

Enhancing Situational Awareness with Adaptive Firefighting Drones: Leveraging Diverse Media Types and Classifiers

Tzu-Yi Fan (joyfan2@gmail.com)

Advisor: Cheng-Hsin Hsu

Networking and Multimedia Systems Lab, CS, National Tsing Hua University

Outline

- Motivation
- Challenges & Goal
- Related Work
- System Overview
- Sensor Selection
- Design of Open Window Classifiers
- Measurement Selection Problem
- Measurement Selection Algorithm
- Implementation
- Evaluations
- Demo of a Complete Firefighting System in the Real World
- Conclusion & Future Work

Importance of Situational Awareness

- High-rise buildings are too high to reach by fire ladders \rightarrow Interior firefighting
- Unexpected situations may put firefighters in danger

• Situational awareness (detect critical situations in real time) is important

Motivation

Challenges & Goal

Challenges in Situational Awareness

Related Work

Multi-Modal Sensors on Drones [PE'12, SenSys'20]

A gas detector [PE'12]

A thermal, a RGB sensor, and sensor data. [SenSys'20]

- Radiometer, gas and smoke detectors and a thermal [PE'12]
- Thermal and RGB sensors [SenSys'20]

Focus on fire detection only Discuss the development of classifiers

Firefighting Drones [IJIGSP'18, ROBIO'14]

Fire extinguishing system: quadrotor, gun, robot, and extinguishing balls. [IJIGSP'18]

Snapshots of the flame extinguishment experiment. [ROBIO'18]

- Throw extinguishing balls [IJIGSP]
- Inject gas to extinguish fires [ROBIO'14]

Focus on putting out fires

[SenSys'20]: T.Lewicki and K.Liu.2020.AerialSensingSystemforWildfireDetection:DemoAbstract.In Proc. of ACM SenSys. Yokohama, Japan, 595–596.
[PE'12]: W. Krull, R. Tobera, and et al. 2012. Early Forest Fire Detection and Verification Using Optical Smoke, Gas and Microwave Sensors. Procedia Engineering 45 (2012), 584–594.
[IJIGSP'18]: A. Alshbatat. 2018. Fire Extinguishing System for High-Rise Buildings and Rugged Mountainous Terrains Utilizing Quadrotor Unmanned Aerial Vehicle. MECS Press IJIGSP 11, 1 (Jan. 2018), 23.
[ROBIO'14]: S. Ogawa, S. Kudo, M. Koide, H. Torikai, and Y. Iwatani. 2014. Development and Control of an Aerial Extinguisher with an Inert Gas Capsule. In 2014 IEEE Intl. Conf. on ROBIO. 1320–1325.

Coarse-Grained Waypoint Scheduling for Drones

[Autom.Sci.Eng'15]: - Designed a planner for drones to continuously monitor risky regions on a 2D map

[CDC'10]: - Kept classification results valid in dynamic environments by a dynamic approach to patrol areas with drones

[SRDS'21]:

- Designed a drone-assisted high-rise fire monitoring system

- Computed waypoint schedules for drones to perform assigned tasks

Not consider sensors, classifiers, and locations of measurement tasks

[Autom.Sci.Eng'15]A. Wallar, E. Plaku, and D. Sofge. 2015. Reactive Motion Planning for Unmanned Aerial SurveillanceofRisk-SensitiveAreas.IEEETrans.Autom.Sci.Eng.12,3(July2015),969–980. [CDC'10] S.SmithandD.Rus.2010. Multi-Robot Monitoring in Dynamic Environments with Guaranteed Currency of Observations. In Proc. of IEEE CDC. Atlanta, GA, 514–521. [SRDS'21] F. Liu, T. Fan, C. Grant, C. Hsu, and N. Venkatasubramanian. 2021. DragonFly: Drone-Assisted High-Rise Monitoring for Fire Safety. In Proc. of IEEE SRDS. Virtual, 331–342.

System Overview

Classifiers

- Analyze sensor data

Measurement Selection Algorithm

- Instruct the detection location, and the usage of sensors and classifiers

Sensors

- Collect data of interested situations

Classifiers and measurement selection algorithm
 can be placed on drones or ground control station

Sensor Selection

WinSet: The First Multi-Modal Window Dataset [BuildSys'21]

• Sensors: RGB, thermal, depth, LiDAR, and ultrasound

- Steps:
 - Set all sensors on a platform with a Rpi
 - Mount the platform on a tripod
 - Take window images for each sensor at different distances *d*, polar angles θ , and azimuthal angels ϕ at multiple window states

[BuildSys'21]T. Fan, T. Tsai, C. Hsu, F. Liu, and N. Venkatasubramanian. 2021. WinSet: The First Multi- Modal Window Dataset for Heterogeneous Window States. In Proc. of ACM BuildSys. 192–195.

WinSet: Dataset A and B

A

	A Different angles/distances/states	B Different window types			
Sensor	RGB, Thermal, Depth, Lidar	RGB, Thermal, Depth, Ultrasound			
Distance	3 m, 6 m, 12 m	1 m, 2 m, 3 m			
Polar angle	0°, 30°	0°			
Azimuthal angle	0°, 30°, 60°	0 °			
Window State	Openness, Human Behind, Lighting	Openness			
Sample, Window Type	4, Sliding/Awing	12, [Sliding, Casement, Awing] x [Pure, Screen, Curtain, Barred]			

Semantic Labeling

- Provide groundtruth for users
- Tool: Labelme
- File format: a .png with label number for each pixel

0	0	1	1	1	1	3	3
0	0	1	2	2	1	3	3
0	0	1	2	2	1	0	0
0	0	1	2	2	1	0	0
0	0	1	2	2	1	0	0
0	0	1	2	2	1	0	0
0	0	1	2	2	1	0	0
0	0	1	1	1	1	0	0

Distinguishability of Different Sensors

• Goal:

Find the sensor with the best distinguishability among different window states

- Data:
 - Images from dataset A with openness window state
 - Experiment at different distances
- Idea:
 - \circ Same window states: open vs. open, close vs. close \rightarrow Low distinguishability
 - Different window states: open vs, close \rightarrow High distinguishability
- Metrics:
 - Histogram Correlation (HC): value \downarrow , distinguishability \uparrow
 - Number of Gaussian till Homogeneity (NG): value \uparrow , distinguishability \uparrow

Distinguishability of Different Sensors

Close window

LiDAR could detect classroom behind window in open/close windows

 \rightarrow LiDAR with low distinguishability

- Depth does not work at all
- Both RGB and thermal work, but RGB works better than thermal

NG: value ↑, distinguishability ↑

Class of Multi-Modal Sensors

One-shot sensor

- Get rich media data at one location
- Use data at one location as one measurement
- E.g., RGB, depth, and thermal cameras

Accumulated sensor

- Get few media data from one location
- Combine data at multiple locations as one measurement
- E.g., ultrasound, humidity, temperature sensors ¹⁶

Design of Open Window Classifiers

- Analyzers:
 - Histogram
 - Sum of Absolute Difference (SAD)
 - Oriented Fast and Rotated Brief (ORB)
 - Support Vector Machine (SVM)
 - Random Forest (RF)

Traditional image processing

Metrics for the Classifier Performance

Certainty: how confident the classifiers are of one classification

• Accuracy: correctness of the classifiers from a large dataset

Abbr.	Meaning				
R	Result				
Cer	Certainty				
GT	Groundtruth				

Site Survey

- Assume users need to do site survey before using our system
- Use sensors to collect data for several windows in the defined locations
- Evaluate the accuracy and avg certainty in the defined locations

-2.43	0.5	0.5	0.5	0.5	0.56	0.56	0.55	0.52	0.52	0.52
-1.89	0.5	0.5	0.5	0.5	0.61	0.7	0.76	0.66	0.6	0.59
-1.35	0.5	0.5	0.5	0.56	0.71	0.76	0.83	0.76	0.69	0.64
-0.81	0.5	0.5	0.5	0.58	0.6	0.65	0.8	0.77	0.65	0.65
<u>ਿ</u> -0.27	0.5	0.5	0.5	0.51	0.64	0.75	0.86	0.73	0.65	0.71
0.27	0.5	0.5	0.53	0.53	0.67	0.9	0.95	0.76	0.63	0.58
0.81	0.5	0.5	0.62	0.62	0.67	0.87	0.94	0.82	0.62	0.59
1.35	0.5	0.53	0.65	0.65	0.68	0.68	0.87	0.76	0.66	0.58
1.89	0.5	0.51	0.62	0.61	0.64	0.64	0.61	0.64	0.57	0.52
2.43	0.5	0.5	0.52	0.52	0.55	0.55	0.57	0.56	0.5	0.48
	ب. _د ر	N.X.	190	<i>, 6</i> 7	36	36	, ó1	190	, XO	رو
		1	7	7	と	V	7	7		-

Certainty is Related to Accuracy [JBR'19]

- Abbr.MeaningRResultCerCertaintyGTGroundtruth
- Get accuracy and avg. certainty of our classifiers at different detection locations from site survey
- Make regression models for each classifier
- Use the regression model to map the certainty to an accuracy value

Human Classifiers (Ongoing)

Measurement Selection Problem

What is a Measurement Sequence?

 A series of measurements with specific locations, sensors, and classifiers

• A series of classification results from the measurement sequence

How to get the *final* result for a measurement sequence?

Measurement Selection Problem Classifiers MS. Algo Μ Μ We have a set of candidate measurements Μ Μ 4 Select a measurement sequence from the candidate Μ Μ Μ 8 measurements 6 Μ • We expect the measurement sequence can achieve: Μ 12 15 Μ Μ Highest Shortest 5 **Measurement Time** Accuracy Candidate Measurements [Location] x [Sensor] x [Classifier] (2) Dynamically adapt the MS. according to the classification results before the sequence is completed

How to quantify an accuracy and time consumption for a measurement sequence?

Quantify an Accuracy for a Measurement Sequence

- 1 Majority vote:
 - Compute the prob. that the results from half of the measurements are correct
 - E.g. A_M = P(3 correct) + P(4 correct) + P (5 correct)

Probability-based:

- Create all possible MS.
- Calculate Prob. x Acc for each possible MS.
- Accumulate Prob. x Acc. of each possible MS. to get an accuracy expectation

Time Consumption for the Measurement Sequence

Total time of a measurement:

High Accuracy

Formulation

• Objective function: maximize the utility score

$$\max_{\mathbf{L}} U(\underline{A}(\mathbf{L}), \underline{T}(\mathbf{L})) = \sqrt{\left(1 - e^{-\alpha A(\mathbf{L})}\right) \times e^{-\beta \frac{T(\mathbf{L})}{\hat{T}}}}$$

- Higher utility score caused by:
- Constraints:
 - Accuracy > target accuracy
 - Time cost < time limit

TT/T

Low Time

Consumption

Measurement Selection Algorithm

When to Run Measurement Selection Algorithm

- 1 Run the algo at the beginning to have an initial measurement sequence
- 2 After detecting one measurement, check if we meet our target
- 3 If not → Run algo again to create a new best measurement sequence
- 4) Terminate one window detection after running out
 - of time or meet the target accuracy

Benchmark: Exhaustive Search OPT

(3) Choose the one with the largest utility value as the final measurement sequence₃₂

Heuristic Algorithm

Real-time response Satisfied performance

Consider every unvisited measurement and calculate the utility after add them
 Select the one that can increase the utility the most

The Implementation

Photo-Realistic Simulator

- Build a city model in Unreal Engine
- Install sliding windows that can open and close to the buildings
- Simulate drones with multi-modal sensors (RGB and ultrasound)by AirSim [MobiCom'21]
- Select a 10-th floor building for evaluation
 - Collect data of 20 windows as site survey
- Site survey:
 - Train the classifier model
 - Generate acc. of candidate measurements

[MobiCom'21]: S. Tang, C. Hsu, Z. Tian, and X. Su. 2021. An Aerodynamic, Computer Vision, and Network Simulator for Networked Drone Applications. In Proc. of ACM Annual Intl. Conf. on MobiCom.

35

Event-Driven Simulator

- Made by C++
- Simulate the whole process of our system
- Connect to the photo-realistic simulator for real time detection

Compared Algorithms

Target acc: 0.8 Time limit: 30 s

Results of One Sample Window

• HEU_M/HEU_P achieve the target accuracy (> 0.8) and the time limit (< 30 s)

- \rightarrow HEU_M/HEU_P work as we expect
- HEU_M/HEU_P outperform baselines in utility and expected accuracy

Accumulated Results from All Windows

- HEU_M/HEU_P achieve utility larger than 0.73 and expected accuracy larger than 0.83 in 80% of windows
- \rightarrow HEU_M/HEU_P outperform baselines in most windows
- HEU_M/HEU_P always cost less than 3 s \rightarrow Real time response

- Select the measurement seq. from smaller problem size
- HEU_M/HEU_P/OPT achieve utility larger than 0.65 and expected accuracy larger than 0.6 for all windows
- \rightarrow The results of HEU_M/HEU_P are close to OPT for all windows
- HEU_M/HEU_P cost 4 s less than OPT at most
 → HEU_M/HEU_P meets the real-time response requirements

Demo of a Complete Firefighting System in the Real World (Ongoing)

System Architecture

 Combine coarse-grained waypoint scheduling with the finegrained measurement selection
 → Improve situational awareness

Demo

- Build a high-rise building model using a bookshelf
- Use Tello drone to fly through the waypoints we set
- Use our laptop to simulate the ground control station to analyze the sensor data and generate measurement sequence

Dashboard to Show the Collected Data

- Design the user interface for the firefighters
- A 3D building demonstrate where the victims and the open windows are
- A table that could add task for drones to monitor

Conclusion & Future Work

Conclusion

- Create the first multi-modal window dataset
- 2 Develop diverse window openness classifiers
- 3 Solve the fine-grained measurement selection problem
 - Create photo-realistic/event-driven simulators to evaluate our algorithms
- Our measurement selection algo:
 - Reach the target acc. and the time limit in 86% of windows
 - Achieve accuracy larger than 88% after comparing to the groundtruth

Algorithm	CHC _R	CHCU	RAN	HEUM	HEUP
<i>O_M</i> (%)	50	75	72.22	88.89	88.89
O _P (%)	50	75	66.67	94	100
<i>F_M</i> (%)	0	25	19.44	88.89	86.11
F _P (%)	0	25	66.67	94.44	100
Mean (std.) L	1 (0)	1 (0)	9.36 (1.79)	1.22 (0.64)	1.67 (0.85)

Thank you for listening !

TZU-YI FAN (Email: joyfan2@gmail.com)

Thanks for the help of Prof. Hsu, Prof. Venkatasubramanian,

Fangqi Liu, Jia-Wei Fang, Tun-Chi Tsai, Yan-Mei Tang and Yi-Ting Wang, and all lab mates.

- Publications:
 - <u>T. Fan</u>, T. Tsai, C. Hsu and F. Liu, and N. Venkatasubramanian. 2021. WinSet: The First Multi-Modal Window Dataset for Heterogeneous Window States. In Proc. of The 8th ACM International Conference on Systems for Energy- Efficient Buildings, Cities, and Transportation (BuildSys'21), November 17–18, 2021, Coimbra, Portugal.
 - <u>T. Fan</u>, F. Liu, J. Fang, N. Venkatasubramanian, and C. Hsu. 2022. Enhancing Situational Awareness with Adaptive Firefighting Drones: Leveraging Diverse Media Types and Classifiers. In Proc. of the 13th ACM Multimedia Systems Conference (MMSys '22), June 14–17, 2022, Athlone, Ireland.
 - F. Liu, <u>T. Fan</u>, C. Grant, C. Hsu, and N. Venkatasubramanian. 2021. DragonFly: Drone-Assisted High-Rise Monitoring for Fire Safety. In Proc. of IEEE SRDS. Virtual, 331–342.
 - Target to create a journal paper for our SRDS and MMSys paper

Accuracy Fusion for Binary Classifiers after Measuring

- E.g., open window classifiers, classes: open (1) vs close (0)
- All measurement results from L: $R(L) = \{L_0, L_1\}$
- Majority vote: Select the class with the most vote e.g., 1 1 1 0 0 \rightarrow 1 $\hat{R}(\mathbf{R}(\mathbf{L})) = \arg \max_{i=\{0,1\}} |\mathbf{L}_i|$
- Probability-based: Select the class with the largest correct probability under the prediction from the measurement sequence $\hat{R}(\mathbf{R}(\mathbf{L})) = \arg \max P(i|\mathbf{R}(\mathbf{L}))$

e.g.,
$$\begin{array}{c} 1, \\ 0,7 \\ 0.8 \\ \end{array} \begin{array}{c} 0, \\ 0.6 \\ \end{array} \begin{array}{c} 0, \\ i \in \{0,1\} \\ \end{array} \end{array} \begin{array}{c} 1 \\ (i \in \{0,1\} \\ i \in \{0,1\} \end{array} \end{array}$$

Accuracy Fusion for Binary Classifiers before Measuring

• Majority vote:

Compute the probability that the results from half of the selected measurements are correct

$$0.7 \quad 0.8 \quad 0.6 \quad 0.8 \quad 0.7 \qquad A_M(\mathbf{L}) = \sum_{k=\lceil L/2 \rceil}^{L} \sum_{\substack{\mathbf{L}_1 \subseteq \mathbf{L}, |\mathbf{L}_1| = k, \ m_i \in \mathbf{L}_1}} (\prod_{m_i \in \mathbf{L}_1} a_i \prod_{m_j \in \mathbf{L}_0} (1 - a_j))$$

• Probability-based: Calculate the probability after the new measurements guessing 0 and 1 Select the result with larger probability

$$A_{P}(\mathbf{L}) = \sum_{\hat{\mathbf{L}}_{1} \subseteq \hat{\mathbf{L}}, \\ \hat{\mathbf{L}}_{0} = \hat{\mathbf{L}} \setminus \hat{\mathbf{L}}_{1}} \max \left(P(1 | \mathbf{R}(\mathbf{L}')) \prod_{m_{i} \in \hat{\mathbf{L}}_{1}} a_{i} \prod_{m_{j} \in \hat{\mathbf{L}}_{0}} (1 - a_{j}), \\ \frac{\hat{\mathbf{L}}_{0} = \hat{\mathbf{L}} \setminus \hat{\mathbf{L}}_{1}}{\hat{\mathbf{L}}_{0} = \hat{\mathbf{L}} \setminus \hat{\mathbf{L}}_{1}} \prod_{m_{i} \in \hat{\mathbf{L}}_{1}} a_{i} \prod_{m_{j} \in \hat{\mathbf{L}}_{0}} (1 - a_{j}), \\ (1 - P(1 | \mathbf{R}(\mathbf{L}'))) \prod_{m_{i} \in \hat{\mathbf{L}}_{1}} (1 - a_{i}) \prod_{m_{j} \in \hat{\mathbf{L}}_{0}} a_{j} \right)$$

Time Calculation for the Measurement Sequence

Formulation

$$\max_{\mathbf{L}} U(A(\mathbf{L}), T(\mathbf{L})) = \sqrt{(1 - e^{-\alpha A(\mathbf{L})}) \times e^{-\beta \frac{T(\mathbf{L})}{\hat{T}}}}$$

s.t. $A(\mathbf{L}) \ge \hat{A}; \quad T(\mathbf{L}) \le \hat{T}$

Evaluations: Setup

- Parameters:
 - Target accuracy = $\{0.7, 0.8, 0.9\}$
 - Time limit for each window = {5, 10, <u>30</u>, 60} seconds
 - Candidate sampling policies =
 - $\{\underline{\mathrm{E}}_{\underline{10}}, \mathrm{E}_{8}, \mathrm{E}_{8}, \mathrm{E}_{8}\}$
 - Default settings: under-lined values

- Metrics:
 - Overall accuracy $O_M(L)/O_P(L)$
 - Expected accuracy $A_M(L)/A_P(L)$
 - Utility function U_M / U_P
 - Total measurement time *T*(*L*)
 - Number of measurement |L|
 - Feasible ratio of measurements F_M/F_P : the fraction of L satisfying the target accuracy and the time limit
 - Energy consumption

Performance at Different Target Accuracy

• HEU_M/HEU_P can keep the good performance under different target accuracy

Compare Result of One Sample Window to OPT

- Select the measurement seq. from smaller problem size
- HEU_M/HEU_P/OPT achieve 0.66 utility
- HEU_M/HEU_P/OPT achieve 0.65 expected accuracy
- \rightarrow The results of HEU_M/HEU_P are close to OPT for one sample window

Open Window Classifiers in WinSet

- Thermal Window Classification (TWC)
 - Open window: diverse temperature \rightarrow Different color Ο
 - Close window: constant temperature \rightarrow Same color 0

- Ultrasound Window Classification (UWC)
 - Value returned by the ultrasound sensor the GPS coordinates or building blue-print)
- **Baselines**:

0

Zheng [Energy Build.'19]: same method as TWC but with RGB images Ο

Open

Huang [SPIE Target and Background Signatures'18]: 0

same method as UWC but change **b** to the value from the depth sensor

Actual distance to a window (derived from

56

Evaluations of the Open Window Classifiers in WinSet

- Ultrasound-based classifiers (Huang and UWC):
 - Accuracy & F1-Score: UWC > Huang (> 0.3 m and < 1.2 m)
- RGB/thermal-based classifiers (Zheng and TWC):
 - Accuracy: TWC > Zheng (> 1 m and < 3 m)
 - If the distance is getting larger, TWC works much better than Zheng

