Optimizing Mobile Middleware for Coordinated Sensor Activations

Ting-Fang Hou

Motivation

- Increasingly more context-aware applications (apps) leverage the rich set of sensors on the smartphones.
- These applications directly control sensors which lead to redundant activations and energy waste

Introduction

- We can find some examples in our lives:
 - Case1: Different apps may require same contexts
 - Case2: Use different sensors to sense same contexts
- How to select the most efficient sensing strategy ?
 - Satisfy all apps' requirements
 - Minimize energy consumption

Contributions

- We achieve **coordinated** and **optimized** usages of sensors
- For a single smartphone[middleware14 under review]:
 - Consider the tradeoff between energy and accuracy
 - Present the middleware with scheduling algorithms
 - Propose four optimal/efficient algorithms
 - Rigorously solve the scheduling problem with sensory data caches
- For multiple smartphones[PIMRC14 under review]:
 - Design, implement, and evaluate a crowdsensing system
 - Consider the tradeoff between carbon footprint (cost of traveling and sensing) and complete ratio of tasks
 - Propose two optimal/efficient algorithms

Previous work

- Chun-Lin Lin's work [1]
 - Solved a similar but simpler problem
 - 1. Proposed two heuristic algorithms
 - 2. Implemented the algorithms on smartphones

Improvement

- 1. Mathematically formulate two scheduling problems
- 2. Improve and extend his algorithms
- 3. Leverage the relationship between the frequency of requests and sensor sampling rates
- 4. Develop a simulator to do larger experiments
- 5. Apply the sensor scheduling algorithms to multiple smartphones
- 4 [1] C.-L. Lin. An Energy/Accuracy-Optimized Framework for Context Sensing on Smartphones. Master's thesis. National Tsing Hua University. Taiwan, 2013

System Overview

- We proposed an Optimal Sensor Management (OSM) middleware
- The OSM middleware sits between apps and the hardware
- OSM middleware :
 - Provides API to connect apps
 - Maintains a database of active requests
 - Determines which sensors should be activated

System Architecture

Joint with C. Lin

Resource Manager

- 1. Battery Monitor
- 2. Scheduling Algorithm

System Model

Combination model

- > The sensor combination of each inference algorithm
- Accuracy model
 - The precision (accuracy) of each inference algorithm
- Energy model
 - The energy consumption of each sensor
- Example:
 - IsMeeting { <Acc. Mic. Wifi.> < 80% > <265mW> }

System Architecture

Joint with C. Lin

Resource Manager

- 1. Battery Monitor
- 2. Scheduling Algorithm

*Coordinated and efficient sensor usage ! *Avoid redundant energy waste !

Scheduling Problem

- Support two optimization criteria:
 - **Energy Minimization (EM):**

Minimize the energy consumption

Satisfy all the apps' requirements

Accuracy Maximization (AM):

Maximize the overall accuracy within an energy budget

Joint with C. Lin

Problem Formulation

- Decision variable: x_s ∈ { 0, 1}
 x_s indicates whether the sensor s should be activated
- Energy Minimization :

Problem Formulation

- Decision variable: x_s ∈ { 0, 1}
 x_s indicates whether the sensor s should be activated
- Accuracy Maximization :

$$\max \sum_{r=1}^{R} \max_{c=1}^{C} \left\{ \left| \frac{\sum_{s=1}^{S} m_{c,s} x_s}{\sum_{s=1}^{S} m_{c,s}} \right| a_{c,r} \right\} \text{ Maximize accuracy}$$

$$s.t. \sum_{s=1}^{S} e_s x_s \leq E; \text{ Energy budget}$$

$$x_s \in \{0,1\}, \forall s = 1, 2, \dots, S.$$

Proposed Scheduling Algorithms

- Optimal algorithms :
 - The formulations are "Integer Programming Problem"
 - We use commercial optimization CPLEX solver which is developed by IBM

Energy Minimization Algorithm (EMA) Accuracy Maximization Algorithm (AMA)

- * Good performance * Small scale case
- Efficient algorithms :

Efficient Energy Minimization Algorithm (EEMA) Efficient Accuracy Maximization Algorithm (EAMA)

* Less running time * Designed for smartphones

Efficient Energy Minimization Algorithm (EEMA) Joint with C. Lin

- EEMA is inspired by the Set Cover Problem
- Define the utility function g_c :

=> The combination c has higher g_c means it satisfies more requests and less costs

1: // Input: A, M,
$$\hat{\mathbf{R}}$$
; Output: X
2: let $\mathbf{X} = \emptyset$
3: while $\hat{\mathbf{R}} \neq \emptyset$, $\max_{1 \le c \le C} g_c(\mathbf{A}, \mathbf{M}, \mathbf{X}, \hat{\mathbf{R}}) > 0$ do
4: for each $c = 1, 2, \dots, C$ do
5: compute $g_c(\mathbf{A}, \mathbf{M}, \mathbf{X}, \hat{\mathbf{R}})$ using Eq. (13) Calculate and Update the g_c
6: select $c^* = \underset{c=1,2,\dots,C}{\operatorname{argmax}} g_c(\mathbf{A}, \mathbf{M}, \mathbf{X}, \hat{\mathbf{R}})$ Choose the most efficiency combination
7: $\mathbf{X} \leftarrow \mathbf{X} \cup \{s | m_{c^*,s} = 1\}$
8: $\hat{\mathbf{R}} \leftarrow \hat{\mathbf{R}} - \{r | y_r \le a_{c^*,r}\}$

Efficient Accuracy Maximization Algorithm (EAMA) Joint with C. Lin

- EAMA is inspired by the 0/1 knapsack Problem
- Redefine the utility function : g'_c
 => The combination c has higher g'_c means it provides the higher accuracy and less costs

Heterogeneous Frequencies/Sampling Rates

- Extend the EEMA and the EAMA with heterogeneous frequencies/sampling rates as EEMA* and EAMA*
- h_r : the accuracy degradation rate of the context r
- Ex: The context r requires 70 % accuracy in every minute , and the accuracy which decreases 10% per minute

The scheduling algorithm provides 80% accuracy

Simulation

- Developed an event-driven simulator in Java
- Baseline algorithm :
 - Selects sensors with the highest accuracy for each context
- Compare scheduling algorithms :
 - Optimal : EMA / AMA
 - Efficient : EEMA / EAMA
 - With frequencies/sampling rates : EEMA* / EAMA*
 - Baseline

Data Collection

- Collect active apps in the Android activity stack from 5 users in three weeks
- 2. Collect inference algorithms (from existing papers)
- 3. Create the energy model

Galaxy Nexus	e e		Energy	(mW)
	SAMSUNG Near Feld Communication			
A CARACTER AND A CARACTER	Arview Battery 3.7 unde Battery 5.7 under 5.7 un	Acc.	187	
		Battery Emulator	Blue.	195
			WiFi	16
			Mic.	62
			GPS	546
			Cell.	20

Parameter

- Set a fixed scheduling time T = 5min
- Set E as the Energy budget in a scheduling time
 E = {45, 52.5, 60, 67.5, 75}J

Energy Saving in EM

- * Saves at least 30%
- * EEMA achieves a small gap with EMA

* EMA terminates in 50ms and EEMA terminates in 1ms

Improvement of Accuracy in EM

The precision with 5 users in 21 days

* EEMA achieves at least
30% higher accuracy
* EEMA achieves a small gap with EMA

Accuracy Improvement in AM

The average accuracy with 5 users in 21 days E= 52.5J

* Accuracy is 72.38%
higher than the baseline
* EAMA achieves a
~0.1% gap with AMA

* AMA terminates in 5000ms and EAMA terminates in 1ms

Energy Saving with Variant No. Contexts/Combinations in EM

• Comparison of the average energy saving between EEMA and the baseline

Accuracy Improvement with Variant No. Contexts/Combinations in AM

 Comparison of the average energy saving between EAMA and the baseline

Energy Saving with Heterogeneous Frequencies/Sampling Rates

- * EEMA saves 64.58% EEMA* saves 84.66%
- * EAMA saves 33.68% EAMA* saves 80.48%

* Higher performance in EAMA*=> high precision which is achieved by EAMA

Implementation

- Implement OSM with two efficient algorithms on the Android system
- * EEMA :
 - Prolongs battery life two times Achieves accuracy : 93.94%

* EAMA:

Prolongs battery life 1.5 times Achieves accuracy : 94.85%

* Execution times : EEMA and EAMA at most 306 ms and 503 ms

Benefit of Variant Scheduling Window Sizes

* When the size increases, EEMA and EAMA save more energy but expense of lower precision

- * EEMA constantly saves more energy compared to EAMA
- * EEMA and EAMA achieve very high precision

Benefit of Running Time with Variant No. Contexts/Combinations

* While the contexts and combinations increase

- 1. The running time increases
- 2. EEMA and EAMA algorithms are always efficient

Sensor Scheduling for Multiple Devices

- Smartphones are widespread and equipped with rich sensors
- ⇒ Extend the sensor scheduling for multiple smartphones
- Apply to the "Crowdsensing system"
 - Utilize the strength of smartphone users
 - Cooperate sensors on multiple smartphones and infrastructure sensors

Crowdsensing System

Scenario:

Task: Which one facility is the most popular in the amusement park?

Context : Is the facility Crowded ?

but it may be hard finished by a worker who is far away from the amusement park or whose smartphone is lack of energy

- How to assign tasks in the most efficient strategy?
 - Satisfy all tasks' requirements
 - Minimize the cost of carbon footprints

Crowdsensing System Overview

Task Assignment Problem

- Task Assignment Problem has two parts:
 (i) Worker selection problem
 - (ii) Sensor scheduling problem
- Consider workers' locations and abilities (ex. The battery level of smartphones)
 - 1. Schedule tasks to workers with working paths
 - 2. Achieve tasks' requirement
 - 3. Minimize the cost of carbon footprints
 -> which consists of sensing and traveling costs

Problem Formulation (1/2)

- Decision variables: $x_{w,l,s} \in Z, E_{i,j}^w \in \{0,1\}$
- $x_{w,l,s}$ indicates how many times that worker w turns on the sensor s at the location l
- $E_{i,j}^{w}$ indicates whether the worker w moves from the location i to the location j

Problem Formulation (2/2)

- Path Constraints:
 - Start location:

$$\begin{array}{ll} \mathbf{In-degree:} & \sum_{j \in \mathbf{L}} E_{j,A_w}^w = 0, \forall w \in \mathbf{W}^* \\ \mathbf{Out-degree:} & \sum_{j \in \mathbf{L}} E_{A_w,j}^w = \left\lceil \frac{\sum_{j \in \mathbf{L}} \sum_{s \in \mathbf{S}} \left\lceil \frac{x_{w,j,s}}{x_{w,j,s}+1} \right\rceil}{|\mathbf{L}||\mathbf{S}|+1} \right\rceil, \forall w \in \mathbf{W}^* \\ \mathbf{Other locations:} & \text{Visit locations which have sensing tasks} \\ \mathbf{In-degree:} & \sum_{j \in \mathbf{L} \cup A_w, j \neq i} E_{j,i}^w = \left\lceil \frac{\sum_{s \in \mathbf{S}} \left\lceil \frac{x_{w,i,s}}{x_{w,i,s}+1} \right\rceil}{|\mathbf{S}|+1} \right\rceil, \forall i \in \mathbf{L}, \forall w \in \mathbf{W}^* \\ \mathbf{Out-degree:} & \sum_{j \in \mathbf{L}, j \neq i} E_{i,j}^w \leq \left\lceil \frac{\sum_{s \in \mathbf{S}} \left\lceil \frac{x_{w,i,s}}{x_{w,i,s}+1} \right\rceil}{|\mathbf{S}|+1} \right\rceil, \forall i \in \mathbf{L}, \forall w \in \mathbf{W}^* \end{array}$$

Efficient Task Assignment Algorithm (ETA)

- ETA is inspired by the Set Cover Problem
- Define the task ratio $\lambda_{w,l}$:

=> The worker w has higher $\lambda_{w,l}$ at the location l means it satisfies more tasks and less costs

1: Input: $\Phi = \langle \mathbf{L}, \mathbf{R}, \mathbf{W}, \boldsymbol{\mu}, \widehat{\mathbf{R}} \rangle$ 2: Output: **X**, **E** 3: while $\widehat{\mathbf{R}} \neq \emptyset$ do $z = Sensor_scheduling(\Phi)$ 4: Calculate and update the $\lambda_{w,l}$ Compute(Λ) using Eq. (11) 5: 6: $Sort(\Lambda)$ $\lambda_{w,l} = \operatorname{pop}(\mathbf{\Lambda})$ 7: Choose the most efficient worker for $s \in \mathbf{S}$ do 8: 9: $x_{w,l,s} = x_{w,l,s} + z_{w,l,s}$ $E^w_{A_w,l} = 1$ 10: update(E, W, μ) 11: for $r \in \mathbf{R}$ do 12: if $Q(\mu_{r_p,r}, a_{r_c}) \ge f_r$ then 13: remove r from $\widehat{\mathbf{R}}$ 14: 15: return X. E

Simulation

- Develop an event-driven simulator in Java
- Baseline
 - 1. Infrastructure sensors only (IS)
 - 2. Opportunistic sensing (ISOS):
 - Consider infrastructure' and mobile' sensors
 - Workers move by the random waypoint
- Optimal algorithm (OPT):
 - Developed by the IBM CPLEX solver
- Efficient Task Assignment Algorithm (ETA)
Optimization Gap in Carbon Footprints between ETA and OPT

 Variant numbers of users with 10 queries

Improve Completed Task Ratio by ETA

 Comparison of the completed task ratio between ETA, IS, ISOS

* ETA achieves higher completed task ratio than IS and ISOS

Save Carbon Footprints by ETA

Comparison between ETA and ISOS in larger scale

Improve Completed Task Ratio by ETA

Comparison between ETA and ISOS

39

Improve Responding Time by ETA

Comparison between ETA and ISOS

Conclusions

For sensor scheduling problem :

- ▶ EEMA/ EAMA have a gap as small as ~3% with EMA/AMA
- EEMA/ EAMA run in real-time
- EEMA/ EAMA lead to a better performance than the baseline

For task assignment problem :

- ▶ ETA has a gap as small as ~2% with OPT
- ETA runs faster than OPT
- ETA leads to a better performance than ISOS

Backup

Energy Saving with Variant $\boldsymbol{\alpha}$ in EM

The average energy consumption which is normalized to the baseline with 5 users in variant α

* When α increases, the gap with the baseline will decrease Accuracy Improvement with Variant E in AM

Consider the average energy consumption with 5 users

* AMA always higher Than the baseline
* EAMA performs well when the energy budget is lower

Energy Budget in AM

The average energy consumption with 5 users in 21 days E= 52.5J

* EAMA is always within the energy budget

Variant Energy Budget in AM

The average energy consumption with 5 users in 21 days E= 52.5J

* EAMA saves more energy when E decreases

Data Collection

1. Collect posts from BBS as our queries

- 1. The time of post => the time of query
- 2. The IP address of post => the location of query

2. Convert the IP address into location using IPInfoDB

Improvement Completed Task Ratio by ETA

Comparison between ETA and ISOS

* ETA always completes more tasks than ISOS