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Motivation

» Increasingly more context-aware applications (apps)

leverage the rich set of sensors on the smartp

N0NES.

» These applications directly control sensors w
to redundant activations and energy waste

nich lead




Introduction
» We can find some examples in our lives:
Casel: Different apps may require same contexts

Case2: Use different sensors to sense same contexts

» How to select the most efficient sensing strategy ?

— Satisfy all apps’ requirements Goosle Man
— Minimize energy consumption E’ ? Google

OSM Middleware

L4 ]




Contributions

» We achieve coordinated and optimized usages of sensors

» For a single smartphone[middlewarel4 under review]:
Consider the tradeoff between energy and accuracy
Present the middleware with scheduling algorithms
Propose four optimal/efficient algorithms

Rigorously solve the scheduling problem with sensory data
caches

» For multiple smartphones[PIMRC14 under review]:

Design, implement, and evaluate a crowdsensing system

Consider the tradeoff between carbon footprint (cost of
traveling and sensing) and complete ratio of tasks

Propose two optimal/efficient algorithms



Previous work

» Chun-Lin Lin’s work [1]
Solved a similar but simpler problem
Proposed two heuristic algorithms
Implemented the algorithms on smartphones

» Improvement
Mathematically formulate two scheduling problems
Improve and extend his algorithms
Leverage the relationship between the frequency of requests
and sensor sampling rates
Develop a simulator to do larger experiments

Apply the sensor scheduling algorithms to multiple
smartphones

4 [1] C.-L. Lin.An Energy/Accuracy-Optimized Framework for Context Sensing on
Smartphones Master’s thesis. National Tsine Hua University Taiwan. 201 3



System Overview

» We proposed an Optimal Sensor Management (OSM)
middleware

» The OSM middleware sits between apps and the hardware

» OSM middleware :
Provides API to connect apps
Maintains a database of active requests

Determines which sensors should be activated



System Architecture Joint with C. Lin

Application

a API:

<Context , Accuracy, Frequency> | | Inferred Context Feedback 1. Register()/Unregister()

2. Feedback()

Inferred Context

Register/

Unregister Context Analyzer System Model Request Manager
Request Manager | | §| Context Updater |f=| Combination || Accuracy || Energy 1. Manages a Request Queue
Request wer] o] |0 Model || Model 2. Preprocess the requests
Queue AlRO | ™ | plgo
P
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Schedule <Combination, Sampling Rate>
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System Model
» Combination model

The sensor combination of each inference algorithm
» Accuracy model

The precision (accuracy) of each inference algorithm
» Energy model

The energy consumption of each sensor
» Example:

IsMeeting { <Acc. Mic. Wifi.> < 80% > <265mW> }



System Architecture Joint with C. Lin

Application

a API:

<Context , Accuracy, Frequency> || Inferred Context Feedback 1. Register()/Unregister()

2. Feedback()

Register/ Inferred Context )

Unregister Context Analyzer System Model Request Manager

Request Manager | | §| Context Updater |f=| Combination || Accuracy || Energy 1. Manages a Request Queue
Request wer] o] [l Model || Model | Model 2. Preprocess the requests
Queue AlRO | ™ | plgo

Prezracessur Model Trainer |§—® Resource Manager _ Context Analyzer Sensory Data
T‘:‘;‘;f;t Scheduling 1. Context Updater  [InferAlgo )
Algorithm Mo ) 2. Model Trainer Context

Schedule <Combination, Sampling Rate> |

Hardwarr—:-| s | Wi | Ac [ ca ] T _} System M_odel
Combination/Accuracy/Energy

Resource Manager . .-
1. Battery Mor?itor *Coordinated and efficient sensor usage !

2. Scheduling Algorithm | *Avolid redundant energy waste !




Scheduling Problem Joint with C. Lin

» Support two optimization criteria:
» Energy Minimization (EM):
Minimize the energy consumption
Satisfy all the apps’ requirements
» Accuracy Maximization (AM):

Maximize the overall accuracy
within an energy budget




Problem Formulation

» Decision variable: x;, € { 0,1}
x Indicates whether the sensor s should be activated

» Energy Minimization :

min Y ez, Minimize energy

Me,sTs
S, Tiax HZ = ‘ 0‘71}21,1,‘3/7“:1,2,..,]%;
1, €140,1},Y5= 1,27,“,5. Satisfy all requirements

L E




Problem Formulation

» Decision variable: x; € {0, 1}
x Indicates whether the sensor s should be activated

» Accuracy Maximization :

R S
C ] Loy Mests —_—
LR HZS ) “‘w} Maximize accuracy

C:1 1
r=1 s=1 'C,S

S
sty e <E; Energy budget
s=1

rs €40,1},Vs=1,2,...,5. '




Proposed Scheduling Algorithms

v

Optimal algorithms :
The formulations are “Integer Programming Problem™

We use commercial optimization CPLEX solver which is developed
by IBM

Energy Minimization Algorithm (EMA)
Accuracy Maximization Algorithm (AMA)

* Good performance * Small scale case

v

Efficient algorithms :

Efficient Energy Minimization Algorithm (EEMA)
Efficient Accuracy Maximization Algorithm (EAMA)

* Less running time * Designed for smartphones



Efficient Energy Minimization

Algorithm (EEMA) Joint with C. Lin
» EEMAIs Inspired by the Set Cover Problem

» Define the utility function g,

=> The combination ¢ has higher g. means it satisfies
more requests and less costs

. // Input: A, M. R Output: X
// Inp , p
let X =0

. while R # 2, 11&1&}{0%(& M,X,R) > 0 do

1
2:
3
4: foreachec=12....Cdo
5
6

lcnmpute P A,M.X.f{ using Eq.

[select ¢ = argmax g.(A, M, X, R
c=12....0C

7. X+ XU{sm:s=1}
88 R« R-—{rly <ae .}

13 I Calculate and Update the g, I

I Choose the most efficiency combination I




Efficient Accuracy Maximization
Algorithm (EAMA) Joint with C. Lin
» EAMA Is Inspired by the 0/1 knapsack Problem

» Redefine the utility function : g,
=> The combination ¢ has higher g, means it provides
the higher accuracy and less costs

. // Input: A, M; Output: X
let ex =0, W = {1,2,...,C}, Y =0
while W = @ do

for eache=1.2,....C do

ICaIcuIate and Update the g, I omoute o (A M. X V) with Ba (15

select " = argmax, -y g’; (A M X Y)

I Choose the most efficiency combination I

W« W — [*]
if ex +w.«(M,X) < E then
T X — X U {slm.- . =1}
E]{:Z:le Ealg
for each r=1.2,..., H do
if §,. < a.« . then

Yy ="Qz* &

I Check the energy budget I

o to i o D001 Ut LIbD =




Heterogeneous Frequencies/Sampling Rates

» Extend the EEMA and the EAMA with heterogeneous
frequencies/sampling rates as EEMA* and EAMA*

» h, : the accuracy degradation rate of the context r

EX: The context r requires 70 % accuracy in every minute
, and the accuracy which decreases 10% per minute

The scheduling algorithm provides 80% accuracy

zacwT : - Vbt 1 ~ __, *Efficiently cache the
70Ds = {HM([ a'c”"l /;5 W ; -T)] ~ sensory data !
- 1 ‘ ' *Reduce energy

ion |
0 | : ; . s consumption !

|5 Time (m)



Simulation

» Developed an event-driven simulator in Java

» Baseline algorithm :

Selects sensors with the highest accuracy for each context
» Compare scheduling algorithms :
Optimal : EMA/AMA
Efficient : EEMA/EAMA
With frequencies/sampling rates : EEMA* / EAMA*

Baseline



Data Collection

1. Collect active apps in the Android activity stack
from 5 users in three weeks

2. Collect inference algorithms (from existing papers)

3. Create the energy model

Acc. 187

Blue. 195

37307 WiFi 16

: Mic. 62

- i L] Battery Emulator GPS 546

= Cel. 20

L




Parameter

» Set a fixed scheduling time T = 5min

» Set E as the Energy budget in a scheduling time
E= {45,52.5,60, 67.5,75})




Energy Saving in .

M

» The average energy consumption with 5 users in 21

days

* Saves at least 30%

* EEMA achieves a small

gap with EMA

=100

= —— Baseline

Z 80 -©-EEMA '
=) 4 EMA

201 9e ? 2|
8 P U B R ii‘@’
RSN IR AVET B B
= ' !
eui1d S e W
- ¥ Rl

[] ¥

L0 - - - -
s 0 5 10 15 20
= Time (day)

* EMA terminates in 50ms and EEMA terminates In 1ms
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Improvement of Accuracy in

» The precision with 5 users in 21 days
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Accuracy Improvement in AM

» The average accuracy with 5 users in 21 days
E=52.5]

=
S

o0
=
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——Baseline |

o
<

* Accuracy Is 72.38%

Precision (%)

higher than the baseline 40- paverrall|

* EAMA achieves a 0. _

~0.1% gap with AMA Lm N A A
0 5 10 15 20

Time (day)
* AMA terminates 1n 5000ms and EAMA terminates in 1ms
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Energy Saving with Variant No.
Contexts /Combinations in EM

» Comparison of the average energy saving between
EEMA and the baseline

E=60J

=100 — 100 | |

= Bl B ascline = — :

2 w0 [JEEMA | | £ 801 Egg;fe ‘
= 60 2 601

S 40 S a0

gt 20 _ZI 201

S | H H H

5 YT s 10 15 20 5 T s 10 15 20

. No. Contexts ‘ No. Combinations

* EEMA saves at least * EEMA saves more
71.03% In energy energy when combinations

2 Increase



Accuracy Improvement with Variant No.
Contexts/Combinations in AM

» Comparison of the average energy saving between
EAMA and the baseline

» E=60J
100 : : : ' ' 100
30 W T o0 WMl &l
= 601 E 601
S 40; I g 401 I
A, . =
204 Bl Bascline| | 20+ Bl Bascline ||
I [ JEAMA 0 [ JEAMA
[T W] e
0 s s 10 .15 ljﬂ 2 5 10 15 20
No. Contexts = No. Combinations

* EAMA achievesat most ~ ~ EAMA achieves less
53.71% in the precision when the problem is small
23



Energy Saving with Heterogeneous
Frequencies/Sampling Rates

* EEMA saves 64.58%
EEMA* saves 84.66%

* EAMA saves 33.68%
EAMAZ* saves 80.48%
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Implementation Joint with C. Lin

» Implement OSM with two efficient algorithms on the
Android system

*EEMA: Sttt
Prolongs battery life two times W
Achieves accuracy : 93.94% T

* EAMA: |
Prolongs battery life 1.5 times :

Achieves accuracy : 94.85% — )

* Execution times :
EEMA and EAMA at most 306 ms and 503 ms

25



Benefit of Variant Scheduling Window Sizes

Battery Conswmmption (%)
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* When the size increases, EEMA and EAMA save more energy

but expense of lower precision

* EEMA constantly saves more energy compared to EAMA
* EEMA and EAMA achieve very high precision

26



Benefit of Running Time with Variant No.
Contexts/Combinations
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1. The running time increases
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efficient
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Sensor Scheduling for Multiple Devices

» Smartphones are widespread and equipped with rich
Sensors

— Extend the sensor scheduling for multiple
smartphones

» Apply to the “Crowdsensing system”
Utilize the strength of smartphone users
Cooperate sensors on multiple smartphones 4
and infrastructure sensors N4

28



Crowdsensing System

» Scenario:
Task: Which one facility Is the most popular in the
amusement park?
Context : Is the facility Crowded ?

but it may be hard finished by a worker who is far away from the
amusement park or whose smartphone is lack of energy

» How to assign tasks in the most efficient
strategy?

— Satisfy all tasks’ requirements fll - s
— Minimize the cost of carbon footprints S ool

29



Crowdsensing System Overview
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Task Assignment Problem

» Task Assignment Problem has two parts:
(1) Worker selection problem

(i1) Sensor scheduling problem

» Consider workers’ locations and abilities (ex. The battery
level of smartphones)

Schedule tasks to workers with working paths
Achieve tasks’ requirement

Minimize the cost of carbon footprints
-> which consists of sensing and traveling costs

31



Problem Formulation (1/2)
» Decision variables: x,,;s € Z, E;; €{0,1}

xw.1s Indicates how many times that worker w turns on the sensor s at the

location |
E;"; indicates whether the worker w moves from the location i to the location j

» Objective : Sensing energy Traveling cost
A (distance)

min{a SJ SJ SJ Cw sTw.l.sTs|+ 3 SJ SJ di i B\

weW [€L seS weWH* [ I'eL

» Task Constraints : Minimize the total carbon footprints

Q(7,,a,.) > f..¥r € R | Ensure tasks are satisfied

Fo — Z Z Cw,stw,l,s > Oy, YV € W
lcL scS Energy threshold

32 *Carbon footprint transform coefficients : «, B



Problem Formulation (2/2)
» Path Constraints:
Start location:

Z E}?Au. =0,Vw e W~
In-degreE: jeL

Z o Z_}'EL ZSES [riz;d—il—‘ Vw € W*
- " . — , ¥

Other locations: | Visit locations which have sensing tasks

In-degree: > EY = - S[ IJJ Vi e L,Vwe W'
JeELUA,, j#i | I+
Out-degree: _Zseg [—Ijm+J |
E}’. < th NVie L Vwe W*
L S| +1
jeL,j#1

33



Efficient Task Assignment Algorithm (ETA)

» ETAIs Inspired by the Set Cover Problem

» Define the task ratio 4,,;

=> The worker w has higher 4, ; at the location | means it
satisfies more tasks and less costs

I: Input: & =< L, R, W, p, R >
2: Output: X, E
3: while R # () do

4:  z = Sensor_scheduling(®)
I Calculate and update the /1w,l I 5: |Compute(A) using Eq. (L 1)}
6:
I Choose the most efficient worker I ;‘
9: Tpls = Tw,ls T Zw,l,s
0. EY =1
11:  update(E, W, u)
12z forr € R do
13: if Q(,u,.rp,?,._ ar,) > f, then
14: remove r from R
15: return X, E

34




Simulation

» Develop an event-driven simulator in Java

» Baseline

1. Infrastructure sensors only (1S)
2. Opportunistic sensing (1SOS):

Consider infrastructure’ and mobile’ sensors
Workers move by the random waypoint

» Optimal algorithm (OPT):
Developed by the IBM CPLEX solver
» Efficient Task Assignment Algorithm (ETA)

35



Optimization Gap In Carbon Footprints

between ETA and OPT

» Variant numbers of
users with 10 queries

=£ 2700
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* ETA achieves a small
gap of ~2% with OPT
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* The running time of

ETA IS 1333 times
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Improve Completed Task Ratio by ETA

» Comparison of the completed task ratio between ETA,
1S, 1ISOS

v
o
S

Completed Task Ratio (%)

=
e
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* ETA achieves higher
completed task ratio than
IS and ISOS



Save Carbon Footprints by ETA

» Comparison between ETA and ISOS in larger scale

n = tn

e

=
o

Average Carbon Footprint (g)
I~
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 * ETA saves 364 times
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Improve Completed Task Ratio by ETA
» Comparison between ETA and ISOS

2 100- il R B i
= 904|--+--ISOS
801|-+-FETA
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60 i ] )
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Improve Responding Time by ETA
» Comparison between ETA and ISOS
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Conclusions

» For sensor scheduling problem :
EEMA/ EAMA have a gap as small as ~3% with EMA/AMA
EEMA/ EAMA run in real-time

EEMA/ EAMA lead to a better performance than the
baseline

» For task assignment problem :

ETA has a gap as small as ~2% with OPT
ETA runs faster than OPT
ETA leads to a better performance than ISOS

41
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Energy Saving with Variant a in EM

» The average energy consumption which is normalized
to the baseline with 5 users In variant o

Energy Consumption (

Nor.

80

o)
=

L
<

-2
=

=

. 1 1
B Bascline

EEMA
EMA

* When o Increases,
the gap with the
- baseline will decrease




Accuracy Improvement with Variant E in AM

» Consider the average energy consumption with 5
users

100
E?SG' @ ___-_-_-Q:"‘** _
<. > * AMA always higher
: 0| [5-Baseiine Than the baseline
£ ||-e-EAMA * EAMA performs well

201 [ AMA when the energy

0 —— budget is lower
0 45 52

60 675 175



Energy Budget in AM

» The average energy consumption with 5 users in 21

days
E=52.5]
S\ ssssssssteanatasiizss; * EAMAis always
240- within the energy
:"|E =52.5] ~ budget
22':" —Energy Budget ||
%ﬁlﬁ‘ -e-EAMA
= =+ AMA
S | .
0 5 10 15 20

Time (day)
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Variant Energy Budget in AM

» The average energy consumption with 5 users in 21
days
E=52.5]

)
&

i
=

-

S S * EAMA saves more
240 / -
k —meouaer]| €Nergy when E decreases
2201 ,/ -e-EAMA
2 © - AMA
ﬂ 0 . :

0 45 32.5 60 67.5 75

E (J)
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Data Collection

1. Collect posts from BBS as our queries
The time of post => the time of query
The IP address of post => the location of query

2. Convert the IP address into location using IPInfoDB

47



Improvement Completed Task Ratio by ETA

» Comparison between ETA and ISOS

/i

Completed Task Ratio (
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