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Motivations



Numbers of IoT Sensors 
are Growing Rapidly

▪ “By 2025, there will likely 
be more than 27 billion 
IoT connections.” [1]

▪ The data generated from 
the sensors need to be 
analyzed to export the 
information 

▪ IoT analytics are needed

▪ DNNs are popular for 
analyzing data
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[1] Satyajit Sinha. (2021) State of IoT 2021: Number 

of connected IoT devices growing 9% to 12.3 billion 

globally, cellular IoT now surpassing 2 billion. 

[Online]. Available: (https://iot-

analytics.com/number-connected-iot-devices/)



DNN Deployment Problem

▪ Deploying DNN

▪ On IoT device: computing latency 

▪ On cloud server: transmission 
latency

▪ DNN deployment decision becomes 
a key research problem to 
guarantee the Quality-of-Service 
(QoS) of IoT analytics

▪ Trade-offs between analytics 
accuracy, computation and 
transmission latencies, network 
overhead, etc.
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Goals and 
Challenges



Goals and Challenges

▪ Goals
▪ Maximize # served requests

▪ Dynamically choose, deploy, monitor, and control IoT analytics 
under resource constraints

▪ Challenges
▪ Limited resources

▪ Diverse QoS requirements

▪ Different request arrival patterns 

▪ Dynamic environments
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Observations

Multiple analytics could 
share the same sensor 
data or even some 
common prefix layers of 
their DNNs
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▪ Limited resources

▪ Diverse QoS requirements

▪ Different request arrival patterns

▪ Dynamic environments

Proposed Thing-
to-Cloud (T2C) 
System Features

Multi-task [ML’97]

Early exit [ICPR’16]

Hitchhiking

Reconfiguration [CC’14]
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[ML’97] R. Caruana. Multitask learning. 

Springer Machine Learning, 28(1):41–75, July 

1997.
[ICPR’16] S. Teerapittayanon, B. McDanel, and H. 
Kung. Branchynet: Fast inference via early exiting 
from deep neural networks. In Proc. of IEEE 
International Conference on Pattern Recognition 
(ICPR’16), pages 2464–2469, Cancun, Mexico, 
December 2016. 
[CC’14] L. Yang, J. Cao, S. Tang, D. Han, and 

N. Suri. Run time application repartitioning in 

dynamic mobile cloud environments. IEEE 

Transactions on Cloud Computing, 4(3):336–

348, September 2014.



Related Work



DNN-based IoT Analytics 
Deployment
Name Multi-

tenant

Distributed 

Inference

Early Exit Multi-task Reconfiguration

[MobiSys’17]

[SIGARCH’17] 

[WC’19]

[ATC’18]

[SEC’20]

[IC2E’21]

Ours
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1. Topology of thing-edge-cloud has not been fully studied yet

2. Focus on one-time request
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System Overview
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System Design
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Controller
▪ Request manager: handle requests

▪ Hitchhike requests to deployed models

▪ Store requests

▪ Aggregate requests
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Container 

Deployer A

Controller
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2

▪ Resource monitor: keep track of 
the system
▪ Deployed models

▪ Computing/Networking resources

▪ Deployment Manager: make 
deployment decisions and deploy 
the models

▪ Reconfiguration manager: check 
runtime performance of deployed 
models and make reconfiguration 
decision
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Computing Devices
▪ Agent: Manage DNN partition

▪ Communicate with controller (model status / reconfiguration command, 
etc.)

▪ Receive raw / intermediate data from other computing devices

▪ Send intermediate data to other computing devices

▪ Send inference results to users

▪ Partition: execute assigned DNN layers
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Research 
Problems
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Goals of DNN Deployment

Derive the optimal deployment plans for the DNNs that serve the 
most requests

▪ Deployment plan

▪ Determine where to deploy the 
DNN model partitions and 
which exit point to run

▪ Challenges

▪ Resource demands of DNNs are 
heterogenous

▪ Resource availability in the 
thing-to-cloud continuum is 
diverse and limited

▪ Environment at runtime is 
dynamic
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Deployment Plan Decision-
Making Process

We devide the deployment plan decision-making process into two 
phases

▪ Planning phase: genearte deployment plan given resource levels 
-> Deployment planning problem

▪ Operation phase: check the QoS of deployed models and 
reconfigure the deployment plan at runtime if needed
-> Dynamic reconfiguration problem

20
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Planning Phase
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Multi-task Model 
Requests

▪ Each model contains 
several tasks

▪ Each task contains a 
multiple exit points 
and layers

▪ Each tasks has several 
requests with 
accuracy and latency 
requirements
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Resource Status

▪ Computing powers indicate the number of partitions 
that can be deployed on that device

▪ Network resources
▪ Bandwidth capacity

▪ Runtime throughput
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Deployment 
Planning 
Problem
▪ We have a set of models to

deploy

▪ Select exit points and 
partition points for each 
model

▪ Maximize the number of 
served requests
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Performance 
Prediction

▪ Latency
▪ Computing latency (lookup 

table)

▪ Layers

▪ Exit layers

▪ Transmission latency

▪ Accuarcy
▪ Based on exit point:

task1 x1 -> 75%
task2 x2 -> 90%
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Scaling Factors
▪ Lookup table may not capture the 

impact of runtime environment

▪ Leverage historical logs to update 
the prediction at runtime
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Throughput
▪ Number of served requests

▪ Maximize throughput under computing resource constraints
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Deployment 
Planning Algorithm
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Operation Phase
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Dynamic 
Reconfiguration 
Problem
▪ A performance drop is detected on a deployed model 𝑚

▪ Select new exit points and partition points to maxmize the 
throughput

▪ The computing resources
are limited to those already 
assigned in the planning 
phase
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Dynamic 
Reconfiguration 
Algorithm

Find optimal decision

1. Find all possible exit 
points

(i) Select partition points with 
lowest latency

(ii) Predict throughput

2. Return the exit points 
and partition points with
highest throughput
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Implementations
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Testbed
▪ Computation devices

▪ IoT Device (Upboard): Intel Atom CPU @1.44 GHz and 
4 GB RAM

▪ Edge (NUC): Intel i3 CPU @1.7 GHz and 16 GB RAM

▪ Cloud (PC): Intel i7 CPU @3.4 GHz and 24 GB RAM

▪ Open-sources tools

▪ Kubernetes

▪ Docker

▪ ZeroMQ

▪ Network topology

▪ System communicates to the computing devices via control plane

▪ Computing devices send data 
via data plane
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Multi-task Networks
▪ Pytorch based Age-Smile-Gender multi-task DNNs 

[Informatica’18]

▪ Enable early exits with BranchyNet [ICPR’16] structure

▪ Run inference for 100 times and use the average computing time 
to build the lookup table

▪ Create 5 models by varying the number of convolution 
and max-pooling layers 
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Compared Algorithms
▪ Baselines

▪ Neurosurgeon (NEU) [SIGARCH’17]: select partition points for shortest 
latency

▪ Edgent [WC’19]: select exit points with highest accuracy that has partition 
points achieving required latency requirement (we forced it to choose the 
exit points that satisfying the accuracy requirements)

▪ T2C with different features
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between the cloud and mobile edge. ACM SIGARCH Computer Architecture News, 45(1):615–629, April 2017.

[WC’19] E. Li, L. Zeng, Z. Zhou,and X. Chen. EdgeAI: On-demand accelerating deep neural network inference via edge computing. 

IEEE Transactions on Wireless Communications, 19(1):447–457, October 2019.



Evaluations
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Evaluation Setup

▪ Experiment duration: 5 min

▪ Run (# repeats): 5

▪ # Models: 5

▪ Sliding window of scaling 
factors: 1 min

▪ Aggregation period
▪ Planning phase: 10 s

▪ Operation phase: 20 s

▪ Reconfiguration period: 45 s

▪ Request arrival rate (Poisson 
arrival rate of a Public 311 call 
trace)
▪ Planning phase: {1X, 20X, 40X, 

60X, 80X}

▪ Operation phase: {40X, 60X, 
80X, 100X, 120X}

▪ Network link: 
▪ Sensor-IoT (Bluetooth): 1 

Mbps, latency 1ms

▪ IoT-Edge (WiFi): 24 Mbps, 
latency 3ms

▪ Edge-Cloud (Broadband): 40 
Mbps, latency 5 ms

▪ Computing powers:
▪ Device: 3

▪ Edge: 3

▪ Cloud: 7
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Perforamance Metrics

▪ Throughput: the number of served requests

▪ Satisfied ratio: the % of requests meeting both accuracy and latency 
requirements

▪ Latency: the inference time of IoT analytics

▪ Accuracy: the accuracy of IoT analytics

▪ Queuing time: the waiting time of a each request in the request queue

▪ CPU utilization: the fraction of algorithm running time on our Intel i7 PC 
@3.6 GHz 

▪ Deployment time: time difference between deployment plan generation 
and container launch

▪ Data plane throughput: the bandwidth consumption among DNN partitions

▪ Control overhead: the bandwidth consumption of control messages
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Results:
Planning Phase



Multi-task and Hitchhiking 
Improve Throughput without 
Sacrificing Satisfied Ratio 

▪ T2CM and T2CMH achieves 2.34X and 2.44X of throughput 
compared to NEU

▪ T2CMHE delivers 2.74X of throughput compared to Edgent

▪ Our algorithms satisfy > 97% requests at runtime

40
1 2 3 4 5 Avg.

Run

0

20

40

60

80

100

T
h

ro
u
g

h
p

u
t NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1 2 3 4 5 Avg.

Run

94

95

96

97

98

99

S
a

ti
s
fi
e

d
 R

a
ti
o

 (
%

)

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Planning 

Phase

Operation 

Phase

M: multi-task

H: hitchhiking

E: early exit



Early Exits Reduce 
Latency while Satisfying 
Accuracy Requirements

▪ T2CMHE and Edgent result in 3.85% lower latency compared to 
NEU and 7.68% lower latency compared to T2CM
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Our System Incurs 
Acceptable Overhead

▪ All algorithms incur ~1Mbps control overhead 
-> Acceptable

▪ T2CMHE obtains 37.86% and 42.86% of CPU utilization 
compared to NEU and Edgent
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Our System Scales 
Well under Heavy 
Workload
▪ T2CMH and T2CMHE achieve at most 5.4X and 6.8X of throughput 

compared to NEU

▪ Queuing time of T2C algorithms is as low as 12.21% of that of 
NEU

43

1X 20X 40X 60X 80X

Workload

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
 T

h
ro

u
g
h

p
u

t NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1X 20X 40X 60X 80X

Workload

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a
liz

e
d

 Q
u
e

u
in

g
 T

im
e

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Planning 

Phase

Operation 

Phase

M: multi-task

H: hitchhiking

E: early exit



Results:
Operation Phase



T2CMHER Obtains 
Highest Throughput 
and Satisfied Ratio

▪ To trigger reconfiguration, we increase the workload and 
aggregation period to accumulate more requests in a model

▪ We cut network bandwidth by half to emulate network 
congestion after the 1st deployment decisions are made (@20s)
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Reconfiguration 
Improves Satisfied 
Ratio
▪ Zoom into the performance of a single model

▪ Light workload: 4 models

▪ Heavy workload: up to 13 models
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T2CMHER Incurs 
Acceptable Overhead

▪ T2CMHER has a CPU utilization of ≤ 5%, which is only a few ms for 
each invocation

▪ T2CMHER consumes extra bandwidth for reconfiguration, but the 
average throughput is < 1.5 Mbps
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Summary

▪ T2CMHE achieves 6.8X throughput at low latency

▪ T2CMHER improves up to 35% satisfied ratio
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Conclusion & 
Future Work
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Conclusion

▪ Propose the T2C system for deploying DNNs in a thing-to-cloud 
continuum

▪ Leverage multi-task, hitchhiking, early exits, and reconfiguration

▪ Divide the deployment decision-making process into planning and 
operation phase

▪ Solve the deployment planning problem and dynamic 
reconfiguration problem

▪ T2CMHE achieves 6.8X throughput at low latency

▪ T2CMHER improves up to 35% satisfied ratio
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Future Work
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Cost of reconfiguration

Multiple devices 

in each infrastructure layer
Adaptive aggregation period



Thank you for listening
Chia-Ying Hsieh (cyinghsieh@gmail.com)
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Multi-task Networks
▪ Originally proposed to share weights of prefix layers of different 

tasks [ML’97]

▪ Trained several DNNs for multiple video analytics with different 
number of shared layers to trade accuracy and complexity 
[ATC'18]

▪ Trained popular networks and replaced the classifier (fully-
connected layers) and some of the convolution layers with that 
of the target tasks [SEC’20]
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Deploy multi-task model in the thing-to-cloud 

continuum has not been thoroughly studied

[ML’97] R. Caruana. Multitask learning. Springer Machine Learning, 28(1):41–75, July 1997.
[ATC’18] A. Jiang, D. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky, M. Kozuch, P. Pillai, D. Andersen, and G. Ganger. 
Mainstream: Dynamic stem-sharing for multi-tenant video processing. In Proc. of Internatioal USENIX Annual Technical 
Conference (ATC’18), pages 29–42, Boston, MA, July 2018. 
[SEC’20] M. Chao, R. Stoleru, L. Jin, S. Yao, M. Maurice, and R. Blalock. AMVP: Adaptive CNN-based multitask video 
processing on mobile stream processing platforms. In Proc. of IEEE/ACM Symposium on Edge Computing (SEC’20), pages 96–
109, Virtual, November 2020. 



Early Exits and Deployment
▪ Infer with prefix layers as long as the accuracy reaches the 

target [ICPR'16]

▪ Dynamically selected partition and exit points between an IoT 
device and an edge server [WC’19]

▪ Partitioned the DNNs and guaranteed that the local device has 
at least an exit point [MobiCom’20]
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1. Only considered the decision between thing-edge 

or edge-cloud, the topology of thing-edge-cloud 

has not been fully studied yet

2. Focus on one-time request

[ICPR’16] S. Teerapittayanon, B. McDanel, and H. Kung. Branchynet: Fast inference via early exiting from deep neural 
networks. In Proc. of IEEE International Conference on Pattern Recognition (ICPR’16), pages 2464–2469, Cancun, Mexico, 
December 2016. 
[WC’19] E. Li, L. Zeng, Z. Zhou, and X. Chen. EdgeAI: On-demand accelerating deep neural network inference via edge 
computing. IEEE Transactions on Wireless Communi- cations, 19(1):447–457, October 2019 
[MobiCom’20]S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane. Spinn: synergistic progressive inference of 
neural networks over device and cloud. In Proc. of the Annual International Conference on Mobile Computing and Networking 
(Mobi- Com’20), pages 1–15, London, UK, April 2020. 



Reconfiguration

▪ Reconfigured mobile apps during cloud offloading to maximize 
the execution speed [CC’14]

▪ Investigated if reconfiguration of DNN is useful [CLOUD’21]

▪ Reduced service downtime of reconfiguration [IC2E’21]
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Reconfiguration of DNNs has not been integrated in a 

deployment system 

[CC’14] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri. Run time application repartitioning in dynamic mobile cloud 

environments. IEEE Transactions on Cloud Computing, 4(3):336–348, September 2014.

[CLOUD’21] F. McNamee, S. Dustdar, P. Kilpatrick, W. Shi, I. Spence, and B. Varghese. The case for adaptive deep 

neural networks in edge computing. In Proc. of IEEE International Conference on Cloud Computing (CLOUD’21), 

pages 43–52, Chicago, IL, September 2021.

[IC2E’21] A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese. NEUKONFIG:Reducing edge service downtime when 

repartitioning DNNs. In in Proc. of IEEE International Conference on Cloud Engineering (IC2E’21), pages 118–125, 

San Francisco, CA, October 2021.



Overhead under Different 
Workload Compared to NEU

▪ T2C algorithms do not incur significantly more overhead when 
workload is heavier
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Our system scales well under heavy workload



Latency Reduction by 
Reconfiguration
▪ T2CMHER changes the partition points to reduce latency
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Performance under 
Different Workload
▪ T2CMHER always achieves better satisfied ratio under different 

workload

▪ Higher control overhead but still < 1.5 Mbps
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