
Mobile Cloud Offloading on 
Crowdsensing Platforms

Ting Yi Lin

1



Outline

• Introduction 
– Efficient Crowdsensing System With Offloading

– Offloading Applications To Cloud

– Contributions

• Offloading Applications To Cloud
– Architecture

– Problem Statement

– Algorithm

– Experiments

• Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As 
Case Studies 
– Implementation

– Case Studies

– Evaluations

• Conclusion And Future Work

2



Population of Mobile Device, Wireless 
Network, and Cloud Platform

• Mobile devices are more and more popular

– Smart phone, tablet, etc

– 1.75 billion smartphone users (2014)[1]

• Wireless network coverage

– The number of access points and the bandwidth are increasing

3

Provide service to user 
through the network

[1] http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536



What Is Crowdsensing ?

• Smartphones are now equipped with multiple sensors

– GPS, accelerometer, microphone, gyroscope, etc.

• The crowds provide useful information for each others

– Events are detected through processing the sensory data

Ask questions

Answer questions or 
provide sensor data

4



Why Is Crowdsensing Interesting?

• It has many applications

• It has many advantages 

– Users can ask questions which are hard for algorithms to answer

– Improving the coverage of traditional sensor networks

– Lowering the deployment and maintenance cost for companies

5



What Is The Most Efficient Execution 
Flow?

• Most of the crowdsensing systems analyze the sensory data 
on broker/server

– It is not efficient 

– The computation capability and network bandwidth of servers and 
mobiles are different

• Offloading is a good 
solution

6

Network Type Wifi 3G Local

Current (mA) 9.2619 285.3662 24.0448

Time (ms) 224.99 3559.85 299.34



Mobile Cloud Offloading

• Mobile devices has limited resources

– CPU, memory, GPU, battery lifetime, etc.

– Cannot run resource-intensive applications

• Cloud service can be used to address on the issue

– Cloud servers have large amount of resources

– Can be accessed easily through network

– Using powerful server to do the heavy computations

Light 
Computations

Mobile

Heavy 
Computations

CloudSend Heavy 
Tasks To Cloud

Get Results 
From Cloud

7



Contributions

• We propose an offloading decision algorithm [MCC’13]

• We develop an APK analysis tool to analyze and modify APK 
files

• We offload existing third-party applications to show 
offloading is feasible in existing applications

• We integrate offloading into a crowdsensing prototype system 
to show the performance gain from offloading [PIMRC’14]

8



Outline

• Introduction 
– Efficient Crowdsensing System With Offloading

– Offloading Applications To Cloud

– Contributions

• Offloading Applications To Cloud
– Architecture

– Problem Statement

– Algorithm

– Experiments

• Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As 
Case Studies 
– Implementation

– Case Studies

– Evaluations

• Conclusion And Future Work

9



Architecture

10



System Execution Flow

Method A

Method B

Decision

Application 

No

Cloud

Method B
Yes

Database

Store the local 
execution cost 

Store the cloud 
execution cost 

11



Why We Need A Decision Engine?

• Offloading cannot always improve performance or reduce 
energy consumption

– Transmission energy > computation energy

• Many factors can affect the offloading efficiency

– Wireless connectivity, mobile CPU usage, etc.

• We aim to minimize the energy consumption on mobile 
device or improve the application performance

– We should carefully determine whether to offload

12



Offload? Not Offload?

• The decision algorithm should not introduce heavy overhead

• We proposed the context-aware decision algorithm to 
determine whether to offload the computation

– Context is the information of user and mobile device
• CPU usage, network connectivity, etc.

• Considered context

– Signal strength

– Throughput

– Time-of-day

– Location

13



Why We Use These Four Contexts?

• To predict whether offloading has positive or negative impact 

• To estimate the energy consumption of tasks

– Execution energy and transmission energy

– Throughput and signal strength can be used to model transmission 
energy

• Many factors affect the offloading efficiency
– Data size, transmission time, computation complexity, etc.

– Time-of-day and location may imply the user behaviors and other 
factors

14

Image 1

Image 2

Image 
Processing

The execution 
time can be 
very different

Energy 
Model

Throughput

Signal 
Strength



Existing Energy Model

• Based on PowerTutor[2]

• The model assumes a constant power level and may lead to 
inaccurate estimations

• We need a better model

[2] L. Zhang et al. , “Accurate online power estimation and automatic battery behavior based power 

model generation for smartphones.” In Proc. of International Conference on Hardware/Software 
Codesign and System Synthesis, 2010.

15



Proposed Context-Aware Energy 
Model

• We measure the mobile device’s current flow with Agilent 
66321D power meter

• Replace communication energy model with our model

16



If We Only Have APK Files

• APK file is an install file used in Android system

• It is not easy to get source code of most of the applications

• We develop a tool to help us modifying the third-party 
applications to offload version

– Analyze and modify the APK files

17



APK Analysis Tool Work Flow

• We use apktool to decompile/compile the Smali code

– Smali is the register language used in Dalvik VM

• Find methods that can be offloaded

Decompile 
the APK file

Find candidate 
methods

Smali files Modify the 
target method

Compile the 
modified Smali

to APK
Sign the APK fileModified APK

18



Smali Code Example

19



Context-Aware Decision Algorithm

• Q(T, L) : query database with time T and location L for 
previous execution cost

– Cost can be execution time or energy consumption

Q(T, L) for 
cloud and 

local

Q(null, L) 
for local/ 

cloud

If cloud/ local 
has no record

Do not have 
record

Execute on 
cloud/local

If cloud/ local still 
has no record

20

Try to 
execute on 
cloud/ local

Compare the cost of cloud 
and local

Try to 
execute 
on cloud 



Experiment Setup

• HTC one X (client) and android X86 (server)

• We recruit 5 users to use the client in a week

• HCBS: image transfer and face detection

• LCBS: image transfer and color-space conversion

• HCSS: nested for-loops

• LCSS: simple for-loop

• Prediction accuracy, performance gain, overhead

21



Decision Accuracy

• Take out the first two rounds which are considered as training 
rounds

• At least 80% across all users

22

At least 80%



Performance Gain

• Most of the executions benefit from cloud executions, and 
our CADA algorithm successfully identifies the few executions 
which cannot benefit from cloud

Time improvement Energy improvement

23

At least 7X



Overhead

• Space: 𝑀 × 𝐿 × 48 × 7 for each application

• Time (runtime): query time < 1 ms 

• Energy: About 6% energy overhead

• This decision algorithm can be implemented in any offloading 
systems which support dynamic application offloading

24



Results of Offloading Third-party 
Applications

25

• We download four applications from Internet

• Packet Chess

– Offload: 1742.5 ms

– Local: 2641.5 ms



Outline

• Introduction 
– Efficient Crowdsensing System With Offloading

– Offloading Applications To Cloud

– Contributions

• Offloading Applications To Cloud
– Architecture

– Problem Statement

– Algorithm

– Experiments

• Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As 
Case Studies 
– Implementation

– Case Studies

– Evaluations

• Conclusion And Future Work

26



System Overview

27



Prototype Architecture

28



Screenshots

29



Event Analysis Algorithms

• IsCrowded

– Human detection

– HOG + SVM
• Histogram of Oriented Gradients

– SVM is trained by OpenCV

– We use OpenCV to do the image processing

• IsNoisy

– Record the noise by microphone

– Compute the mean db

30



HOG Workflow And Example

31



Setup

• Broker and server
– VMs on Desktop PC

– OS: Android-x86

• Client 
– HTC smartphone

• Database
– MySQL database

• We put a PC with dummynet between the broker and client

• Network delay = [0, 50, 100, 200, 400] ms

• Packet loss rate = [0, 2, 4, 8, 10] %

• Bandwidth = [256, 512, 1024, 2048, 4096] kbit/s

• We run each setting 5 times

32



IsCrowded (Ideal Case)

• Offloading use only 56.5% processing time and 25.9% energy 
consumption

33



IsNoisy (Ideal Case)

• Offloading uses 235% processing time and 184% energy 
consumption

34



Varying Network Delay

• Performance gain 

– Time: when delay ≤ 50 ms

– Energy: when delay ≤ 200 ms

35



Varying Packet Loss Rate

• Performance gain 

– Time: when loss rate ≤ 4%

– Energy: when loss rate ≤ 8%

36



Varying Bandwidth

• Performance gain 

– Time: when bandwidth ≥ 2048 kbit/s

– Energy: when bandwidth ≥ 512 kbit/s

37



Summary of The Results

• The network condition significantly affects the offloading 
benefit

– Network delay: energy and time (< 50 ms), energy (< 200 ms)

– Packet loss rate: energy and time (< 4 %), energy (< 8 %)

– Bandwidth: energy and time (> 2048 kbit/s), energy (> 512 kbit/s)

• Offloading decision is necessary

38



Outline

• Introduction 
– Efficient Crowdsensing System With Offloading

– Offloading Applications To Cloud

– Contributions

• Offloading Applications To Cloud
– Architecture

– Problem Statement

– Algorithm

– Experiments

• Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As 
Case Studies 
– Implementation

– Case Studies

– Evaluations

• Conclusion And Future Work

39



Conclusion

• We strive to minimize the energy consumption and execution 
time of crowdsensing systems using offloading system

• We propose a novel algorithm to determine whether to 
offload the computation

• The accuracy is at least 80%

• We develop an APK analysis tool to help us analyze and 
modify the APK files

• We offload third-party applications and show that offloading 
is feasible in existing applications

• We implement a crowdsensing prototype system and show 
that offloading improves the system performance

40



Future Work

• Find out other contexts that can have high accuracy for most 
of the mobile device users and applications

• Try to offload methods that contain local resource, for 
example, camera and GPS. 

41



Thank You For Your Listening

42


