Detour Planning Problem on Mobile Crowdsensing Systems

Chen-Chih Liao

Slides: 39 pages

Outline

- 1. Introduction
 - Motivation
 - Crowdsensing
 - Research Problems
- 2. Related Work
- 3. Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 4. Multi-user Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 5. Conclusion and Future Work

Motivation

- Smartphone users are ubiquitous, and smartphones provide powerful computing and sensing abilities
 - Smartphones are capable to perform some tasks (e.g.: shooting photos/videos, reading sensory data, and etc.)
- Ideas to make good use of smartphones and let smartphone users contribute their effort for some rewards
- Crowdsensing

What is Crowdsensing?

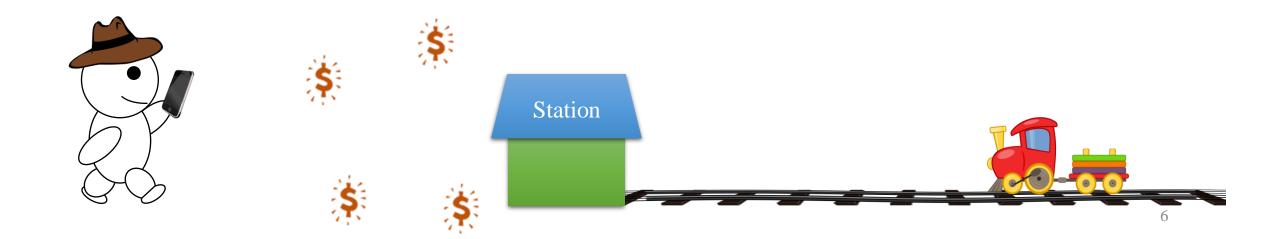
- Mobile sensing
 - Opportunistic sensing
 - Participatory sensing
- Limitation
 - Mobile sensing could not serve a large number of sensing tasks
- Crowdsensing
 - Human-in-the-loop
 - Similar to crowdsourcing

Geospatial Information Gathering

- A new class of crowdsensing systems
- Requesters: companies and organizations
 - Submit geospatial and temporal-dependent tasks (specific time and location)
 - Task: capturing videos/pictures or collecting sensor readings
- Workers: smartphone users
 - Report their destination and deadline
 - They wouldn't mind to take some detour routes for small rewards

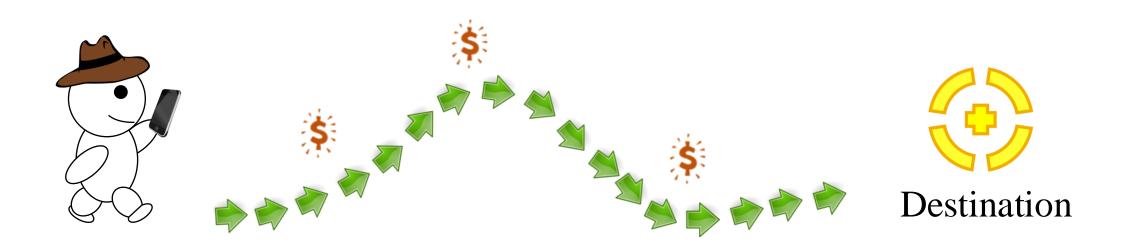
Usage Scenario #1

- When the smartphone user is at the train station, and he is waiting the train which will arrive at 1 to 2 hours
- What can he do in this free time?
 - Perform some tasks which are near the station



Usage Scenario #2

- When the smartphone user is traveling, and he expect that he will arrive at his destination in 2 hours
- What can he do in this traveling time?
 - Perform some tasks which are near the expected route

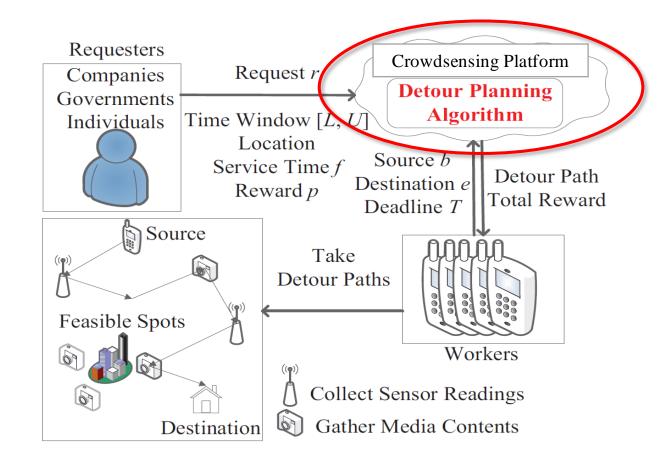


Key Research Problem: Detour Planning Problem

- Problem: How to make a good use of the abilities of ubiquitous smartphone users?
- Goal: We plan to let smartphone users well utilize their smartphones and earn the maximum rewards in their available time
- Solutions:
 - (Single-user) Detour Planning Algorithm [MoVid'13]
 - Multi-user Detour Planning Algorithm

[MoVid'13] C. Liao and C. Hsu. A detour planning algorithm in crowdsourcing systems for multimedia content gathering. In *Proc. of Workshop on Mobile Video (MoVid'13)*

System Architecture



Contribution

- 1. The systems produce a detour path for each new worker.
- 2. The systems compute the detour paths to maximize total worker profit.
- 3. The systems simultaneously consider multiple users to make a good use of all users.
- 4. The systems concern the energy consumption and sensor accuracy when assigns requests to workers.

Outline

- 1. Introduction
 - Motivation
 - Crowdsensing
 - Research Problems
- 2. Related Work
- 3. Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 4. Multi-user Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 5. Conclusion and Future Work

Related Work

- Crodwsourcing
 - 1. [36] Task matching in crowdsourcing
 - 2. [1] Mechanism design for spatio-temporal request satisfaction in mobile networks
 - 3. [3] On task assignment for real-time reliable crowdsourcing
 - > We consider mobile multimedia/sensing, and our solution gives optimal paths
- Crowdsensing
 - 1. [12] A location-based incentive mechanism for participatory sensing systems with budget constraints
 - 2. [5] Truthful auction for location-aware collaborative sensing in mobile crowdsourcing
 - 3. [23] Toward optimal allocation of location dependent tasks in crowdsensing
 - ➤We consider more time constraints of multimedia/sensing requests and workers, and we also take account of reward, traveling/energy costs, and accuracy.

Outline

- 1. Introduction
 - Motivation
 - Crowdsensing
 - Research Problems
- 2. Related Work
- 3. Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 4. Multi-user Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 5. Conclusion and Future Work

Problem Formulation $\max \sum \sum [p_i - \sum \sum c_{i_a, j_b} u_{i, a} u_{j, b}] x_{i, j}$ Maximize overall profits i=1 i=2 $a=1 \ b=1$ s.t. $\sum_{i=1}^{N} x_{1,i} = \sum_{i=1}^{N-1} x_{i,N} = 1$ Start and end points $\sum_{i=1}^{N} x_{i,k} = \sum_{i=2}^{N} x_{k,j} \le 1, \forall k = 2, \dots, N-1$ No rep. each request N-1 N $\sum \sum (\sum \sum m_{i_a, j_b} u_{i,a} u_{j,b} + f_i) x_{i,j} \le T_{max}$ Arrive destination in time i=1 i=2 a=1 b=1Visit one feasible spot $\sum u_{i,j} \le 1, \forall i = 1, ..., N$ of each request $s_i + f_i + \sum \sum m_{i_a, j_b} u_{i, a} u_{j, b} - s_j \leq M(1 - x_{i, j}), \forall i, j = 1, ..., N$ Timeline of each request $a=1 \ b=1$ $L_{i} \leq s_{i}, \forall i = 1, ..., N$ $s_{i} + f_{i} \leq U_{i}, \forall i = 1, ..., N$ $x_{i,j}, u_{i,j} \in \{0, 1\}.$ Start time of each request Finish time of each request (3.9)

14

Orienteering Problem with Time Window (OPTW)

- A similar problem
 - Goal: maximize the score
 - Game: players go to specific spots, and finish the predetermined job for a score
 - Not exactly the same: (1) multiple feasible spots and (2) traveling cost (gas and car depreciation)
- We enhanced a dynamic programming based OPTW algorithm [RS09] for an optimal Detour Planning (DP) algorithm
 - Complexity: $O(NZ2^{NZ})$
- We propose DP Approximation (DPA) algorithm to improve the complexity time of DP by a user selected parameter ϵ [LG06]

[RS09] Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Computers and Operations Research, 36(4):1191-1203, April 2009.

[LG06] K. Lai and M. Goemans. The knapsack problem and fully polynomial time approximation schemes (FPTAS). http://math.mit.edu/~goemans/18434S06/knapsack-15 katherine.pdf,

Collecting Feasible Spots

- Find 25 landmarks in Taipei (http://taipeitravel.net) and Vancouver (http://hotels.com)
- Use Flickr API to download the pictures tagged with each landmark, and retrieve the longitude/latitude
- Use hierarchical clustering algorithm to group these photos at the granularity of blocks (~100 m) ← gives us the feasible spots
- Employ Google map to compute the distance between any two feasible spots

Simulator Implementation

- We implement a trace-driven simulator in C
- It supports five algorithms
 - The proposed DP algorithm
 - Four heuristic algorithms
 - Highest-Reward (HR) \leftarrow mimic human behavior
 - Closest-Request (CR) \leftarrow mimic human behavior
 - Highest-Reward with Ontime (HROT)
 - Closest-Request with Ontime (CROT)

Simulation Design

- Parameters
 - *N*: number of requests: {5, 10, 15, 20, 25}
 - *T*: deadline: {1, 2, 4, 8, 16} (hr)
 - *C*: travel cost: {0, 0.06, 0.12, 0.24, 0.48} (\$/km)
- Metrics
 - Total profit
 - Running-time
 - Ontime-ratio

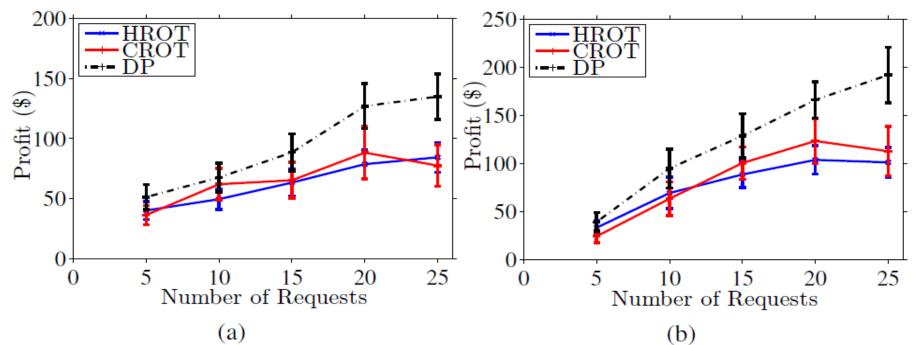
Ontime Ratio

City	Taipei			Vancouver		
Algorithm	HR	CR	DP	HP.	CR	DP
Deadline $T = 1$	0	0	100	0	0	100
2	4.1	4.1	100	4.1	0	100
4	0	0	100	0	0	100
8	0	0	100	0	4.1	100
16	29.1	58.3	100	33.3	41.6	100
City	r	Гаіреі	ĺ	Va	neouv	ver
City Algorithm	UR	Faipei CR	DP	Va HR	neouv CR	ver DP
¥	HR	-				
Algorithm	HR	ĊŔ	DP	HR	CR	DP
Algorithm No. Requests $N = 5$	HR 12.5	ĊŔ	DP 100	HR 0	CR 0	DP 100
Algorithm No. Requests $N = 5$ 10	12.5 0	CR 8.3 0	DP 100 100	HR 0 0	CR 0 4.1	DP 100 100

Table 1: Ontime Ratio (%) of Various Algorithms

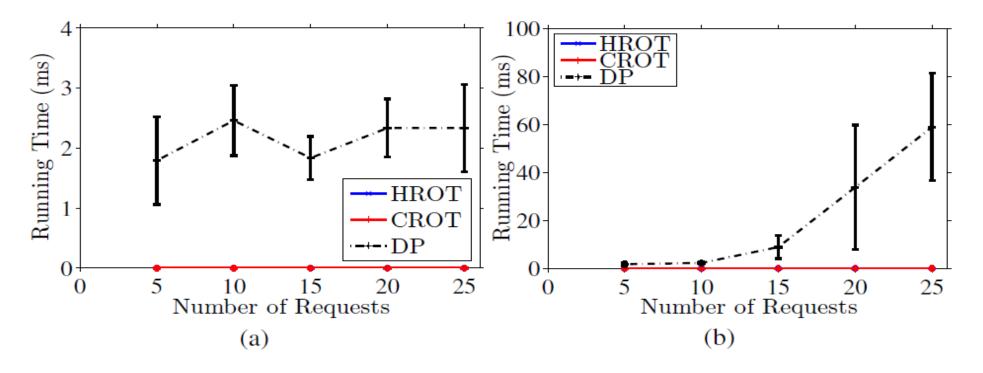
HR and CR (mimicking humans) \rightarrow low ontime ratios!

Total Profits



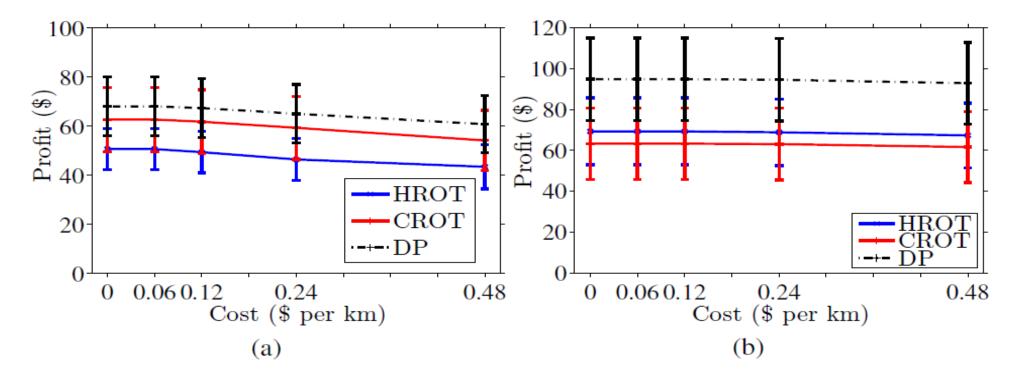
- Although HROT and CROT guarantee ontime arrival, they suffer from low profits
- Compared to HROT and CROT, DP doubles the profit with 25 requests
 - More requests \rightarrow larger gap!

DP is Efficient



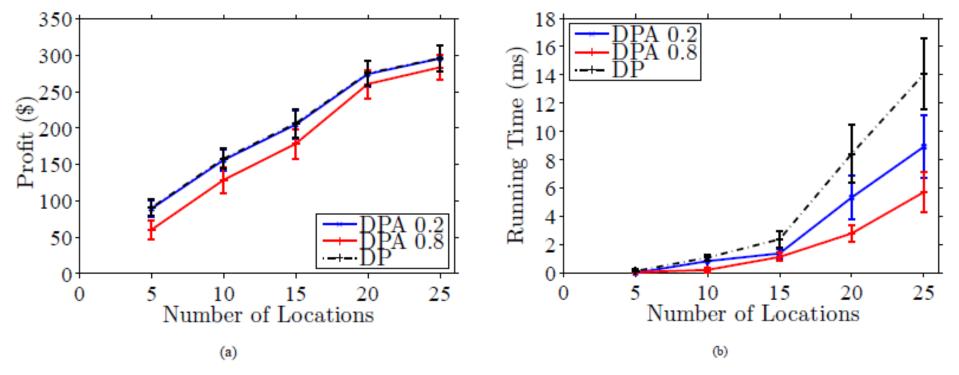
- Terminates in less than 60 ms
- Slower for Vancouver (right) \leftarrow up to total 162 feasible spots
 - Taipei (left): 49

Implication of Travel Cost



• Higher profits when per-km cost is lower

DPA Improves the Running Time with Near-optimal Results



- When $\epsilon = 0.8$, DPA achieves near-optimal profits and 3X speed ups
 - ϵ is a user selected parameter
 - higher ϵ leads to both higher approximation gap and lower complexity

Discussion

Algorithm		Contribution			
DP	MDP	Contribution			
V	V	1. The systems produce a detour path for each new worker.			
V	V	2. The systems compute the detour paths to maximize total worker profit.			
	V	3. The systems should simultaneously consider multiple users to make a good use of all users.			
	V	4. The systems should concern the energy consumption and sensor accuracy when assigns requests to workers.			

DP: Detour planning algorithm MDP: Multi-user detour planning algorithm

Outline

- 1. Introduction
 - Motivation
 - Crowdsensing
 - Research Problems
- 2. Related Work
- 3. Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 4. Multi-user Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 5. Conclusion and Future Work

Multiple Detour Planning Problem

- The real system must simultaneously consider all workers
 - DP computes a detour path for a worker at a time
 - Workers can balance or reduce the traveling cost
- We further consider the energy cost (battery level) and the accuracy of sensory data [EMASC'14]
 - Energy model
 - Accuracy model

[EMASC'14] C. Liao, T. Hou, T. Lin, Y. Cheng, A. Erbad, C. Hsu, and N. Venkatasubramanian. Smartphone augmented infrastructure sensing for public safety and sustainability in smart cities. In *Proc. of Workshop on Emerging Multimedia Applications and Services for Smart Cities (EMASC'14)*

Models

- Energy model
 - Compute the total consumption of smartphone sensors

- Accuracy model
 - Perform how much times for achieving the accuracy of tasks
 - Decide how many workers for collecting enough result to achieve the quality of tasks

N-1 N $\max \sum_{i=1}^{W} \sum_{j=2}^{N} [p_i - \sum_{a=1}^{N} \sum_{b=1}^{J} c_{i_a, j_b} u_{i, a} u_{j, b}] x_{w_{i, j}}$ $s.t. \sum_{i=1}^{W} \sum_{j=2}^{N} x_{w, o_w, j} = \sum_{i=1}^{W} \sum_{j=1}^{N} x_{w, i, d_w} = 1$ Maximize overall profits A new dimension Formulation Start and end points $w=1 \ j=1, j!=o_w$ $w=1 \ i=1, i!=d_w$ N-1 $\sum_{i=1} x_{w,i,k} = \sum_{j=2} x_{w,k,j} \le a(q_k), \forall w = 1, ..., W, \forall k = 2, ..., N-1$ Assign many times to different workers for achieving the required quality N-1 N z_i $\sum \sum (\sum \sum m_{i_a,j_b} u_{i,a} u_{j,b} + f_i) x_{w,i,j} \le T_w, \forall w = 1, \dots, W$ Arrive destination in time i=1 j=2 a=1 b=1 $\sum_{j=1} u_{i,j} \le 1, \forall i = 1, ..., N$ No rep. feasible spots $s_i + f_i + \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i_a, j_b} u_{i, a} u_{j, b} - s_j \le M(1 - x_{w, i, j}),$ Timeline of each request a=1 b=1 $\forall i,j = 1,...,N, \forall w = 1,...,W$ Start time of each request $B_i \le s_i, \forall i = 1, ..., N$ $s_i + f_i \le U_i, \forall i = 1, ..., N$ $x_{w,i,j}, u_{i,j} \in \{0, 1\}.$ Finish time of each request (4.9)N-1 N $\sum \sum \delta_i x_{w,i,j} \le g_w, \forall w = 1,$ Satisfy the battery level 28 $i=1 \ j=2$

Proposed Solutions

- Multiple detour planning algorithm (MDP)
 - We design a utility function $u_{w,j} = \frac{p_j + \sum_{i \neq j}^{I} \frac{p_i}{d_{i,j}}}{d_{w,i}}$
 - Worker *w*, request *j*, profit *p*, and distance *d*
- Steps
 - 1. Compute all utility $u_{w,n}$, $\forall w = 1 \sim W$, $n = 1 \sim N$
 - 2. Choose the maximal utility $u_{i,i}$
 - 3. If it satisfies constraints, request j is assigned to worker i
 - 4. If Idle workers and requests still exist, go back to step 1. Or go to step 5
 - 5. Return all detour paths

Collecting real trace data

- Find 5700 posts from PTT in 10 days (4/11~4/20, 2014)
 - Contents include title, IP, and posted time
- Transfer IPs to locations
 - Filter out the IPs which are not in Taiwan by IPInfoDB
 - Hire three servers to ping the IP
 - Check network latency ⇒ Estimate the distance
 - Partition Taiwan into 1 km² grids
 - Compute the Mean-Square-Error (MSE) of each grid's and the IP's distances to servers
 - The precise locations are then randomly assigned within the grid

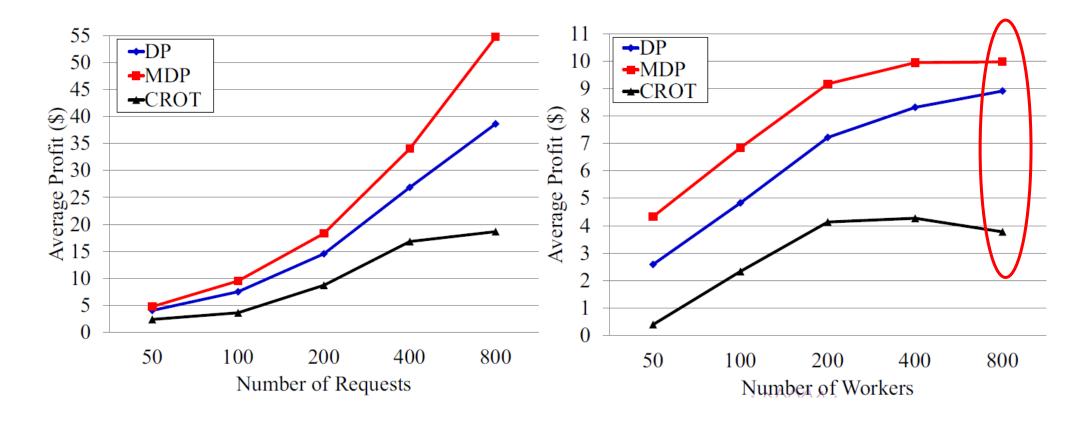
Simulator Implementation

- The following trace-driven simulators are implemented in JAVA
- It supports three algorithms
 - MDP algorithm
 - DP algorithm
 - A baseline algorithm CROT

Simulation Design

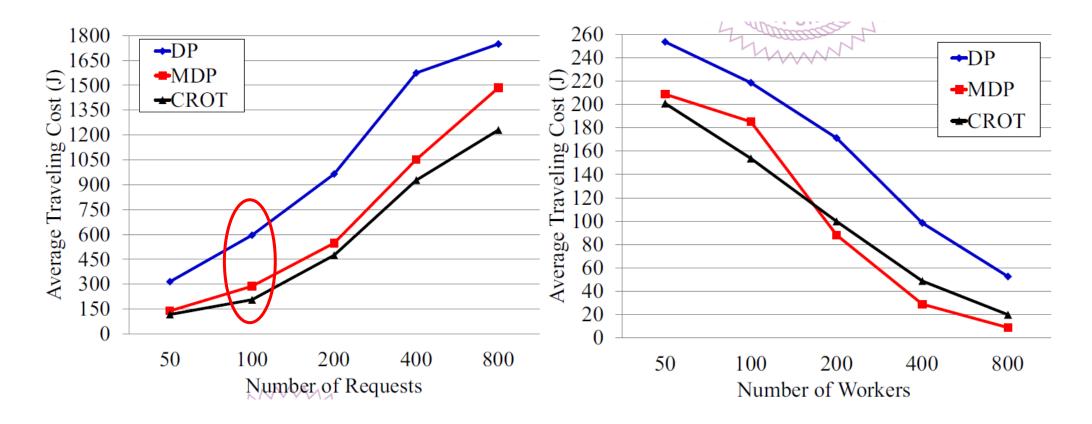
- Parameters
 - *N*: number of requests: {50, 100, 200, 400, 800}
 - *W*: number of workers: {50, 100, 200, 400, 800}
- Metrics
 - Average profit
 - Average traveling cost
 - Completed requests ratio

Average Profit



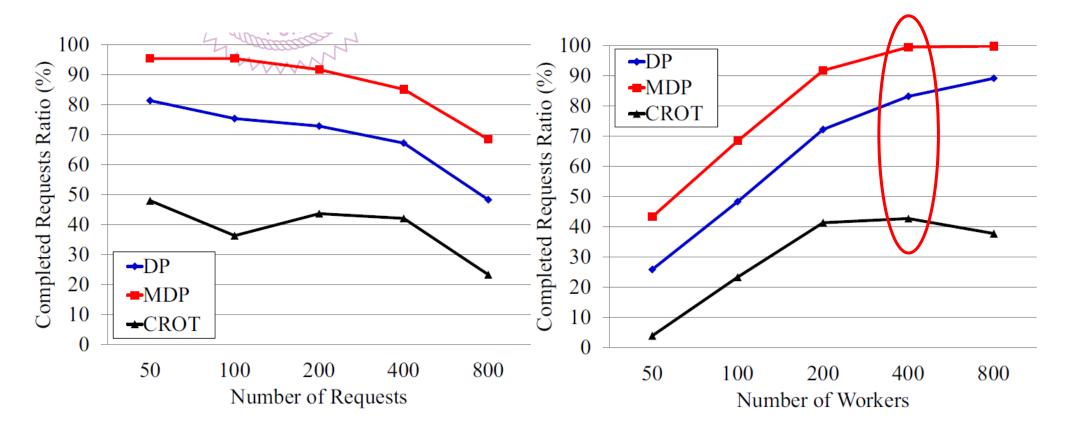
• MDP achieves 2.64 times the profit of the baseline

Average Traveling Cost



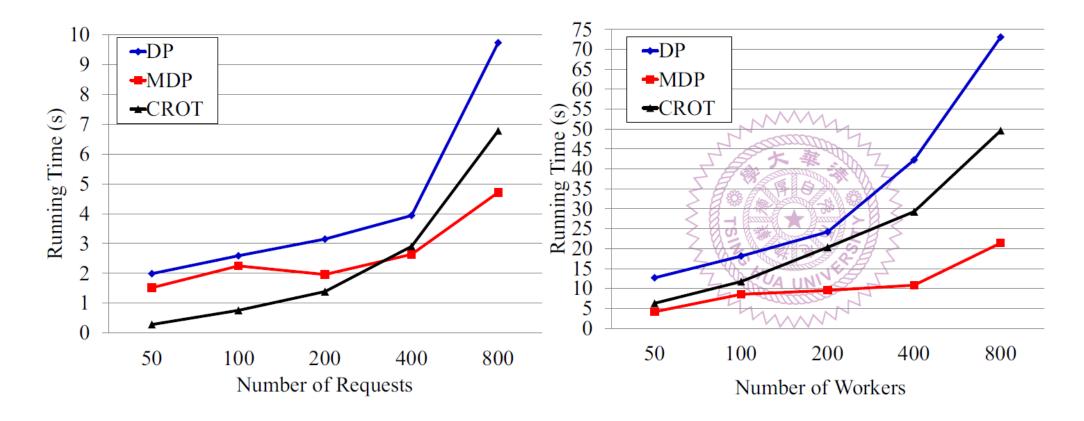
• MDP saves 51% traveling cost compared to DP

Completed Requests Ratio



• MDP achieves almost 100% completed requests ratio at 400 workers

Running Time



• MDP outperforms others at every cases

Outline

- 1. Introduction
 - Motivation
 - Crowdsensing
 - Research Problems
- 2. Related Work
- 3. Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 4. Multi-user Detour Planning Problem
 - Formulation
 - Solution
 - Evaluation
- 5. Conclusion and Future Work

Conclusion

- We propose a mobile crowdsensing system (MCS), and we discuss and formulate detour planning problem and multi-users detour planning problem.
- We address detour planning algorithm (DP), approximation detour planning algorithm (DPA) and multi-users detour planning algorithm (MDP) for solving the proposed problems.
- We implemented traced-driven simulators, and the results show:
 (1) DP achieves optimal profit, and DPA runs efficiently
 (2) MDP outperforms other algorithms in average profit and traveling cost

Contribution	1	2	3	4
Detour planning algorithm (DP)	V	V		
Multi-user detour planning algorithm (MDP)		V	V	V

Future Works

- Gamified crowdsensing
 - Combine games and requests for attracting workers to play and earn rewards
 - Challenges:
 (1) Unify games to the system, and players play games smoothly
 (2) Use augmented reality to let players shoot photos to trigger a new game event
- Design the result upload mechanism and verification for better performance
 - Challenges:
 - (1) How to efficiently upload results in different network conditions (e.g. 3G, and WiFi)
 - (2) Whether the results are real or fake (e.g. timestamp, and GPS)
 - (3) There are privacy issues about tracking locations of workers
 - Apply to Urban Computing

Demo, and Q & A

• http://youtu.be/9WFfQjq8pTs

END