Mobile Cloud Offloading on
Crowdsensing Platforms

Outline

Introduction
— Efficient Crowdsensing System With Offloading
— Offloading Applications To Cloud
— Contributions

Offloading Applications To Cloud

— Architecture

— Problem Statement

— Algorithm

— Experiments
Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As
Case Studies

— Implementation

— Case Studies

— Evaluations

Conclusion And Future Work

Population of Mobile Device, Wireless
Network, and Cloud Platform

* Mobile devices are more and more popular

— Smart phone, tablet, etc
— 1.75 billion smartphone users (2014)!1]

* Wireless network coverage

— The number of access points and the bandwidth are increasing

U.S. Tablet Users (In millions. Source: eMarketer)

89.5

Provide service to user
through the network ()

) ‘4;
n i l 8

[1] http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536

75.6

What Is Crowdsensing ?

 Smartphones are now equipped with multiple sensors

— GPS, accelerometer, microphone, gyroscope, etc.

 The crowds provide useful information for each others

— Events are detected through processing the sensory data

() Ask questlons
P
Answer questions or

w*vide sensor data

. ()
LV ® A%

Why Is Crowdsensing Interesting?

* It has many applications

* It has many advantages
— Users can ask questions which are hard for algorithms to answer
— Improving the coverage of traditional sensor networks
— Lowering the deployment and maintenance cost for companies

What Is The Most Efficient Execution
Flow?

Most of the crowdsensing systems analyze the sensory data
on broker/server

— It is not efficient

— The computation capability and network bandwidth of servers and
mobiles are different

» Offloading is a good

Event Analysis
Algorithm

. Assign tasks/ Given data/
SOlUt|0n return data = return result
- > % w Ll @

Broker

Server

Current (mA) 9.2619 285.3662
Time (ms) 224.99 3559.85

24.0448
299.34

Mobile Cloud Offloading

 Mobile devices has limited resources
— CPU, memory, GPU, battery lifetime, etc.
— Cannot run resource-intensive applications
* Cloud service can be used to address on the issue

— Cloud servers have large amount of resources
— Can be accessed easily through network
— Using powerful server to do the heavy computations

Mobile Send Heavy Cloud
Tasks To Cloud
Light Heavy
Computations Get Results Computations

From Cloud

Contributions

We propose an offloading decision algorithm [MCC’13]

We develop an APK analysis tool to analyze and modify APK
files

We offload existing third-party applications to show
offloading is feasible in existing applications

We integrate offloading into a crowdsensing prototype system
to show the performance gain from offloading [PIMRC’14]

Outline

Introduction
— Efficient Crowdsensing System With Offloading
— Offloading Applications To Cloud
— Contributions

Offloading Applications To Cloud

— Architecture

— Problem Statement

— Algorithm

— Experiments
Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As
Case Studies

— Implementation

— Case Studies

— Evaluations

Conclusion And Future Work

Architecture

Cloud Servers

[Ofﬂoaded Application]

Cloud Offloading
System

[Cloud Platform }

=

Mobile Device

Mobile Application J

[Cloud Offloading System J

:@Check whether to offload

~

Context-Aware
Decision Engine

Context-Aware Decision Algorithm

Context Profiler | | Energy Model

Store context -

Return
: Context
and execution ; S
Database historical cost
costs

10

System Execution Flow

Yes

Store them JI
execution cost -

V

Store the cloud
execution cost

Why We Need A Decision Engine?

Offloading cannot always improve performance or reduce
energy consumption

— Transmission energy > computation energy

Many factors can affect the offloading efficiency

— Wireless connectivity, mobile CPU usage, etc.
We aim to minimize the energy consumption on mobile
device or improve the application performance

— We should carefully determine whether to offload

Offload? Not Offload?

The decision algorithm should not introduce heavy overhead

We proposed the context-aware decision algorithm to
determine whether to offload the computation

— Context is the information of user and mobile device

* CPU usage, network connectivity, etc.

Considered context
— Signal strength

— Throughput

— Time-of-day

— Location

13

Why We Use These Four Contexts?

* To predict whether offloading has positive or negative impact
* To estimate the energy consumption of tasks

— Execution energy and transmission energy
— Throughput and signal strength can be used to model transmission
energy
 Many factors affect the offloading efficiency
— Data size, transmission time, computation complexity, etc.

— Time-of-day and location may imply the user behaviors and other
factors

Throughput
Image 1 - The execution Energy
Procjfs?n time can be [Mode!
8 very different gl

Image 2 Strength

Existing Energy Model

Based on PowerTutor!?!
2 total — ! ¥ cpu + £, comm T Pd-i..s-pl ay id i other
o comm — & WiFi + & Cell
¥ WiFi/Cell — Pidle X /(8'1"(“6 + trans X ,Bt'ra:n,s

The model assumes a constant power level and may lead to
Inaccurate estimations

We need a better model

[2] L. Zhang et al., “Accurate online power estimation and automatic battery behavior based power
model generation for smartphones.” In Proc. of International Conference on Hardware/Software
Codesign and System Synthesis, 2010.

15

Proposed Context-Aware Energy
Model

* We measure the mobile device’s current flow with Agilent
66321D power meter

0.3

A

=02

Current (

0.1

0
-100 -80 -60 -40 =20
RSSI (dbm)

Current (A)

=]
(95

>
)

)
=

MSE

Linear Quadratic Cubic
Cellular | 5.08 x 10~% | 220x 10~% | 1.77 x 10~ %
WiFi 6.52x 10~° | 435x 10~° | 4.25 x 10—

0 v
-100 -90

-80 =70
RSSI (dbm)

-60

Pt'r(zwn/s(s) = Y& K 53 -+ e X SQ -+ Vi XK S e Y0

D
Et"w'fl'??-"s(s? R D) = Pirans (S) X E xV

Para. Y3 Y2 Y1 Y0
Cellular | —1.35 x 10~° 2.9 x 103 0.21 -4.89
WiFi —437x 1077 | =562x10~° | —2.7x10~3 | 0.19

Replace communication energy model with our model

16

If We Only Have APK Files

APK file is an install file used in Android system
It is not easy to get source code of most of the applications

We develop a tool to help us modifying the third-party
applications to offload version

— Analyze and modify the APK files

APK Analysis Tool Work Flow

* We use apktool to decompile/compile the Smali code

— Smali is the register language used in Dalvik VM
* Find methods that can be offloaded

Decompile | Smalifiles Find candidate Modify the
the APK file methods target method
Compile the
Modified APK Sign the APK file modified Smali
to APK

Smali Code Example

k3 k3 ORI OR)

L ha

k3 k3 ORI OR)

(I I Y

[N

[N]

L ka

BoLd B [TN+ I =] (I I Y

I

(TS]

[

.class public Locom/PinballGame/GameScresen;

.Buper Leoom/badlogic/gdx/Inputhdapter:

.source "GameScreen.jawva"

interfaces

dAmplements Leom/badlogic/gdx/Screen:

static fields

.field public static ball 1000 texture:Lcom/badlogic/gdx/graphics/g2d/TextureRegion;
.field public static ball_ 100 texture:Lcom/badlogic/gdx/graphics/g2d/TextureRegion;

¥ instance fields
.field private BALL NUMBER:I

$# direct methods

Jethod static constructor <clinit>()V

Jdocal=s S

.prologue
const/4 w4,

const/4 w3,

const/4 w2,

const/4 w1,

JAdine 233

new—-array w0

0x4

0=z

Ox0

Ox3

r 'r‘r.& r

[Leom/badlogic/gdx/physics/boxZ2d/Body:

19

Context-Aware Decision Algorithm

« Q(T, L) : query database with time T and location L for
previous execution cost

— Cost can be execution time or energy consumption

If cloud/ local If cloud/ local still
Q(T, L) for has no record Q(null, L) has no record Try to
cloud and > for local/ > execute on
local cloud cloud/ local
Do not have Compare the cost of cloud
record and local

Try to

Execute on
cloud/local

execute
on cloud

20

Experiment Setup

HTC one X (client) and android X86 (server)
We recruit 5 users to use the client in a week

Class High Computation | Low Computation
Big State HCBS LCBS
Small State HCSS LCSS

HCBS: image transfer and face detection

LCBS: image transfer and color-space conversion

HCSS: nested for-loops
LCSS: simple for-loop

Prediction accuracy, performance gain, overhead

Decision Accuracy

* Take out the first two rounds which are considered as training

rounds

At least 80% across all users

120

100-

o0
O

Accuracy (%)
)
S ©

(3]
= D

34
64 _ 670
" I 492
|l _ (iﬂ
B Energy
Time
1 2 3 4 3

At least 80%

22

Performance Gain

Most of the executions benefit from cloud executions, and

our CADA algorithm successfully identifies the few executions
which cannot benefit from cloud

50X

40X+
30X+
20X

10X

0

At least 7X

1 2

3
User

1

/_

lobile
ADA

5
i

~

loud |t

4

1

Avg.

Time improvement

80X

60X+
40X+

20X+

1

2 3 4 Avg.
User

Energy improvement

23

Overhead

Space: M X L X 48 X 7 for each application
Time (runtime): query time < 1 ms
Energy: About 6% energy overhead

Power (mW) Average | Min | Max
Without profiler 48.9 47.1 | 50.5
With profiler 51.84 | 46.9 | 56.3

This decision algorithm can be implemented in any offloading
systems which support dynamic application offloading

Results of Offloading Third-party
Applications

* We download four applications from Internet

 Packet Chess

— Offload: 1742.5 ms
— Local: 2641.5 ms

OO0 @ Q .l C8 75 11:47
ket Chess For Android

25

Outline

Introduction
— Efficient Crowdsensing System With Offloading
— Offloading Applications To Cloud
— Contributions

Offloading Applications To Cloud

— Architecture

— Problem Statement

— Algorithm

— Experiments
Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As
Case Studies

— Implementation

— Case Studies

— Evaluations

Conclusion And Future Work

26

System Overview

mobile

Worker Selection Algorithm
Offload Decision Algorithm

Event Analysis Algorithm

Send Event Query

vyYy

Accept analysis Task

mobile

Broker

&

Offload computation/

Receive Result

Server

Prototype Architecture

Android Client

Broker

Front-end User Interface

GPS Broker
Listener Connector

Client Manager

Decision Algorithm

LR

Event Analysis Algorithm

Offloading Library

Client Handler

Server Connector

Server

Connection Handler

Offloading Library

Database Controller

28

Screenshots

QZWME 0Q T . & 745 1:36 QZOWNEM 0T T . @ 5 1:36 Q7NN E 0T F . & 45 1:36
’ 2 5
Query: |s crowded? Query List Refresh . My Query B ®
From: 2014/10/06 13:36 . L % F
Submit s &
To: 2014/10/06 13:36 B
PR 24 SR BRCSERTNRE ws®
& A 2 Z &, Y
- ,‘gj g?m;& § \/z% @ ? L3 H
W s p 55 &
T BRESBRFTRE , & 2 25
hy 0 & gt w2t \ Is crowded?
é“" Foanid
& : SN
2% By TREARS %
N5 - %
o4 @x)‘ﬁfé =
T A : :
EEERS @ 0:2014/05/08,22:53:00
* Query content: Is crowded?
A nEH
i
Lichod
- 4 Cancel
’fﬁ"g +
RiBRBAER
; i Kz S T
Rijgs
; 3 B O A SRR o
& i Gr Wy : Er Mgy
Query Plan Task Setting Query Plan Task Setting

29

Event Analysis Algorithms

 |sCrowded

— Human detection
— HOG + SVM

* Histogram of Oriented Gradients
— SVM is trained by OpenCV
— We use OpenCV to do the image processing
* [sNoisy
— Record the noise by microphone
— Compute the mean db

HOG Workflow And Example

L-FORGL - T]o Kol

N
Input
Image

h 4

Scale Image

h 4

Shift

A

Detection
Window

Z k
N “Huma n o
etected?

Y

Mark the
Detected
Area

X

~Check

v

Process
End

N

Whole
mage?

100 .l 8 = 4:35

31

Setup

Broker and server
— VMs on Desktop PC
— OS: Android-x86

Client
— HTC smartphone

Database
— MySQL database

We put a PC with dummynet between the broker and client
Network delay = [0, 50, 100, 200, 400] ms

Packet loss rate = [0, 2, 4, 8, 10] %

Bandwidth = [256, 512, 1024, 2048, 4096] kbit/s

We run each setting 5 times

IsCrowded (ldeal Case)

Offloading use only 56.5% processing time and 25.9% energy

consumption

IsCrowded Min | Max | Avg.
Local execution Time (ms) | 31322 | 33389 | 31957
Offload execution Time (ms) | 15536 | 19924 | 18062
Local energy (mJ) 10474 | 10887 | 10618
Offload energy (mlJ) 2396 | 2992 | 2759.2

33

IsNoisy (Ideal Case)

* Offloading uses 235% processing time and 184% energy
consumption

IsNoisy Min | Max | Avg.

Local execution Time (ms) 123 | 196 | 162.2

Offload execution Time (ms) | 332 | 474 | 381.2
Local energy (mlJ) 23 46 37

Offload energy (mlJ) 54 7 | 68.3

Execution Time (s)

Varying Network Delay

e Performance gain
— Time: when delay < 50 ms
— Energy: when delay < 200 ms

4
150 ——— 2.5 10
o Offload
-=-Local 2- | Offload
1007 g =S -LOC‘a,l
” = 1.5-)
\\\\\\\\\\\\\\\\\ %D BLERE EE -----“-I\.,.—.--'-“4'-‘:“-\:---1
50 I \\\\\\\\ E ‘I ‘‘‘‘‘‘‘‘‘
T L FE LT ® |
: i 0.5 o
T T T T T O T T T T T
0 50 100 200 400 0 50 100 200 400

Network Delay (ms) Network Delay (ms)

Execution Time (s)

Varying Packet Loss Rate

e Performance gain
— Time: when loss rate < 4%
— Energy: when loss rate < 8%

4
150 — PR
""""" Offload v Offload
-==Local — 1.5 -e=].0cal
100- 3 |
\j (| ®---®---®-------- ®--=-
50- = S
o----4------7‘-,.~--"-"'4"-I----s 0.5 Cme I
0L— - . . . 0L
0 2 4 8 10 0 2 4 8 10
Packet Loss Rate (%) Packet Loss Rate (%)

36

Varying Bandwidth

e Performance gain

— Time: when bandwidth > 2048 kbit/s
— Energy: when bandwidth = 512 kbit/s

4
x 10
150 ' — 27— ' '
— s Offload e Offload
? 15 == =Local
= 1001 :[=
= = :E---l:' R TR e -
= 501 I E T
g e RRET EEPEE SO TR = - I
0-— ' ' ' ' 0+— ' ' ' '
256 512 1024 2048 4096 256 512 1024 2048 4096
Bandwidth (kbit/s) Bandwidth (kbit/s)

37

Summary of The Results

 The network condition significantly affects the offloading
benefit
— Network delay: energy and time (< 50 ms), energy (< 200 ms)
— Packet loss rate: energy and time (< 4 %), energy (< 8 %)
— Bandwidth: energy and time (> 2048 kbit/s), energy (> 512 kbit/s)

* Offloading decision is necessary

Outline

Introduction
— Efficient Crowdsensing System With Offloading
— Offloading Applications To Cloud
— Contributions

Offloading Applications To Cloud

— Architecture

— Problem Statement

— Algorithm

— Experiments
Offloading Event Analysis Algorithms: Using IsCrowded And IsNoisy As
Case Studies

— Implementation

— Case Studies

— Evaluations

Conclusion And Future Work

Conclusion

We strive to minimize the energy consumption and execution
time of crowdsensing systems using offloading system

We propose a novel algorithm to determine whether to
offload the computation

The accuracy is at least 80%

We develop an APK analysis tool to help us analyze and
modify the APK files

We offload third-party applications and show that offloading
is feasible in existing applications

We implement a crowdsensing prototype system and show
that offloading improves the system performance

40

Future Work

Find out other contexts that can have high accuracy for most
of the mobile device users and applications

Try to offload methods that contain local resource, for
example, camera and GPS.

Thank You For Your Listening

