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Population of Mobile Device, Wireless 
Network, and Cloud Platform

• Mobile devices are more and more popular

– Smart phone, tablet, etc

– 1.75 billion smartphone users (2014)[1]

• Wireless network coverage

– The number of access points and the bandwidth are increasing
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Provide service to user 
through the network

[1] http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536



What Is Crowdsensing ?

• Smartphones are now equipped with multiple sensors

– GPS, accelerometer, microphone, gyroscope, etc.

• The crowds provide useful information for each others

– Events are detected through processing the sensory data

Ask questions

Answer questions or 
provide sensor data
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Why Is Crowdsensing Interesting?

• It has many applications

• It has many advantages 

– Users can ask questions which are hard for algorithms to answer

– Improving the coverage of traditional sensor networks

– Lowering the deployment and maintenance cost for companies
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What Is The Most Efficient Execution 
Flow?

• Most of the crowdsensing systems analyze the sensory data 
on broker/server

– It is not efficient 

– The computation capability and network bandwidth of servers and 
mobiles are different

• Offloading is a good 
solution
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Network Type Wifi 3G Local

Current (mA) 9.2619 285.3662 24.0448

Time (ms) 224.99 3559.85 299.34



Mobile Cloud Offloading

• Mobile devices has limited resources

– CPU, memory, GPU, battery lifetime, etc.

– Cannot run resource-intensive applications

• Cloud service can be used to address on the issue

– Cloud servers have large amount of resources

– Can be accessed easily through network

– Using powerful server to do the heavy computations

Light 
Computations

Mobile

Heavy 
Computations

CloudSend Heavy 
Tasks To Cloud

Get Results 
From Cloud
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Contributions

• We propose an offloading decision algorithm [MCC’13]

• We develop an APK analysis tool to analyze and modify APK 
files

• We offload existing third-party applications to show 
offloading is feasible in existing applications

• We integrate offloading into a crowdsensing prototype system 
to show the performance gain from offloading [PIMRC’14]
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Architecture
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System Execution Flow

Method A

Method B

Decision

Application 

No

Cloud

Method B
Yes

Database

Store the local 
execution cost 

Store the cloud 
execution cost 
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Why We Need A Decision Engine?

• Offloading cannot always improve performance or reduce 
energy consumption

– Transmission energy > computation energy

• Many factors can affect the offloading efficiency

– Wireless connectivity, mobile CPU usage, etc.

• We aim to minimize the energy consumption on mobile 
device or improve the application performance

– We should carefully determine whether to offload
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Offload? Not Offload?

• The decision algorithm should not introduce heavy overhead

• We proposed the context-aware decision algorithm to 
determine whether to offload the computation

– Context is the information of user and mobile device
• CPU usage, network connectivity, etc.

• Considered context

– Signal strength

– Throughput

– Time-of-day

– Location
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Why We Use These Four Contexts?

• To predict whether offloading has positive or negative impact 

• To estimate the energy consumption of tasks

– Execution energy and transmission energy

– Throughput and signal strength can be used to model transmission 
energy

• Many factors affect the offloading efficiency
– Data size, transmission time, computation complexity, etc.

– Time-of-day and location may imply the user behaviors and other 
factors
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Existing Energy Model

• Based on PowerTutor[2]

• The model assumes a constant power level and may lead to 
inaccurate estimations

• We need a better model

[2] L. Zhang et al. , “Accurate online power estimation and automatic battery behavior based power 

model generation for smartphones.” In Proc. of International Conference on Hardware/Software 
Codesign and System Synthesis, 2010.
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Proposed Context-Aware Energy 
Model

• We measure the mobile device’s current flow with Agilent 
66321D power meter

• Replace communication energy model with our model
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If We Only Have APK Files

• APK file is an install file used in Android system

• It is not easy to get source code of most of the applications

• We develop a tool to help us modifying the third-party 
applications to offload version

– Analyze and modify the APK files
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APK Analysis Tool Work Flow

• We use apktool to decompile/compile the Smali code

– Smali is the register language used in Dalvik VM

• Find methods that can be offloaded

Decompile 
the APK file

Find candidate 
methods

Smali files Modify the 
target method

Compile the 
modified Smali

to APK
Sign the APK fileModified APK
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Smali Code Example
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Context-Aware Decision Algorithm

• Q(T, L) : query database with time T and location L for 
previous execution cost

– Cost can be execution time or energy consumption

Q(T, L) for 
cloud and 

local

Q(null, L) 
for local/ 

cloud

If cloud/ local 
has no record

Do not have 
record

Execute on 
cloud/local

If cloud/ local still 
has no record
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Try to 
execute on 
cloud/ local

Compare the cost of cloud 
and local

Try to 
execute 
on cloud 



Experiment Setup

• HTC one X (client) and android X86 (server)

• We recruit 5 users to use the client in a week

• HCBS: image transfer and face detection

• LCBS: image transfer and color-space conversion

• HCSS: nested for-loops

• LCSS: simple for-loop

• Prediction accuracy, performance gain, overhead
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Decision Accuracy

• Take out the first two rounds which are considered as training 
rounds

• At least 80% across all users
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At least 80%



Performance Gain

• Most of the executions benefit from cloud executions, and 
our CADA algorithm successfully identifies the few executions 
which cannot benefit from cloud

Time improvement Energy improvement
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At least 7X



Overhead

• Space: 𝑀 × 𝐿 × 48 × 7 for each application

• Time (runtime): query time < 1 ms 

• Energy: About 6% energy overhead

• This decision algorithm can be implemented in any offloading 
systems which support dynamic application offloading
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Results of Offloading Third-party 
Applications
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• We download four applications from Internet

• Packet Chess

– Offload: 1742.5 ms

– Local: 2641.5 ms
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System Overview
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Prototype Architecture
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Screenshots

29



Event Analysis Algorithms

• IsCrowded

– Human detection

– HOG + SVM
• Histogram of Oriented Gradients

– SVM is trained by OpenCV

– We use OpenCV to do the image processing

• IsNoisy

– Record the noise by microphone

– Compute the mean db
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HOG Workflow And Example
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Setup

• Broker and server
– VMs on Desktop PC

– OS: Android-x86

• Client 
– HTC smartphone

• Database
– MySQL database

• We put a PC with dummynet between the broker and client

• Network delay = [0, 50, 100, 200, 400] ms

• Packet loss rate = [0, 2, 4, 8, 10] %

• Bandwidth = [256, 512, 1024, 2048, 4096] kbit/s

• We run each setting 5 times
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IsCrowded (Ideal Case)

• Offloading use only 56.5% processing time and 25.9% energy 
consumption
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IsNoisy (Ideal Case)

• Offloading uses 235% processing time and 184% energy 
consumption
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Varying Network Delay

• Performance gain 

– Time: when delay ≤ 50 ms

– Energy: when delay ≤ 200 ms
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Varying Packet Loss Rate

• Performance gain 

– Time: when loss rate ≤ 4%

– Energy: when loss rate ≤ 8%
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Varying Bandwidth

• Performance gain 

– Time: when bandwidth ≥ 2048 kbit/s

– Energy: when bandwidth ≥ 512 kbit/s
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Summary of The Results

• The network condition significantly affects the offloading 
benefit

– Network delay: energy and time (< 50 ms), energy (< 200 ms)

– Packet loss rate: energy and time (< 4 %), energy (< 8 %)

– Bandwidth: energy and time (> 2048 kbit/s), energy (> 512 kbit/s)

• Offloading decision is necessary
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Conclusion

• We strive to minimize the energy consumption and execution 
time of crowdsensing systems using offloading system

• We propose a novel algorithm to determine whether to 
offload the computation

• The accuracy is at least 80%

• We develop an APK analysis tool to help us analyze and 
modify the APK files

• We offload third-party applications and show that offloading 
is feasible in existing applications

• We implement a crowdsensing prototype system and show 
that offloading improves the system performance
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Future Work

• Find out other contexts that can have high accuracy for most 
of the mobile device users and applications

• Try to offload methods that contain local resource, for 
example, camera and GPS. 

41



Thank You For Your Listening
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