Traffic-Engineering In
Software Defined Networks
Using Label Switching

I REEEHE NMIARERXBR RS LR

Chen-Nien Mao

Advisor: Cheng-Hsin Hsu

Networking and Multimedia System Lab
CS Dept., National Tsing Hua University

Outline

* Introduction
e Label Switching
e System Architecture

* Routing Mechanism
 Tunnel Table Construction
e Path Table Construction
* Dynamic Modules

e Evaluation
e Conclusion

Introduction

ldle Resource in Networks

* Explosive traffic flow comes from different services
has brought many challenges on
e Quality of Service (QoS)
e Quality of Experience (QoE)

* Traditional core networks perform Interior Gateway
Protocol (IGP)
* Shortest path routing
* Idling resources

Software-Defined Networks (SDN)

* Decoupling the control plan & data plan
* The routing rules are decided by a central controller

Application Layer

I~

Control Layer

I C jOpenFIow

Infrastructure Layer

s SDN sufficient ?

* Controller can change the routing behaviors
=> Are the problems solved by SDN?

Challenges:

* Initialization time in large networks
e Core networks are vulnerable to delay

 Scalability

* Decoupling the data flow and control flow brings the
scalability issues

* Flexibility & Efficiency

* The cost of changing routing behavior is high and complex

Contribution

* Propose label routing algorithms to solved the
traffic engineering problems in SDNs
* Minimize the initialization delay
* Perform load balancing
* Perform fast recovering

* Develop a flexible network architecture

* Virtualize physical links with virtual paths
* Simplify routing mechanisms inside the core networks

Label Switching

Example to illustrate label switching

* Traveler wants to visit Taipei 101 from Taipei Main
Station

* Passerby A : “l am not sure. Maybe you can go to
next stop first”

* Passerby B : “I am not sure. Maybe you can go to
next stop first”

Example to illustrate label switching

* If there is a smart guy who knows the best route.

e Smart guy : “Take the bus line 22, and you will

arrive 101 without traffic gam”
- .

Difference between traditional approaches

Let me Let me Let me Let me
see see see see

o)

Traditional IP-Networks

Client B

)) fmd))

Proposed MPLS Solution H

Multiprotocol Label Switching

* Forwards the packets according to the label without
looking up the network address

* MPLS Label
* Label Distribution Protocol
 Stackable, providing higher extensibility,
* Fixed length, allowing more efficient matching

e Supported in OpenFlow protocol

* MPLS shows its strength on Traffic Engineering in legacy

IP network
e Resource Reservation Protocol

 Reserve bandwidth for QoS

MPLS in SDN

e Difficulties of performing MPLS in traditional
network
e Scope of the whole system
* Hierarchy of MPLS system
» Path attributes of label switching paths

e Some issues can be solved in SDNs

* Global view of the system => Optimized the Path
selection

e Ability to coordinate each switches => Assign Label &
handle hierarchy

We can build a our system without lower level protocols !
13

Label Switching

* MPLS labels

e Extract MPLS protocols
e Represent a virtual tunnel (multiple physical links)

* Routing actions in proposed system:
e Push at Ingress
* Swap at Medium

* Pop at Egress
Push Label Swap Label Pop Label

&

> / \

(

Ingress Switch Core Switches Egress Switch

14

Benefits of using Label Switching

* Perform Traffic engineering easily
* Labels => routing decision
e Changing routing behaviors by changing labels

* Balance traffic by “switching label”

%Aﬁ / > = Labem
ﬁ oL) 1abel 2
) Label 3
- Switch 1

Host C

\ Switch 5 Switch 6 Switcw,

Routing inside the core networks

e Simplify routing mechanisms inside core networks
 Complex routing decisions are made in edge switches

e Switches in core network only focus on packet-
forwarding

Push Label

L
m-’ Networks

Ingress Switches

Egress Switches

16

Use case

jm——— Tunnel Info - -

- ~ |SDN Controller
ol p
1 -I |-|r i !

Tunnel provided by ISP

Site B subnetwork ﬁ

Client C

ﬁ Site A subnetwork

Client A

System Architecture

Problem statement

* Initialization Delay
* Use pre-build tunnels
* Avoid congestion and packet loss

* Load Balancing
e Offload the traffic to idling links

* Error Resilience
* Fast-rerouting
* Dynamic traffic assigner

19

R EEEEEE————————
Controller Components

Tunnel Constructor

Dynamic Tunnel

e Tunnel Table =—

Admission Controller

Finder

Static Tunnel
Finder

3
: Tunnel Table

\ 4

Dynamic Traffic

Assigner

7 § i
: Traffic Status

Static Traffic
Assigner

T

Topology Tunnel Table

1

Unexpected events Traffic Table Traffic Request

Proactive Switch Module

Main Control Logic

A 4

Flow Command Dispatcher

(OpenFlow Events Handlers)

A > MPLS- enab@

Tunnel Constructor

Tunnel Constructor ——

Finder

?Tunnel Table

 Construct Tunnels inside SDN domain Static Tunnel
Finder

e Static Tunnel Finder (STF) Proactive Switch Module
* Find tunnels among every two nodes

* Pre-built tunnels in networks
(System setup or topology change)

* Dynamic Tunnel Finder (DTF)

e Take link usage into consideration
* Recover tunnels
* Connect new edge switches to the network

21

Admission Controller

Dynamic Traffic

Admission Controller Assigner

7§ i
: Traffic Status

o Static Traffic
* Allocate traffic into the system Assigner

Proactive Switch Module

* Dynamic Path Assigner (DPA)

* Real-time traffic assigner (Label Tagger)
 Handle new traffic request
* Handle unexpected traffic re-route

e Static Path Assigner (SPA)

 Load Balancer
e Consider Link utilization & Perform load balance
* Avoid congestion

22

Decoupled Flow Tables

* Tunnel table (Lower Table)
 Store pre-built tunnels information (label info.)

* Path table (Upper Table)

e Store the bindings between labels (tunnels) and the
traffic flows

23

Packet Forwarding

| SDN Controller
—/
o=y -7

': \ \ .. HostB

Core Switch N Egress Switch

(® Label 1, pop label

(@ Hy, Hg , Push Label 1, go to
tunnel table

(® Label 2, pop label, go to tunnel
table
. ©) Hy, Hg ,Push Label 2, go to
Label: 1, rt: 3
(@) Label: 1, outport: 1 (7) Label: 2, outport: 2

Tunnel Label 1 | Tunnel Label 2
Push Label

Swap Label Pop Label

24

Routing Mechanism

R EEEEEE————————
Controller Components

Tunnel Constructor Admission Controller

e Tunnel Table =—

< >
4 4 .
] Tunnel Table : Traffic Status
Static Tunnel
Finder
Topology Tunnel Table Unexpected events Traffic Table Traffic Request

| | |
Proactive Switch Module

A 4

Flow Command Dispatcher

Tunnel Table Problem Formulation

* Goal: to find mutually disjoint tunnels between
each switch pairs

 Maximize the available bandwidth among each switch
pairs

* Reliable and Flexible

Constraint: Length of tunnels

Z%:]_ mp,l
Shortest path hop
* k = stretch facotr * shortest path hop

* stretch facotr =

27

Network Static Set of

Path Ta b | e Topology l?r?;ee: > Tunnels

/ Maximize bandwidth of each paths

_FJ
maximize Z B(p) Path capacity is less than or equal (6.1a)
p—1 / to the minimum link share
c(l) |
st.B(p)mp,; < 5 Vle L,VpeP; (6.1b)
(Z-p’:l Yp' My 1)
B(p) < BottleNeck,,Vp € P; (6.1¢)
L Px Minimal link capacity among all the links
Y B(p)mi < k,Vpe P (6.1d)

=1 x
-~ Length of selected tunnel will never exceed k

28

Heuristic Algorithm for Tunnels finding

5: function DISJOINTFINDER(Sr¢,Dst,Adj matriz)

6:

30:

Prefix_tunnels //List of sub-tunnel list from source node
Suffix_tunnels //List of sub-tunnel list to destination node
length //current target length

disjoint_ans //Final ans which is the optimal set

while length < k do

Break if neither Prefix_tunnels nor Suffix_tunnels are not able to increase
//skip the checking until shortest path reach
if length > SP_hop then //Check interaction
for each sub_tunnel 4 in Prefix_tunnels do
for each sub_tunnelp in Suffix_tunnels do Check Intersection
if sub_tunnel4[-1] == sub_tunnelg[0] then

disjoint_ans.append(sub_tunnel 4 + sub_tunnelg)

Adj-matrix(sub_tunnels[—1],n) = 0,Yn € N
Adj-matrix(n, sub_tunnelp[0]) = 0,Yn € N
//Need to prepare Pre fix_tunnels for next round
if ceil((length +1)/2) > (length + 1)/2 then —
for each sub_tunnel in Prefix_tunnels do

if Adj-matrix(sub_tunnel[~1],n),Vn € N then Move start indicator forward
sub_tunnel.append(n)

Update Adjacency Matrix

//Need to prepare Suf fix_tunnels for next round
if floor((length 4 1)/2) == (length + 1)/2 then
for each sub_tunnel in Suffix_tunnels do
if Adj matrix(n, sub_tunnel[—1]),¥n € N then

sub_tunnel.prepend(n)

Move end indicator backward

return(disjoint.ans) D Torrieri. “Algorithms for finding an optimal set of short disjoint paths in acommunication29
network”. |EEE Transactions on Communications, 1992.

R EEEEEE————————
Controller Components

Tunnel Constructor Tunnel Table Admission Controller
< >
4 A)
: Tunnel Table : Traffic Status
Static Traffic
Assigner
Topology Tunnel Table Unexpected events Traffic Table Traffic Request

| | |
Proactive Switch Module

A 4

Main Control Logic Flow Command Dispatcher
(OpenFlow Events Handlers) — ‘ -
— = el |

Path Assigner

* Goal: Minimize the links utilization
e Balance the traffic load inside the system

* We assume that all the traffic can be handled by current
tunnels (Admission Control)

* Find a suitable path for each traffic flows

X r , Whether tunnel is assigned to traffic flow

31

unnels Static raffic
Load balancer e pah f—samrc

Assigner

Minimize the maximal tunnel utilization

T F
minimize max xy g 1be/e(l (7.1a)
2, 2 Y ey o0
= =1

Traffic flows always reach their destination

8.t Z Z W m,t Tt f — Z Z Wr 0, t T8, f = 1,.Vf e F; (7.1b)

nES’(Gf)t'ET nES![:Qf)t'ET

Traffic flows will not leave from the middle nodes

E E We, n,tLt, f — E Wn et f = U,

nesS’(e) teT neS’(e)teT
Ve € S"(0f,m¢),Vf € F (7.1¢)
Z Z Wy et Tt f — Z Z W g t Tt f = —1.Vf e F: (7.1d)
nes’(ng) teT nes’(ng)teT T~
- Traffic flows never leave its destination
SN ay pmy by < (1) VI E L (7.1e)
t=1 f=1 T~
Traffic over a link does not exceed its capacity
zyp €{0,1}, 1<t <T 1< f<F. (7.1f)
my; € 410,11 1 <I<L1<t<T. (7.1g)

wi e €{0,1}, 1 <4, < S, 1<t<T. (7.1h)

How to find best utilization?

 Path Finding:
* Find a shortest path to carry the traffic (set of tunnels)

e Constrained BFS !f the tunn'e'l ca'n accept traffic, and
its total utilization doesn’t exceed «

z=1 2?:1 xt,fmt,lbf <c(Da,VI EL
0<ac<sl

* A flow can only flow through tunnel when:
Cl + bf < C(l)a

* How to find best a elgently?
* Adopt Binary Search

33

Heuristic Algorithm for Paths finding

Algorithm 2 Static Traffic Assigner (SPA).
1: Upper = 1.0, Lower = 0 //The upper/lower bounds

2: Final Assignment = ¢ //The final answer
3: Sort traffic flow F by bandwidth b; in desc. order
4: o = ¢ // Utilization
5: while Upper — Lower < threshold do] Binary search
6: o' = (Upper + Lower) /2
7: Current Assignment = ¢ -
8: for each flow f in F do b
9: path = ConstrainedBFS(0¢, 1, bs, o)
10: if path = ¢ then Assign traffic into system
11: Al ¢
12: Break
13: else -
14: update available link bandwidth
15: Current Assignment.append(path)
16: if Current Assignment = ¢ then =
17: Lower = o' Q +lower
s else Adiust a = —2 ,SuUccess
19: Upper = o Justa a = uppert+ & falled
5)
20: a=q
21: A+ A
- 34

22: if & 1s not defined, return no answer

R EEEEEE————————
Controller Components

Tunnel Constructor Admission Controller

e Tunnel Table =—

Dynamic Traffic

< > .
Assigner
4
: Tunnel Table ? Traffic Status

T T

Topology Tunnel Table Unexpected events Traffic Table Traffic Request

| | |
Proactive Switch Module

A 4

Main Control Logic Flow Command Dispatcher
(OpenFlow Events Handlers) — ‘ -
— = el |

Dynamic Path Assigner

* Determine the routing path in real time
* New traffic request

* Unexpected Events -> traffic flows need to be re-
allocated

* Decide whether the network can handle traffic
* Quick response to minimize delay
* Leave the utilization optimizing to SPA

36

Find a path in real-time

* Goal: find sufficient path to fit the traffic
* Using the same BFS module in Static Path Assigner

Algorithm 4 Dynamic Path Assigner (DPA)

1: F //set of flows need to be assign

2: Sort traffic flow F by bandwidth b in desc. order
3: while F'isnotempty do

4. A + ¢ //The final answer

5: A = ConstrainedBFS(0f,my,by)
6: if A = ¢ then
7: //Needs to reallocate traffic
8: TriggerSPA();
9: else
10: // Update utilization

11: UpdateFlow(); //OpenFlow commands

R EEEEEE————————
Controller Components

Tunnel Constructor Admission Controller

e Tunnel Table =—

Dynamic R
TunneI‘Finder
: Tunnel Table ? Traffic Status

T T

Topology Tunnel Table Unexpected events Traffic Table Traffic Request

| | |
Proactive Switch Module

A 4

Main Control Logic Flow Command Dispatcher
(OpenFlow Events Handlers) — ‘ -
— = el |

Switch Dynamic

* Goal: to find a tunnel with lowest utilization
e Consider link utilization => govern more traffic

* Connect New edge switches to the network
* Find lowest utilization tunnels to all the nodes

 Recover failed tunnels

e Create virtual nodes => connect two tunnels with
overlapping points

Virtual Node S Virtual Node E

39

Algorithm 3 Dynamic Tunnel Finder (DTF)

1: M //the map of the given topology

2: S //set of start nodes
3: E //set of end nodes

4: U //utilization of each links as edge weight

5: function DISJOINTFINDER(S.E.U)

6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

s //A node which connect to all the nodes in S
e //A node which connect to all the nodes in £
for each v in M do
Util|v] + o
Prev|v| « ¢
queue(v)
Util[s] =0
while gueue # ¢ do
n +— node with lowest utilization
dequeue(n)
for each neighbor v of n do
if lower utilization is found then
Util[v| = Util|v]| 4 utilization(n, v)
Prev|v| =n
if nise then
path = convertToPath(Prev)
return path

break

Dijkistra to find path

Weight <- Current link util.

40

Evaluation

Implementation

TE with _ Ryu Controller
Label User-defined

Switching Applications ...

Built-in Applications

Ryu Libraries

OpenFlow Protocols IP Network Protocols

Mininet
OpenVSwithc

OpenFlow Switches

42

Application in RYU

* Traffic Engineering with Label Switching (TEL)
e Optimize traffic by proposed algorithms
* Proactively install disjoint paths in system

* Segment Routing with IGP (SRI)
e Cisco Pathman|1]
* Shortest Path Routing
* Proactively install paths in system
* Choose path with lowest link usage

e Spanning Tree Protocols

[1] OpenDaylight Pathman SR App from cisco. https://github.com/CiscoDevNet/pathman-sr.

43

Experiment setup

* Mininet network emulator
* OpenVSwich
» Real traffic flows generated by iPerf

e 4 different sizes, each size has 5 different
topologies

* Conduct experiments for 10 times
 UDP packets

Table 10.2: Bandwidth Range of each topologies

Topo Min. Bandwidth Max. Bandwidth Avg. Request/sec Bandwidth (Mbps/#req.)

Topo? 10 Mbps 100 Mbps 2233 53.56
Topo,® 10 Mbps 100 Mbps 27.33 103.49
Topo?* 50 Mbps 100 Mbps 50.33 73.70
Topo?? 10 Mbps 100 Mbps 67.00 64.77

44

TEL optimizes the max. link utilization

 TEL optimize the traffic
 TEL always achieve the lowest max. link utilization
* 90% of links have less than 50% link usage

’ s . 24 . - .
Max Link Utilization (TopoZ~) Link Utilization CDF (T0p0§4)
100 i i sy i V“": 1 - W
= QO " 08 -
=
o
.g 60 - 0.6 1
% e
N A
5 3}
~ 40 0.4 1
i 4
A=
= 20 —~TE (3! ——TEL
—e—SRI —e—SRI
RS] RSR
O T T T T T T T T 0 T T T T 1
20 40 60 80 100 120 140 160 0 20 40 60 80 100

Time (s) Link Utilization

Utilize Idle resources

 TEL uses idle resources to balance the traffic

24

Util. Distrubation (Topo3)
. 100
* More links are used _
L L L L] L] L] 80
* Minimize utilization P
360
. . . 24 % 40
Util. Distrubation (Topo3) £
100 20
0 ;]
80 - 0 20 40 60 80 100
" Link Utilization (%)
ﬁ Util. Distrubation (T0p0§4)
= 60 - 100
Ls
g 80
g 40 1 P
2 i 60 1
z
0 20 A
0 20 40 60 80 100 - I —
Link Utilization (%) Y = @ e B 0 A6

Link Utilization (%)

Heavy and Light traffic

* TEL is able to minimize the traffic in both heavy
traffic & light traffic

Light traffic : 28.96 Mbps Heavy traffic : 73.70 Mbps
Max Link Utilization (Topo; ') Max Link Utilization (Topo>")
100 = 100 b8t —0— 08— 8 V,__,_\

X g0 801

g [\ S

= =]

.g 60 ‘W :.% 60 “M
= S

= =

240 5 40

> £

c>é 20 4 —e—TEL H 20 A —e—TEL
= —e—SRI —e—SRI

RSR RSR
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

Time (s) Time (s)

TEL balances the traffic in
different topologies

e TEL reduces maximal link utilization over
e SRI between 20% ~ 46%
e RSR between 30% ~ 50%

Max1mum Link Utlllzatlon

100 -20%

80 - i “Average Link Utilization
S| -a6%
) 60 1 80
= S
4§ g 60 1
= 40 32
= ;5 40

20 - 20 .]

; iR iR

)

Topo Topo Topo Topo
8 16 24 32
Topo Topo Topo Topo (BB TEL [SRI I RSE]

I TEL Il SRIJRSR

TEL achieves the lowest Init. delay

* TEL achieves lowest initialization delay

* Both SRI and RSR suffer from congestion, and the
delay is relatively high

Normalized Initial Delay CDF (Top0§4)
1 -

0.8 1

0.6 1

CDF

0.4

02 —e—TEL

RSR

0 —I‘ T T T 1
0 1000 2000 3000 4000 49
Delay (ms)

Congestion increases the delay

* Initialization delay is reduced by 39.02% and
93.22% compared to the SRI and RSR

* Delay increases along the size

e Heavy congestion in Topo?* (9% of links suffer from
congestion) 3-5% others

Initialization Delay Normalized Initialization Delay

6000

1500

— 1000 1 Jf

5000 1
— 4000 -
<)
R 2000 1 500 -

= LAl L

Delay (m

Topo8 Topo16 Topo24 Topo32 Topo8 Topo16 Topo24 Topo32

| I TEL [l SRI I RSR| I TEL [l SRI @ RSR|

TEL takes more time on pre-built
tunnels

 We don’t need to compute the tunnels constantly
* The state changes only if the topology changes

Tunnel Finding Runtime
400 ' ' ' '

300 +

Runtime (ms)
(\®)
S
S

Topo8 Topo16 Topo2 . Topo32
I TEL [SRI

TEL consumes more flow entries

 TEL consume more flow entries
* Reductant flow rules => quick response, error resilience
* Tunnels can be further optimized (Future works)

Flow entries per switches AT

300 ' '
I Activated Entries
E 250 - I 350 1 |[]Backup Entries
N g
= & 300 1
200 + =
53 _
E 2 250
B 150 1 | &= 200
oy 5
f.;“ 100 - - 51501
g
=50 - L2 100 1
0 - | 50 1 i
Topo8 Topo16 Topo24 Topo32 0- : = 9 - -
’ I TEL @ SR RSRI Topo Topo Topo Topo

52

Recover path with backup

54

(@)
o0
o
g 48 4
EEE|l o
rM_w.ﬂ_&mmwddd D
AN AN~ <t A =
" v nn vnn v wm
1 1
1 1 o X = S
i - =
<P]
(P _.m
n 1)
- =
o= O
— S @
S _IO(
(<P) w
R (eb}
5 | 88
o0
= =
P
=3 L ©
O
50 IS
uumumnmn g
e EEEY e NO
IIIIIIIIIIIIIIIIIIIIIII 2
> (= =) & (= (= (@) (=
=) -} o) =) S)
(@) o () o -} () o
<t o < o0 O < N
p— p— p—

Sjo¥oRd JO JIoqUIILN

Recover using DPA

56

(@)
(00)
o
o g 4
EEE|l o
rM_w.ﬂ_&mmwddd D
AN AN~ <t A =
" v nn vnn v wm
1 1
1 1 o X =)
i - =
<P]
(P _.m
n 1)
- 2
e «B}
— S @
S _IO(
(<P) w
R (eb}
5 -
o0
= H
S
& L ©
O
.ILu...U..nlo ||||||||||||||||||||||||||| TO
l‘lﬂh.l“l“ 4
uumumnmn g
e EEEY e h &
IIIIIIIIIIIIIIIIIIIIIII 2
> (= =) & (= (= (@) (=
S = S S S S =’
(@) o () o -} () o
<t o < o0 O < N
p— p— p—

Sjo¥oRd JO JIoqUIILN

Wait for edge reconnecting

Number of Packets

14000

12000

10000

8000 -

6000

4000 -

2000 -

Error Resilience

it

whasidid

| W W

T .

E . E ——s2-s8b

; ; i P [---- 5284

' ! E o |----s1-s3

; : ': ': ¢ s4 down
5 :' E = s2 down
E E = sl down

60 80

100 120 140 160 180

Times (sec)

58

Conclusion

59

Conclusion

* Purposed a label switching for solving Traffic
Engineering in SDNs

 Flexibility, Load balancing and Error resilience

* Purposed algorithms for the label switching
e 2 Tunnel finder algorithm
* 1 Load balancer, and 1 admission controller

* Emulation results shows that Purposed TEL:

e Reduce the max. link utilization in different condition
(Using idle resources)

 Minimize initialization delay
* The dynamic algorithm provide error resilience

60

Thanks for listening
Q&A

