPEN NETWORKING

FOUNDATION

• Behavior verifications and performance evaluations are necessary to examine the possibilities of the novel ideas

References:

[1] M. Kobayashi and S. Seetharaman and G. Parulkar and G. Appenzeller and J. Little and J. Reijendam and P. Weissmann and N. McKeown. Maturing of OpenFlow and Software-defined Networking through Deployments. *Computer Networks*, 61:151–175, November 2013.

OpenFlow Simulators/Emulators

- Testbeds are necessary, but deploying ones is costly, timeconsuming, and labor-intensive
- Run emulations/simulations beforehand
- Several available emulators/simulators, but fail to consider control plane performances and different switch implementations

References:

[1] Mininet: an instant virtual network on your laptop (or other PC). http://mininet.org

Goal

- Accurately emulate both behaviors and performances of SDNbased networks and support different switch implementations
- Design measurement studies for switch performances and propose performance benchmarks
- Propose performance models and switch-dependent parameters,
- Integrate with an OpenFlow emulator, Mininet/OVS

Measurement Methodology

- Conduct measurement studies on OpenFlow switches, Pica8 P-3297 and Open vSwitch
- Control plane performance measurements
 - Flow table update delay
 - Develop our testing modules based on OFLOPS
- Data plane performance measurements
 - Packet forwarding latency and throughput
 - Use OFLOPS with packet replay and capture tools

Measurement Setup

- Dedicated control plane channel
- Event Scheduler, Data Plane Traffic Generator, and Packet Handler are three main threads in OFLOPS framework

What Each Component Does

- *Event Scheduler* defines how each event works
- *Data Plane Traffic Generator* generates customized data plane packets and send them via data plane channels
- Packet Handler captures packets from both data plane and control plane channels

Control Plane Performance Measurement Studies and Modeling

0

Test Scenarios

Measurement Results

Performance Models

Model Validation

Factor Considerations for Control Plane Performance Tests

Performance metrics

- Flow table update delay
- Flow_mod command types
 - Insertion, modification, and deletion commands
- Number of existing flows
- Priority distribution of existing flows
 - Descending, ascending, and same priority distributions
- Number of batch commands
 - How many commands waiting for execution

Control Plane Tests

- Preinstall different number of flows with different priority distributions at first for each of the test
- Insertion test
 - Send different number of insertion commands under different number of existing flows
- Modification test
 - Send different number of modification commands under different number of existing flows
- Deletion test
 - Send a wild-carded command to delete flows in the table
- Show sample results from Pica8 in the following

Insertion Test Results on Pica8

- Proportional to existing flow size
- Different increasing rate for different batch command size

- Increasing rate decreases with more batch commands
- Similar observations in software table

Insertion Test Results on Pica8 (cont.)

- Flows should be in priority order in TCAM
- Flow shifting time dominates the insertion delays, so little differences observed among different batch command sizes

Modification Test Results on Pica8

- Proportional to existing flow size
- Increasing rate decreases with more batch commands
- Different increasing rates for different priority distributions

Deletion Test Results on Pica8

- Proportional to number of deleted flows
- Existing flows with different priority distributions share same results

Insertion Time Model

$$D_{add} = \frac{P_{f_c,\omega_c^t}^t}{R_{f_c,\omega_c^t}^t(q_c)} \times e_c^t + S_t \times s_c^t + W_t$$

- **c** denotes the index of flow_mod command
- *t* is the index of the table
- Proportional to existing flow size $\rightarrow P$
- Decrease with more batch commands $\rightarrow R(q)$
- **S** is flow shifting time
- W is the time to update a flow table entry

table, t **Priority distribution** Command type, f_c # batch commands, q # existing flows, e Shifting times, s **Insertion Time Model**

D_{add}

Modification Time Model

 $D_{mod} = \sum_{t=1}^{I} \left(\frac{P_{f_c,\omega_c^t}^t}{R_{f_c,\omega_c^t}^t(q_c)} \times e_c^t + M_t + W_t \times m_c^t \right)$

- **T** denotes number of tables
- Proportional to existing flow size $\rightarrow P$
- Decrease with more batch commands $\rightarrow R(q)$
- *M* is the time for searching matching flows
- *m* denotes the number of matched flows

Deletion Time Model

$$D_{del} = \sum_{t=1}^{T} (M_t + W_t \times m_c^t)$$

- $M \rightarrow$ time for searching all matched *m* flows
- $W \rightarrow$ time for updating a flow entry

Validation Experiments

- Test scenarios
 - Insertion tests
 - Modification tests
 - Deletion tests
 - Random tests
 - Random priorities, IP addresses, arrival time, and command types

 $|\mathbf{O}|$

Validation results from Pica8 and OvS

Insertion Test Validation

- Validation results using ascending priority distribution
- Modeled results follow the results of OpenFlow switches

Modification Test Validation

- Validation results using ascending priority distribution
- Modeled results follow the results of OpenFlow switches

Deletion Test Validation

- Validation results using ascending priority distribution
- Modeled results follow the results of OpenFlow switches

Random Test Validation

• Random commands, priorities, IP addresses, and arrival time

- Arrival time follows Poisson process with 100 flows/sec
- 16 random configurations for each command size
- Error rates are mostly under 20% on Pica8 and OvS

Data Plane Performance Measurement Studies and Modeling

 \mathcal{D}

Test Scenarios

Measurement Results

Performance Models

Model Validation

Factor Considerations for Data Plane Performance Tests

- Different matching fields used of tables flows
 - L2, L3, and both L2 and L3
- Number of existing flows in the flow table
- Inter-packet time
 - Time difference between last packet and current packet arrival time
- Packet size

Data Plane Tests

Performance metrics

- Forwarding delay
- Throughput
- Preinstall corresponding flows for data plane traffic, with:

- Different existing flow size
- Different matching fields used
- Send data plane traffic, with:
 - Different packet size
 - Different inter-packet time

Packet Sizes and Matching Fields

- Larger packet sizes result in higher forwarding delays
- Delay time varies with different matching fields used

Existing Flow Sizes

• Existing flow sizes have little impact on forwarding delays

Inter-packet Time

• Multi-levels of forwarding delays with different inter-packet time

Packet Forwarding Delay Model

$$D_{delay} = \beta_{h_k}^t + \gamma_a^t \times \Delta a_k + \gamma_e^t \times \Delta e_k + \gamma_b^t \times \Delta b_k$$

- **k** denotes the index of the data plane packet
- $\beta_{h_k}^t$ denotes the base time
- γ_a^t : increasing rate for inter-packet time, a_k
- γ_e^t : increasing rate for existing flow size, e_k
- γ_b^t : increasing rate for packet size, b_k

Validation Experiments

- Test scenarios
 - Different packet sizes
 - Different existing flow sizes
 - Different inter-packet time
 - Real world data plane traffic
 - Pcap trace collected from an educational site

2

Validation results from Pica8 and OvS

- Different Packet Sizes
- 500 flows with L2/L3 matching fields used in the table
- Inter-packet time of 100 us packets sent
- Modeled results follow the result of real OpenFlow switch

- Different Existing Flow Sizes
- L2/L3 matching fields used in the table
- Packet size of 128 bytes, inter-packet time of 100 us packets are sent

- Different Inter-packet Time
- 500 flows with L2/L3 matching fields used in the table
- Packet size of 128 bytes are sent

- Real World Data Plane Traffic
- Traces collected from a educational organization, with hundreds of students and employees in 2007, and over 200,000 packets captured

- Randomly select packets among 200,000 packets
- 16 different ranges for each number-of-packet sample

Emulator Implementations and Evaluations

Emulator Implementation

- OpenFlow Event Detector extracts *flow_mod* events from controller/switch message and put them into OpenFlow Event Queue
- OpenFlow Event Handler fetches events from the queue and manipulate the events
- Clock Time Manager calculates modeled time and adjusts the time
- Switch State Maintainer updates switch states
- Statistics Reporter records each command information and performance

Evaluations

- Insertion/modification command tests
- Performance accuracy is much better than original Mininet/OvS

Evaluations (cont.)

- Deletion tests
- No differences between our emulator and real Pica8 results

Conclusion and Future Work

Switch Performance Benchmark

Propose automatic procedures for switch performance benchmarking

• Performance Model and Switch-dependent Parameters Propose control plane and data plane performance models for diverse OpenFlow switches

Emulator Implementation

Integrate performance models with OpenFlow emulator, Mininet/OvS

Future directions

- Adjustments on control plane performance models
- Emulator implementation for data plane performance model, and thorough evaluations of the emulator using real-world traces
- Update OFLOPS for OpenFlow higher versions support

Thanks much for your listening!

Why OFLOPS?

- Barrier reply message should notify the completion of a series of commands sent before the barrier request message
- Not correctly implemented in all OpenFlow switches

Switch Benchmark Tool

 $\Lambda\Lambda$