
On Error Concealment of 

Dynamic 3D Point Cloud Streaming

Tzu-Kuan Hung (hungtzukuan@gmail.com)

Advisor: Cheng-Hsin Hsu

Networking and Multimedia Systems Lab,

CS, National Tsing Hua University
1



Outline

 Introduction

 Motivations

 Related Work

 Problem

 Solutions

 Experimental Setup

 Objective Results

 Subjective Results

 Conclusion

 Future Work

2



INTRODUCTION
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3D Representations
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 Meshes

◼ Points, edges, and faces

◼ Not native output data types of any 

capturing sensors

 Point Clouds

◼ Mandatory: 3D coordinates

◼ Optional: attributes, such as colors

◼ Native data format from 

some sensors

◼ Light-weight data format

◼ Applications:

 Extended Reality (XR)

 Entertainments

 Teleconference

 …….

Hard to edit
in real time



Point Cloud Characteristics

 No connectivity among points

◼ No edge or face information

◼ More points are needed compare to meshes

 Unordered

◼ No specific order among points

◼ No 1-1 matches among points across frames

 Heterogeneity

◼ Sparseness levels

◼ Optional attributes
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Dense point clouds
with colors



MOTIVATIONS
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Issue of Dynamic Point Cloud 

Streaming (1/3)
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 Streaming uncompressed dynamic point cloud 

dictates more than 4 Gbps
Compression before streaming is essential

More than 0.5 M points [1]

[1] C. Cao, M. Preda, and T. Zaharia, “3D point cloud compression: A survey,” ACM 
International Conference on 3D Web Technology (Web3D’19), pages 1–9, July 2019.



Issue of Dynamic Point Cloud 

Streaming (2/3)
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 Lost or late packets of encoded bitstreams 

degrade visual quality



Issue of Dynamic Point Cloud 

Streaming (3/3)
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 Lost or late packets of encoded bitstreams 

degrade visual quality
That’s why we need error concealment



RELATED WORK
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MPEG Video-based Point Cloud 

Compression (V-PCC)
 V-PCC[2]

◼ Project each point cloud into:

 Geometry (Near and Far map)

 Attribute (Near and Far map)

 Occupancy

 Metadata and parameters

◼ Encode sub-bitsream by HEVC
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Reference codec used in our work

[2] MPEG 3DGC. V-PCC codec description v12. International Organization for Standardization 
Meeting Document ISO/IEC JTC1/SC29/WG7 MPEG/N0012, 2020. Meeting held online.

OVD

AVD

GVD

Header

OVD

AVD

GVD

Header



Error Concealment for 2D Videos 

 Reduce the distortion by:

◼ Frame copy

◼ Temporal concealment

◼ Spatial concealment
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Can we apply them to V-PCC?

[3] L. Li, Z. Li, V. Zakharchenko, J. Chen and H. Li, "Advanced 3D Motion Prediction for Video-Based Dynamic Point Cloud Compression," 
in IEEE Transactions on Image Processing, vol. 29, pp. 289-302, 2020, doi: 10.1109/TIP.2019.2931621.

No! Patches are at different places[3]



Error Concealment for 3D

Point Clouds

 Point cloud completion

◼ Estimate the complete geometry of objects and 

scenes

◼ Mostly by deep learning

 Inpainting[4]

◼ Reduce cracks

 Self-similarity blocks

 Inter-frame consistency

◼ Computationally expensive

◼ Not applicable to catastrophic distortion
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Not for streaming

due to imperfect data acquisition

[4] Wei Hu, Zeqing Fu, and Zongming Guo. 2019. Local frequency interpretation and non-local self-similarity on graph for point cloud 
inpainting. IEEE Transactions on Image Processing 28, 8 (2019), 4087–4100.

Too slow!



PROBLEM
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Create V-PCC Loss Patterns

 Bitstreams consist of Network Abstraction 

Layer Units (NALUs)

◼ Geometry Video Data (GVD)

◼ Attribute Video Data (AVD)

◼ Occupancy Video Data (OVD)

 Simulate packet loss

◼ Encode 5 frames as a Group of Frame (GoF)

◼ Mark NALUs of 3rd frame to drop

◼ Overwrite NALUs with zeros

◼ Decode corrupted bitstreams with V-PCC
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◼ V-PCC header

◼ V3C Parameter Set

Headers



Results from Loss Pattern

 Outcomes

◼ N: No clear visual impairment

◼ C𝐴: Point cloud frame 3 is distorted in attributes only

◼ C𝐺: Distorted in both geometry and attributes

◼ C𝐺-End: 3-5 frames are distorted

◼ X: Not decoded due to assertion errors of V-PCC 
16

I: Near map, P: Far map

S: Supplemental Enhancement Information (SEI)



Concealment Strategies

 Strategy 

◼ N: No concealment required

◼ C𝐴: Attribute Concealment

◼ C𝐺: Geometry Concealment

◼ C𝐺-End: Geometry Concealment

◼ X: Geometry Concealment
17



SOLUTIONS
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Nearest Point (NP)
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 Conceal point cloud frames without 

attribute (color) data only

 For each point in the current frame

◼ Search for the closest point in the previous point 

cloud frame

◼ Copy the attributes over



Error Concealment Schemes
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 We propose a suite of error concealment 

algorithms for geometry distortion

 Assume all geometry and attribute data are lost

◼ Catastrophic distortion for decoded

point clouds with V-PCC

◼ Point-base (first 2) and cube-based 

(next 2) algorithms



Point-to-Point Interpolation (PI)

 Conceal point cloud frames without geometry data

◼ If geometry data are distorted or 

missing, the attribute data become useless

 For each point in the previous frame

◼ Interpolate with the point in the future frame within a 

specific radius
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Δ(p, q) = αΔg(p, q)+(1−α)Δa(p, q)
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VPCC PI



Triangular Interpolation (TI)

 Matching subroutine is done among triangles

instead of points
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Smaller cracks
No cracks

TI (right)
PI (left)
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VPCC TI



Cube-based Motion Interpolation 

(CMI)

 Divide point clouds into non-overlapped cubes 

with the same dimension

 Average all point-to-point outcomes

within a cube for a rigid motion 

vector of the whole cube

 Enlarge cubes when gap happens

◼ Let 𝑙 be the length of each cube 𝐶

◼ Dist. between every center to neighbor cube is exactly 𝑙

◼ After interpolation, if dist. of centers between any 

adjacent cubes 𝑙 ‘ > 𝑙, we enlarge length of the cube

from 𝑙 to 𝑙’
25

TI’s cracks
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VPCC CMI



Neighbor Cube-based Motion 

Interpolation (NCI)

 Use the same method to divide cubes and

derive motion vectors for each cube

 Interpolate each point by inversely proportional to 

volume of vectors to 27-neighbors’ centers

◼ Get 27 vectors from each point to center of 

27-neighbor cubes 

◼ Get volume of each vector (xi, yi, zi) by 

(|xi| * |yi| * |zi|)

◼ Weighted sum by inverse volume of each vector
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CMI’s extrusion
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VPCC NCI



EXPERIMENTAL

SETUP
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Experimental Setup

 Datasets

◼ MPEG dynamic 3D point cloud sequences

 Gilbert-Elliot Models[5] parameters

◼ 5%, 10%, 15%

 Baseline

◼ 2D frame copy (2DFC): naive frame copy mechanism 

by V-PCC codec

◼ 3D frame copy (3DFC): copy the nearest undistorted 

frame over

30
[5] M. Mushkin and I. Bar-David, "Capacity and coding for the gilbert-elliott channels," in IEEE Transactions on 

Information Theory, vol. 35, no. 6, pp. 1277-1290, Nov. 1989, doi: 10.1109/18.45284.



Performance Metrics
 3D Visual Metrics

◼ GPSNR - The PSNR of Chamfer distance between pair-wise 
closest points in the target and ref. frames

◼ Hausdorff distance: The maximal shortest distance between 

the points in the target and ref. frames

◼ CPSNR: The luminance component of color distortion 

between the nearest points in the target and ref. frames

 2D Visual Metrics

◼ PSNR: The PSNR of the foreground object (avatar) only

◼ SSIM: The luminance SSIM of the foreground object only

◼ VMAF: Predicts subjective video quality consider the whole 
video sequences

 Running time
31

The lower the better

The lower the better



OBJECTIVE RESULTS
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Per-Frame Line Figure

 Key observations:

◼ NCI > PI > 3DFC > 2DFC in PSNR

◼ the quality drops as high as 12 dB in PSNR

33

Limitations of the current 2DFC method

10% lost



Per-Frame Line Figure

 Key observations:

◼ 2DFC > 3DFC > PI > NCI in Hausdorff distance

◼ the quality surges as high as 35K in Hausdorff distance
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Limitations of the current 2DFC method

10% lost



10% lost

Cumulative Distribution Function (CDF)

 Key obserbations:

◼ 2DFC still results low in as low as 30 dB in GPSNR

◼ Clustered into (3DFC), (PI, TI), and (CMI, NCI)

◼ 20% best performing of (CMI, NCI) is 52+ dB

◼ 20% best performing of (3DFC) is 49+ dB

35



Overall Quality of GPSNR

 Our algorithms always outperform 3DFC 

 CMI and NCI consistently outperform others
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Best: +7 dB in Dancer 10% lost



Overall Quality of Hausdorff Distance

 Our algorithms always outperform 3DFC 

 CMI and NCI consistently outperform others
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Best: -1.5 K in Dancer 10% lost



Overall Quality of CPSNR

 Our algorithms may not outperform others

 CMI and NCI may not outperform others
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Best: +1 dB in Queen Worst: Soldier and Basket

10% lost



Overall Quality of PSNR

 Our algorithms outperform 3DFC in PSNR in 

most cases

 NCI may not outperform others
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Best: +2 dB in Loot Worst: Soldier



Overall Quality of SSIM

 Our algorithms outperform 3DFC in SSIM in 

most cases

 NCI may not outperform others
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Best: +0.05 dB in Dancer Worst: Soldier



Overall Quality of VMAF

 Our algorithms outperform 3DFC in VMAF in 

most cases

 NCI may not outperform others
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Best: +9 in Dancer Worst: Soldier



Sequences with Inferior Quality

 Example of artifacts from Soldier and 

Basketball sequences with CMI and NCI 

algorithms
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Per-frame Running Time

 Select 24 random point cloud frames from total 250 
frames

 PI run the fastest

 CMI and NCI

runs slower on 

high-complexity
sequences

 NCI runs slower

on Dancer and 

Basketball player
sequences

 Absolute running time is still long
43



SUBJECTIVE RESULTS
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Experimental Setup

 Head-to-head video comparison

 No. subjects: 12

 Three questions:

◼ Which video was smoother?

◼ Which video had better image quality?

◼ Which video did you prefer?

 Derive head-to-head comparison

to MOS between 0 to 1

◼ Transform by Plackett-Luce model[6]

◼ Normalize to [0, 1]

45

250 frames, 20 fps

[6] H. L. Turner, J. van Etten, D. Firth, and I. Kosmidis, “Modelling rankings

in R: The PlackettLuce package,” Computational Statistics, pp. 1–31, 2020.



Subjective Results - Basketball


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Quality Smoothness

Preference



Subjective Results - Queen


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SmoothnessQuality

Preference



Subjective Results - Soldier


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Quality Smoothness

Preference

Need more investigations for most suitable algorithms on each sequences



CONCLUSION
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Conclusion

 Studied the uninvestigated problem of error 

concealment for 3D point cloud streaming

 Proposed error concealment algorithms
◼ PI, TI, CMI, and NCI

 Significantly outperform the baseline 2DFC and 

usually outperform 3DFC
◼ Report computational time for tradeoff

 CMI and NCI usually outperform others except for 

Basketball and Soldier sequences
◼ Issue for avatars carrying objects

 3DFC performs well in the user study

◼ Hypothesis: Subjects are accustomed to stalls rather than cracks
50



Future Work

 Exploit parallelization of Graphic Processing 

Unit (GPU)

 Improve matching for cubes across frames

◼ Formulate problem of motion estimation

◼ Consider the rotation

 Address issue for avatars with extra items

 Implement real streaming system

 Implement spatial concealment
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Q&A
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Thank you for listening



Applications on Point Clouds

 Sparse Point Clouds

◼ Human activity analysis

◼ Fall detection

 Cylindrical Point Clouds

◼ Civil engineering inspection

◼ Obstacle detection

 Dense Point Clouds

◼ Entertainment

◼ Teleconference
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Our usage scenario



Subjective Results - Dancer


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Quality Smoothness

Preference



Subjective Results - Loot


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Quality Smoothness

Preference



Subjective Results - Longdress


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Quality Smoothness

Preference



Subjective Results - Redandblack


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Quality Smoothness

Preference



Why don’t we use ML

 NN-based PCC algorithms runs at least 10 times 

slower than SP-based ones
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C.-H. Wu, C.-F. Hsu, T.-K. Hung, C. Griwodz, W. T. Ooi, and C.-H. Hsu. Quantitative

comparison of point cloud compression algorithms with PCC Arena. IEEE

Transactions on Multimedia, pages 1–16, February 2022. Accepted to Appear



Why use V-PCC as the ref SW

 Proposed by a well known ISO/IEC standards 

organization group: MPEG

 SP-based PCC algorithm

 Suitable for point cloud videos

 Well documented
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S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,

R. A. Cohen, M. Krivoku´ca, S. Lasserre, Z. Li et al., “Emerging MPEG

standards for point cloud compression,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148,

2018.



PC MB/s
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NCI
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GPSNR
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