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Introduction




ldle Resource in Networks

* Explosive traffic flow comes from different services
has brought many challenges on
e Quality of Service (QoS)
e Quality of Experience (QoE)

* Traditional core networks perform Interior Gateway
Protocol (IGP)
* Shortest path routing
* Idling resources




Software-Defined Networks (SDN)

* Decoupling the control plan & data plan
* The routing rules are decided by a central controller

Application Layer
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Control Layer
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s SDN sufficient ?

* Controller can change the routing behaviors
=> Are the problems solved by SDN?

Challenges:

* Initialization time in large networks
e Core networks are vulnerable to delay

 Scalability

* Decoupling the data flow and control flow brings the
scalability issues

* Flexibility & Efficiency

* The cost of changing routing behavior is high and complex



Contribution

* Propose label routing algorithms to solved the
traffic engineering problems in SDNs
* Minimize the initialization delay
* Perform load balancing
* Perform fast recovering

* Develop a flexible network architecture

* Virtualize physical links with virtual paths
* Simplify routing mechanisms inside the core networks




Label Switching



Example to illustrate label switching

* Traveler wants to visit Taipei 101 from Taipei Main
Station

* Passerby A : “l am not sure. Maybe you can go to
next stop first”

* Passerby B : “I am not sure. Maybe you can go to
next stop first” .....




Example to illustrate label switching

* If there is a smart guy who knows the best route.

e Smart guy : “Take the bus line 22, and you will

arrive 101 without traffic gam”
- .




Difference between traditional approaches
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Multiprotocol Label Switching

* Forwards the packets according to the label without
looking up the network address

* MPLS Label
* Label Distribution Protocol
 Stackable, providing higher extensibility,
* Fixed length, allowing more efficient matching

e Supported in OpenFlow protocol

* MPLS shows its strength on Traffic Engineering in legacy

IP network
e Resource Reservation Protocol

 Reserve bandwidth for QoS




MPLS in SDN

e Difficulties of performing MPLS in traditional
network
e Scope of the whole system
* Hierarchy of MPLS system
» Path attributes of label switching paths

e Some issues can be solved in SDNs

* Global view of the system => Optimized the Path
selection

e Ability to coordinate each switches => Assign Label &
handle hierarchy

We can build a our system without lower level protocols !
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Label Switching

* MPLS labels

e Extract MPLS protocols
e Represent a virtual tunnel ( multiple physical links )

* Routing actions in proposed system:
e Push at Ingress
* Swap at Medium

* Pop at Egress
Push Label Swap Label Pop Label
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Ingress Switch Core Switches Egress Switch
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Benefits of using Label Switching

* Perform Traffic engineering easily
* Labels => routing decision
e Changing routing behaviors by changing labels

* Balance traffic by “switching label”
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Routing inside the core networks

e Simplify routing mechanisms inside core networks
 Complex routing decisions are made in edge switches

e Switches in core network only focus on packet-
forwarding

Push Label

L
m-’ Networks

Ingress Switches

Egress Switches
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Use case
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System Architecture




Problem statement

* Initialization Delay
* Use pre-build tunnels
* Avoid congestion and packet loss

* Load Balancing
e Offload the traffic to idling links

* Error Resilience
* Fast-rerouting
* Dynamic traffic assigner
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Tunnel Constructor

Tunnel Constructor ——

Finder

?Tunnel Table

 Construct Tunnels inside SDN domain Static Tunnel
Finder

e Static Tunnel Finder (STF) Proactive Switch Module
* Find tunnels among every two nodes

* Pre-built tunnels in networks
(System setup or topology change )

* Dynamic Tunnel Finder (DTF)

e Take link usage into consideration
* Recover tunnels
* Connect new edge switches to the network
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Admission Controller

Dynamic Traffic

Admission Controller Assigner

7§ i
: Traffic Status

o Static Traffic
* Allocate traffic into the system Assigner

Proactive Switch Module

* Dynamic Path Assigner (DPA)

* Real-time traffic assigner (Label Tagger)
 Handle new traffic request
* Handle unexpected traffic re-route

e Static Path Assigner (SPA)

 Load Balancer
e Consider Link utilization & Perform load balance
* Avoid congestion
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Decoupled Flow Tables

* Tunnel table (Lower Table)
 Store pre-built tunnels information (label info.)

* Path table (Upper Table)

e Store the bindings between labels (tunnels) and the
traffic flows
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Packet Forwarding

| SDN Controller
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Routing Mechanism
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Tunnel Table Problem Formulation

* Goal: to find mutually disjoint tunnels between
each switch pairs

 Maximize the available bandwidth among each switch
pairs

* Reliable and Flexible

Constraint: Length of tunnels

Z%:]_ mp,l
Shortest path hop
* k = stretch facotr * shortest path hop

* stretch facotr =
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Network Static Set of

Path Ta b | e Topology l?r?;ee: > Tunnels

/ Maximize bandwidth of each paths

_FJ
maximize Z B(p) Path capacity is less than or equal (6.1a)
p—1 / to the minimum link share
c(l) |
st.B(p)mp,; < 5 Vle L,VpeP; (6.1b)
(Z-p’:l Yp' My 1)
B(p) < BottleNeck,,Vp € P; (6.1¢)
L Px Minimal link capacity among all the links
Y B(p)mi < k,Vpe P (6.1d)

=1 x
-~ Length of selected tunnel will never exceed k
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Heuristic Algorithm for Tunnels finding

5: function DISJOINTFINDER(Sr¢,Dst,Adj matriz)

6:

30:

Prefix_tunnels //List of sub-tunnel list from source node
Suffix_tunnels //List of sub-tunnel list to destination node
length //current target length

disjoint_ans //Final ans which is the optimal set

while length < k do

Break if neither Prefix_tunnels nor Suffix_tunnels are not able to increase
//skip the checking until shortest path reach
if length > SP_hop then //Check interaction
for each sub_tunnel 4 in Prefix_tunnels do
for each sub_tunnelp in Suffix_tunnels do Check Intersection
if sub_tunnel4[-1] == sub_tunnelg[0] then

disjoint_ans.append(sub_tunnel 4 + sub_tunnelg)

Adj-matrix(sub_tunnels[—1],n) = 0,Yn € N
Adj-matrix(n, sub_tunnelp[0]) = 0,Yn € N
//Need to prepare Pre fix_tunnels for next round
if ceil((length +1)/2) > (length + 1)/2 then —
for each sub_tunnel in Prefix_tunnels do

if Adj-matrix(sub_tunnel[~1],n),Vn € N then Move start indicator forward
sub_tunnel.append(n)

Update Adjacency Matrix

//Need to prepare Suf fix_tunnels for next round
if floor((length 4 1)/2) == (length + 1)/2 then
for each sub_tunnel in Suffix_tunnels do
if Adj matrix(n, sub_tunnel[—1]),¥n € N then

sub_tunnel.prepend(n)

Move end indicator backward

return(disjoint.ans) D Torrieri. “Algorithms for finding an optimal set of short disjoint paths in acommunication29
network”. |EEE Transactions on Communications, 1992.



R EEEEEE————————
Controller Components

Tunnel Constructor Tunnel Table Admission Controller
< >
4 A )
: Tunnel Table : Traffic Status
Static Traffic
Assigner
Topology  Tunnel Table Unexpected events Traffic Table Traffic Request

| | |
Proactive Switch Module

A 4

Main Control Logic Flow Command Dispatcher
(OpenFlow Events Handlers) — ‘ -
— = el |




Path Assigner

* Goal: Minimize the links utilization
e Balance the traffic load inside the system

* We assume that all the traffic can be handled by current
tunnels (Admission Control)

* Find a suitable path for each traffic flows

X r , Whether tunnel is assigned to traffic flow
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unnels Static raffic
Load balancer e pah f—samrc

Assigner

Minimize the maximal tunnel utilization

T F
minimize max xy g 1be/e(l (7.1a)
2, 2 Y ey o0
= =1

Traffic flows always reach their destination

8.t Z Z W m,t Tt f — Z Z Wr 0, t T8, f = 1,.Vf e F; (7.1b)

nES’(Gf)t'ET nES![:Qf)t'ET

Traffic flows will not leave from the middle nodes

E E We, n,tLt, f — E Wn et f = U,

nesS’(e) teT neS’(e)teT
Ve € S"(0f,m¢),Vf € F (7.1¢)
Z Z Wy et Tt f — Z Z W g t Tt f = —1.Vf e F: (7.1d)
nes’(ng) teT nes’(ng)teT T~
- Traffic flows never leave its destination
SN ay pmy by < (1) VI E L (7.1e)
t=1 f=1 T~ . . . .
Traffic over a link does not exceed its capacity
zyp €{0,1}, 1<t <T 1< f<F. (7.1f)
my; € 410,11 1 <I<L1<t<T. (7.1g)

wi e €{0,1}, 1 <4, < S, 1<t<T. (7.1h)




How to find best utilization?

 Path Finding:
* Find a shortest path to carry the traffic (set of tunnels)

e Constrained BFS !f the tunn'e'l ca'n accept traffic, and
its total utilization doesn’t exceed «

z=1 2?:1 xt,fmt,lbf <c(Da,VI EL
0<ac<sl

* A flow can only flow through tunnel when:
Cl + bf < C(l)a

* How to find best a elgently?
* Adopt Binary Search
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Heuristic Algorithm for Paths finding

Algorithm 2 Static Traffic Assigner (SPA).
1: Upper = 1.0, Lower = 0 //The upper/lower bounds

2: Final Assignment = ¢ //The final answer
3: Sort traffic flow F by bandwidth b; in desc. order
4: o = ¢ // Utilization
5: while Upper — Lower < threshold do ] Binary search
6: o' = (Upper + Lower) /2
7: Current Assignment = ¢ -
8: for each flow f in F do b
9: path = ConstrainedBFS(0¢, 1, bs, o)
10: if path = ¢ then Assign traffic into system
11: Al ¢
12: Break
13: else -
14: update available link bandwidth
15: Current Assignment.append(path)
16: if Current Assignment = ¢ then =
17: Lower = o' Q +lower
s else Adiust a = —2 ,SuUccess
19: Upper = o Justa a = uppert+ & falled
5 )
20: a=q
21: A+ A
- 34

22: if & 1s not defined, return no answer
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Dynamic Path Assigner

* Determine the routing path in real time
* New traffic request

* Unexpected Events -> traffic flows need to be re-
allocated

* Decide whether the network can handle traffic
* Quick response to minimize delay
* Leave the utilization optimizing to SPA
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Find a path in real-time

* Goal: find sufficient path to fit the traffic
* Using the same BFS module in Static Path Assigner

Algorithm 4 Dynamic Path Assigner (DPA)

1: F //set of flows need to be assign

2: Sort traffic flow F by bandwidth b in desc. order
3: while F'isnotempty do

4. A + ¢ //The final answer

5: A = ConstrainedBFS(0f,my,by)
6: if A = ¢ then
7: //Needs to reallocate traffic
8: TriggerSPA();
9: else
10: // Update utilization

11: UpdateFlow(); //OpenFlow commands
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Switch Dynamic

* Goal: to find a tunnel with lowest utilization
e Consider link utilization => govern more traffic

* Connect New edge switches to the network
* Find lowest utilization tunnels to all the nodes

 Recover failed tunnels

e Create virtual nodes => connect two tunnels with
overlapping points

Virtual Node S Virtual Node E
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Algorithm 3 Dynamic Tunnel Finder (DTF)

1: M //the map of the given topology

2: S //set of start nodes
3: E //set of end nodes

4: U //utilization of each links as edge weight

5: function DISJOINTFINDER(S.E.U)

6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

s //A node which connect to all the nodes in S
e //A node which connect to all the nodes in £
for each v in M do
Util|v] + o
Prev|v| « ¢
queue(v)
Util[s] =0
while gueue # ¢ do
n +— node with lowest utilization
dequeue(n)
for each neighbor v of n do
if lower utilization is found then
Util[v| = Util|v]| 4 utilization(n, v)
Prev|v| =n
if nise then
path = convertToPath(Prev)
return path

break

Dijkistra to find path

Weight <- Current link util.
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Evaluation




Implementation

TE with _ Ryu Controller
Label User-defined

Switching Applications ...

Built-in Applications

Ryu Libraries

OpenFlow Protocols IP Network Protocols

Mininet
OpenVSwithc

OpenFlow Switches
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Application in RYU

* Traffic Engineering with Label Switching (TEL)
e Optimize traffic by proposed algorithms
* Proactively install disjoint paths in system

* Segment Routing with IGP (SRI)
e Cisco Pathman|1]
* Shortest Path Routing
* Proactively install paths in system
* Choose path with lowest link usage

e Spanning Tree Protocols

[1] OpenDaylight Pathman SR App from cisco. https://github.com/CiscoDevNet/pathman-sr.
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Experiment setup

* Mininet network emulator
* OpenVSwich
» Real traffic flows generated by iPerf

e 4 different sizes, each size has 5 different
topologies

* Conduct experiments for 10 times
 UDP packets

Table 10.2: Bandwidth Range of each topologies

Topo Min. Bandwidth Max. Bandwidth Avg. Request/sec Bandwidth (Mbps/#req.)

Topo? 10 Mbps 100 Mbps 2233 53.56
Topo,® 10 Mbps 100 Mbps 27.33 103.49
Topo?* 50 Mbps 100 Mbps 50.33 73.70
Topo?? 10 Mbps 100 Mbps 67.00 64.77
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TEL optimizes the max. link utilization

 TEL optimize the traffic
 TEL always achieve the lowest max. link utilization
* 90% of links have less than 50% link usage

’ s . 24 . - .
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Utilize Idle resources

 TEL uses idle resources to balance the traffic
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Heavy and Light traffic

* TEL is able to minimize the traffic in both heavy
traffic & light traffic

Light traffic : 28.96 Mbps Heavy traffic : 73.70 Mbps
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TEL balances the traffic in
different topologies

e TEL reduces maximal link utilization over
e SRI between 20% ~ 46%
e RSR between 30% ~ 50%
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TEL achieves the lowest Init. delay

* TEL achieves lowest initialization delay

* Both SRI and RSR suffer from congestion, and the
delay is relatively high

Normalized Initial Delay CDF (Top0§4)
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Congestion increases the delay

* Initialization delay is reduced by 39.02% and
93.22% compared to the SRI and RSR

* Delay increases along the size

e Heavy congestion in Topo?* (9% of links suffer from
congestion) 3-5% others

Initialization Delay Normalized Initialization Delay
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TEL takes more time on pre-built
tunnels

 We don’t need to compute the tunnels constantly
* The state changes only if the topology changes

Tunnel Finding Runtime
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TEL consumes more flow entries

 TEL consume more flow entries
* Reductant flow rules => quick response, error resilience
* Tunnels can be further optimized (Future works)

Flow entries per switches AT

300 ' '
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Recover path with backup
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Recover using DPA
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Wait for edge reconnecting
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Conclusion
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Conclusion

* Purposed a label switching for solving Traffic
Engineering in SDNs

 Flexibility, Load balancing and Error resilience

* Purposed algorithms for the label switching
e 2 Tunnel finder algorithm
* 1 Load balancer, and 1 admission controller

* Emulation results shows that Purposed TEL:

e Reduce the max. link utilization in different condition
(Using idle resources)

 Minimize initialization delay
* The dynamic algorithm provide error resilience
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Thanks for listening
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