
A Multi-Tenant System for
Deploying Deep Neural
Networks in a
Thing-to-Cloud Continuum

Chia-Ying Hsieh

cyinghsieh@gmail.com

Advisor: Cheng-Hsin Hsu

Networking and Multimedia Systems Lab, CS,
National Tsing Hua University

NMSL@NTHU
Networking and Multimedia Systems Lab

mailto:cyinghsieh@gmail.com

Outline

▪ Motivations

▪ Challenges & Goal

▪ Related Work

▪ System Overview

▪ Planning Phase

▪ Operation Phase

▪ Implementations

▪ Evaluations

▪ Conclusion & Future Work

2

Motivations

Numbers of IoT Sensors
are Growing Rapidly

▪ “By 2025, there will likely
be more than 27 billion
IoT connections.” [1]

▪ The data generated from
the sensors need to be
analyzed to export the
information

▪ IoT analytics are needed

▪ DNNs are popular for
analyzing data

4

Fish

Population

Monitoring

Stormwater

Contamination

Monitoring

Fall

Detection

Activity

Monitoring

Pedestrian

Counting Car Accident

Detection

[1] Satyajit Sinha. (2021) State of IoT 2021: Number

of connected IoT devices growing 9% to 12.3 billion

globally, cellular IoT now surpassing 2 billion.

[Online]. Available: (https://iot-

analytics.com/number-connected-iot-devices/)

DNN Deployment Problem

▪ Deploying DNN

▪ On IoT device: computing latency

▪ On cloud server: transmission
latency

▪ DNN deployment decision becomes
a key research problem to
guarantee the Quality-of-Service
(QoS) of IoT analytics

▪ Trade-offs between analytics
accuracy, computation and
transmission latencies, network
overhead, etc.

5

Thing

Edge

Cloud

Thing-to-Cloud Continuum

C
o
m

p
u

ti
n

g

L
a
te

n
cy

Goals and
Challenges

Goals and Challenges

▪ Goals
▪ Maximize # served requests

▪ Dynamically choose, deploy, monitor, and control IoT analytics
under resource constraints

▪ Challenges
▪ Limited resources

▪ Diverse QoS requirements

▪ Different request arrival patterns

▪ Dynamic environments

7

Observations

Multiple analytics could
share the same sensor
data or even some
common prefix layers of
their DNNs

8

Fish

Population

Monitoring

Stormwater

Contamination

Monitoring

Fall

Detection

Activity

Monitoring

Pedestrian

Counting Car Accident

Detection

▪ Limited resources

▪ Diverse QoS requirements

▪ Different request arrival patterns

▪ Dynamic environments

Proposed Thing-
to-Cloud (T2C)
System Features

Multi-task [ML’97]

Early exit [ICPR’16]

Hitchhiking

Reconfiguration [CC’14]

9

New

Request

Already-deployed

Model

Results

Accident

Detection

Exit 3

Accident

Detection

Exit 2

Pedestrian

Counting

Exit 2

Pedestrian

Counting

Exit 1

IoT

Device

Edge

Server

Cloud

Server

Accident

Detection

Exit 1

Selected Exit

Deployed

Layers

destrian

ounting

Exit 3

Migrate

Layers

Already-deployed

Model

Overloaded

[ML’97] R. Caruana. Multitask learning.

Springer Machine Learning, 28(1):41–75, July

1997.
[ICPR’16] S. Teerapittayanon, B. McDanel, and H.
Kung. Branchynet: Fast inference via early exiting
from deep neural networks. In Proc. of IEEE
International Conference on Pattern Recognition
(ICPR’16), pages 2464–2469, Cancun, Mexico,
December 2016.
[CC’14] L. Yang, J. Cao, S. Tang, D. Han, and

N. Suri. Run time application repartitioning in

dynamic mobile cloud environments. IEEE

Transactions on Cloud Computing, 4(3):336–

348, September 2014.

Related Work

DNN-based IoT Analytics
Deployment
Name Multi-

tenant

Distributed

Inference

Early Exit Multi-task Reconfiguration

[MobiSys’17]

[SIGARCH’17]

[WC’19]

[ATC’18]

[SEC’20]

[IC2E’21]

Ours

11

1. Topology of thing-edge-cloud has not been fully studied yet

2. Focus on one-time request

Reference
▪ [MobiSys’17] DeepEye: Resource efficient local execution of multiple deep vision

models using wearable commodity hardware. In Proc. of the Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys’17), pages 68–81, Niagara Falls, New York, June 2017.

▪ [SIGARCH’17] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. ACM SIGARCH Computer Architecture News, 45(1):615–629, April 2017.

▪ [WC’19] E. Li, L. Zeng, Z. Zhou, and X. Chen. EdgeAI: On-demand accelerating
deep neural network inference via edge computing. IEEE Transactions on
Wireless Communications, 19(1):447–457, October 2019

▪ [ATC’18] A. Jiang, D. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky, M. Kozuch,
P. Pillai, D. Andersen, and G. Ganger. Mainstream: Dynamic stem-sharing for
multi-tenant video processing. In Proc. of Internatioal USENIX Annual Technical
Conference (ATC’18), pages 29–42, Boston, MA, July 2018.

▪ [SEC’20] M. Chao, R. Stoleru, L. Jin, S. Yao, M. Maurice, and R. Blalock. AMVP:
Adaptive CNN-based multitask video processing on mobile stream processing
platforms. In Proc. of IEEE/ACM Symposium on Edge Computing (SEC’20), pages
96–109, Virtual, November 2020.

▪ [IC2E’21] A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese.
NEUKONFIG:Reducing edge service downtime when repartitioning DNNs. In in
Proc. of IEEE International Conference on Cloud Engineering (IC2E’21), pages
118–125, San Francisco, CA, October 2021 12

System Overview

13

System Design

14

Device/Edge/Cloud

Device/Edge/Cloud

Device/Edge/Cloud

Partition
Partition

...

...

Users

Controller

Resource

Monitor

Reconfiguration

Manager

Partition
Partition

Partition

Agent

Reconfiguration

Plan

Models status

Requests

Request

Queue

Hitchhiking

Manager

Request

Aggregator

Request Manager

Requests

Requests

Results

Data

R
aw

 D
ata...

Partition
Partition

Sensor

...

Deployment

Planner

Container

Deployer

...

Deployment Manager

Deployment plan

Model Status/Resources

Model Status

Control Flow

Data Flow

Unserved

requests

Requested

Models

Current

Resources

D
ep

lo
y

ed
 M

o
d

el
s

Controller
• Manage requests

• Monitor system

• Make deployment decisions

Computing devices

(device/edge/cloud)
• Execute DNN layers

Controller
▪ Request manager: handle requests

▪ Hitchhike requests to deployed models

▪ Store requests

▪ Aggregate requests

15

Model A (Intersection)

• task A1

• task A3

• requests 1, 2, 3

Model B (Senior house)

• task B2

• request 4

Request1:

{task A1, accuracy 70%, latency 0.2}

Request2:

{task A1, accuracy 65%, latency 0.3}

Request3:

{task A3, accuracy 90%, latency 0.25}

Request4:

{task B2, accuracy 80%, latency 0.3}

Request

Aggregator

Hitchhiking

Manager

Request

Queue
request request

deployed model’s results

O

x

1

1

A1: accident detection

A3: pedestrian counting

B2: fall detection

Container

Deployer A

Controller

16

2

▪ Resource monitor: keep track of
the system
▪ Deployed models

▪ Computing/Networking resources

▪ Deployment Manager: make
deployment decisions and deploy
the models

▪ Reconfiguration manager: check
runtime performance of deployed
models and make reconfiguration
decision

2

3

3

Deployment

Planner

Model A

• deployment decision

Model B

• deployment decision

Container

Deployer

Request

Queue

Model A

• task A1

• task A3

• requests 1, 2, 3

Model B

• task B2: accuracy 80%

• requests 4

request 1

computing/network resources

44

Computing Devices
▪ Agent: Manage DNN partition

▪ Communicate with controller (model status / reconfiguration command,
etc.)

▪ Receive raw / intermediate data from other computing devices

▪ Send intermediate data to other computing devices

▪ Send inference results to users

▪ Partition: execute assigned DNN layers

17

Device/Edge/Cloud

Device/Edge/Cloud

Device/Edge/Cloud

Partition
Partition

...

...

Users

Controller

Resource

Monitor

Reconfiguration

Manager

Partition
Partition

Partition

Agent

Reconfiguration

Plan

Models status

Requests

Request

Queue

Hitchhiking

Manager

Request

Aggregator

Request Manager

Requests

Requests

Results

Data

R
aw

 D
ata...

Partition
Partition

Sensor

...

Deployment

Planner

Container

Deployer

...

Deployment Manager

Deployment plan

Model Status/Resources

Model Status

Control Flow

Data Flow

Unserved

requests

Requested

Models

Current

Resources

D
ep

lo
y

ed
 M

o
d

el
s

Model A

• latencies = {0.2,

0.3, 0.25…}

• status:

running/finished/

reconfiguring

5

5

6

6

Research
Problems

18

Goals of DNN Deployment

Derive the optimal deployment plans for the DNNs that serve the
most requests

▪ Deployment plan

▪ Determine where to deploy the
DNN model partitions and
which exit point to run

▪ Challenges

▪ Resource demands of DNNs are
heterogenous

▪ Resource availability in the
thing-to-cloud continuum is
diverse and limited

▪ Environment at runtime is
dynamic

19

Deployment Plan Decision-
Making Process

We devide the deployment plan decision-making process into two
phases

▪ Planning phase: genearte deployment plan given resource levels
-> Deployment planning problem

▪ Operation phase: check the QoS of deployed models and
reconfigure the deployment plan at runtime if needed
-> Dynamic reconfiguration problem

20

Aggregate requests Deploy models Terminate models

Planning phase Operation phase

Planning Phase

21

Multi-task Model
Requests

▪ Each model contains
several tasks

▪ Each task contains a
multiple exit points
and layers

▪ Each tasks has several
requests with
accuracy and latency
requirements

22

1 2 3 4 5 6 7

8 9

Pedestrian

Counting

Accident

Detection

x1 x1

x2

x2

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

Model

Requests:

{AD, 70%, 0.25}

{AD, 60%, 0.3}

{PC, 75%, 0.2}

Resource Status

▪ Computing powers indicate the number of partitions
that can be deployed on that device

▪ Network resources
▪ Bandwidth capacity

▪ Runtime throughput

23

Bandwidth

capacity

Runtime throughput

c = 2 c = 1 c = 4

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

Deployment
Planning
Problem
▪ We have a set of models to

deploy

▪ Select exit points and
partition points for each
model

▪ Maximize the number of
served requests

24

1 2 3 4 5 6 7

8 9

Model 3

Model 2

x1 x1

x2

x2

c = 2 c = 1 c = 4

M1

Partition 1

M1

Partition 2
M2

Partition 1

M3

M2

Partition 2

How to determine a

request is served?

Model 1

Requests:

{AD, 70%, 0.25}

{AD, 60%, 0.3}

{PC, 75%, 0.2}

Accident

Detection

Pedestrian

Counting

Performance
Prediction

▪ Latency
▪ Computing latency (lookup

table)

▪ Layers

▪ Exit layers

▪ Transmission latency

▪ Accuarcy
▪ Based on exit point:

task1 x1 -> 75%
task2 x2 -> 90%

25

1 2 3 4 5 6 7

8 9

x1 x1

x2

x2

A request is considered served if both

latency and accuracy requirements are met

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

Model

Requests:

{AD, 70%, 0.25}

{AD, 60%, 0.3}

{PC, 75%, 0.2}

Accident

Detection

Pedestrian

Counting

Scaling Factors
▪ Lookup table may not capture the

impact of runtime environment

▪ Leverage historical logs to update
the prediction at runtime

26

Model

1

Predicted latency: 𝛿1

Run time latency: 𝛿1
′

𝜏1 = 𝛿1
′/𝛿1

Predicted latency: 𝛿𝑛

Run time latency: 𝛿𝑛′
𝜏𝑛 = 𝛿𝑛

′ /𝛿𝑛

Model

n

𝜏𝑐 = 𝑚𝑒𝑎𝑛({𝜏1, … 𝜏𝑛})

…

Latency
Prediction

▪ Computing latency

▪ Transmission latency

Layer output size

Capacity-throughput, 0.9

makes room for background

traffic

Y: lookup table value of

computing latency

Identify the layers running

on device/edge/cloud

based on partition points

Computing latency

on Device

Computing latency

on Edge

Computing latency

on Cloud

Computing latency of exit layers

Throughput
▪ Number of served requests

▪ Maximize throughput under computing resource constraints

27

Formulation

Based on partition points, we

can determine if a computing

device is participate in the

execution of model m

Device

Edge

Cloud

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

Latency Accuracy

Deployment
Planning Algorithm

28

1 2 3 4 5 6 7

8 9

Model 3

Model 2

x1 x1

x2

x2

1. Sort models by number of
requests

2. For each model

(1) Select exit point based on
accuracy requirements

(2) Select partition points with
max satisfied #requests

(3) Update available resources

If there are multiple partition points with the same throughput,

select the one with lowest latency

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

▪ Serve models with more
requests first

▪ Satisfy accuracy requirements
(exit points) and choose the
latency (partition points) with
highest throughput

Accident

Detection

Model 1

Requests:

{AD, 70%, 0.25}

{AD, 60%, 0.3}

{PC, 75%, 0.2}

Pedestrian

Counting

Operation Phase

29

Dynamic
Reconfiguration
Problem
▪ A performance drop is detected on a deployed model 𝑚

▪ Select new exit points and partition points to maxmize the
throughput

▪ The computing resources
are limited to those already
assigned in the planning
phase

30

1 2 3 4 5 6 7

8 9

Model 1

Requests:

{AD, 70%, 0.25}

{AD, 60%, 0.3}

{PC, 75%, 0.2}

x1 x1

x2

x2

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

Search space is reduced

to single model and

fixed devices

Accident

Detection

Pedestrian

Counting

Dynamic
Reconfiguration
Algorithm

Find optimal decision

1. Find all possible exit
points

(i) Select partition points with
lowest latency

(ii) Predict throughput

2. Return the exit points
and partition points with
highest throughput

31

1 2 3 4 5 6 7

8 9

Pedestrian

Counting

Accident

Detection

x1 x1

x2

x2

Planning

Phase

Operation

Phase

Request

Aggregator

Requests

Candidate 1

Candidate 2 Candidate 3

Candidate 4

Model 1

Requests:

{AD, 70%, 0.25}

{AD, 60%, 0.3}

{PC, 75%, 0.2}

Implementations

32

Testbed
▪ Computation devices

▪ IoT Device (Upboard): Intel Atom CPU @1.44 GHz and
4 GB RAM

▪ Edge (NUC): Intel i3 CPU @1.7 GHz and 16 GB RAM

▪ Cloud (PC): Intel i7 CPU @3.4 GHz and 24 GB RAM

▪ Open-sources tools

▪ Kubernetes

▪ Docker

▪ ZeroMQ

▪ Network topology

▪ System communicates to the computing devices via control plane

▪ Computing devices send data
via data plane

33

NUC

Upboard

Switch

Sensor Device Edge Cloud

Controller
Control Plane

Data Plane

Multi-task Networks
▪ Pytorch based Age-Smile-Gender multi-task DNNs

[Informatica’18]

▪ Enable early exits with BranchyNet [ICPR’16] structure

▪ Run inference for 100 times and use the average computing time
to build the lookup table

▪ Create 5 models by varying the number of convolution
and max-pooling layers

34

CV: Convolution Layer

MP: Max Pooling Layer

FC: Fully Connected Layer

S
m

il
e

G
en

d
er

A
g
e

Exit 1

Exit 2

Exit

Layers

Exit 3

[Informatica’18] S. Viet and C. Bao. Effective deep multi-source multi-task learning frameworks for smile detection, emotion recognition

and gender classification. Informatica, 42(3), September 2018.

[ICPR’16] S. Teerapittayanon, B. McDanel, and H. Kung. Branchynet: Fast inference via early exiting from deep neural networks. In Proc.

of IEEE International Conference on Pattern Recognition (ICPR’16), pages 2464–2469, Cancun, Mexico, December 2016.

Model 1
Model 2

Model 3
Model 4

Model 5

Compared Algorithms
▪ Baselines

▪ Neurosurgeon (NEU) [SIGARCH’17]: select partition points for shortest
latency

▪ Edgent [WC’19]: select exit points with highest accuracy that has partition
points achieving required latency requirement (we forced it to choose the
exit points that satisfying the accuracy requirements)

▪ T2C with different features

35

Algms

Features

NEU Edgent T2CM T2CMH T2CMHE T2CMHER

Multi-task

Hitchhiking

Early exit

Reconfiguration

[SIGARCH’17] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neurosurgeon: Collaborative intelligence

between the cloud and mobile edge. ACM SIGARCH Computer Architecture News, 45(1):615–629, April 2017.

[WC’19] E. Li, L. Zeng, Z. Zhou,and X. Chen. EdgeAI: On-demand accelerating deep neural network inference via edge computing.

IEEE Transactions on Wireless Communications, 19(1):447–457, October 2019.

Evaluations

36

Evaluation Setup

▪ Experiment duration: 5 min

▪ Run (# repeats): 5

▪ # Models: 5

▪ Sliding window of scaling
factors: 1 min

▪ Aggregation period
▪ Planning phase: 10 s

▪ Operation phase: 20 s

▪ Reconfiguration period: 45 s

▪ Request arrival rate (Poisson
arrival rate of a Public 311 call
trace)
▪ Planning phase: {1X, 20X, 40X,

60X, 80X}

▪ Operation phase: {40X, 60X,
80X, 100X, 120X}

▪ Network link:
▪ Sensor-IoT (Bluetooth): 1

Mbps, latency 1ms

▪ IoT-Edge (WiFi): 24 Mbps,
latency 3ms

▪ Edge-Cloud (Broadband): 40
Mbps, latency 5 ms

▪ Computing powers:
▪ Device: 3

▪ Edge: 3

▪ Cloud: 7

37

Perforamance Metrics

▪ Throughput: the number of served requests

▪ Satisfied ratio: the % of requests meeting both accuracy and latency
requirements

▪ Latency: the inference time of IoT analytics

▪ Accuracy: the accuracy of IoT analytics

▪ Queuing time: the waiting time of a each request in the request queue

▪ CPU utilization: the fraction of algorithm running time on our Intel i7 PC
@3.6 GHz

▪ Deployment time: time difference between deployment plan generation
and container launch

▪ Data plane throughput: the bandwidth consumption among DNN partitions

▪ Control overhead: the bandwidth consumption of control messages

38

Results:
Planning Phase

Multi-task and Hitchhiking
Improve Throughput without
Sacrificing Satisfied Ratio

▪ T2CM and T2CMH achieves 2.34X and 2.44X of throughput
compared to NEU

▪ T2CMHE delivers 2.74X of throughput compared to Edgent

▪ Our algorithms satisfy > 97% requests at runtime

40
1 2 3 4 5 Avg.

Run

0

20

40

60

80

100

T
h

ro
u
g

h
p

u
t NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1 2 3 4 5 Avg.

Run

94

95

96

97

98

99

S
a

ti
s
fi
e

d
 R

a
ti
o

 (
%

)

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Planning

Phase

Operation

Phase

M: multi-task

H: hitchhiking

E: early exit

Early Exits Reduce
Latency while Satisfying
Accuracy Requirements

▪ T2CMHE and Edgent result in 3.85% lower latency compared to
NEU and 7.68% lower latency compared to T2CM

41

1 2 3 4 5 Avg.

Run

0

0.05

0.1

0.15

0.2

0.25

0.3

L
a

te
n

c
y
 (

s
)

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1 2 3 4 5 Avg.

Run

0

50

100

150

200

250

300

N
o

rm
a

liz
e

d
 A

c
c
u

ra
c
y
 (

%
)

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Planning

Phase

Operation

Phase

M: multi-task

H: hitchhiking

E: early exit

Our System Incurs
Acceptable Overhead

▪ All algorithms incur ~1Mbps control overhead
-> Acceptable

▪ T2CMHE obtains 37.86% and 42.86% of CPU utilization
compared to NEU and Edgent

42

1 2 3 4 5 Avg.

Run

0

0.2

0.4

0.6

0.8

1

1.2

C
o

n
tr

o
l
O

v
e

rh
e

a
d

 (
M

b
p

s
)

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1 2 3 4 5 Avg.

Run

0

2

4

6

8

10

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Planning

Phase

Operation

Phase

M: multi-task

H: hitchhiking

E: early exit

Our System Scales
Well under Heavy
Workload
▪ T2CMH and T2CMHE achieve at most 5.4X and 6.8X of throughput

compared to NEU

▪ Queuing time of T2C algorithms is as low as 12.21% of that of
NEU

43

1X 20X 40X 60X 80X

Workload

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
 T

h
ro

u
g
h

p
u

t NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1X 20X 40X 60X 80X

Workload

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a
liz

e
d

 Q
u
e

u
in

g
 T

im
e

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Planning

Phase

Operation

Phase

M: multi-task

H: hitchhiking

E: early exit

Results:
Operation Phase

T2CMHER Obtains
Highest Throughput
and Satisfied Ratio

▪ To trigger reconfiguration, we increase the workload and
aggregation period to accumulate more requests in a model

▪ We cut network bandwidth by half to emulate network
congestion after the 1st deployment decisions are made (@20s)

45

1 2 3 4 5 Avg.

Run

0

50

100

150

200

T
h

ro
u

g
h

p
u

t

T2C
MHE

T2C
MHER

1 2 3 4 5 Avg.

Run

70

75

80

S
a

ti
s
fi
e

d
 R

a
ti
o

 (
%

)

T2C
MHE

T2C
MHER

Planning

Phase

Operation

Phase

MHE: Without reconfiguration

MHER: With reconfiguration

Reconfiguration
Improves Satisfied
Ratio
▪ Zoom into the performance of a single model

▪ Light workload: 4 models

▪ Heavy workload: up to 13 models

46

60 70 80 90 100 110

Time

0

20

40

60

80

S
a

ti
s
fi
e

d
 R

a
ti
o

 (
%

)

T2C
MHE

T2C
MHER

30 40 50 60 70 80

Time

40

50

60

70

80

90

100

S
a

ti
s
fi
e

d
 R

a
ti
o

 (
%

)

T2C
MHE

T2C
MHER

Light workload Heavy workload

10%

54%
35%

50%

Planning

Phase

Operation

Phase

MHE: Without reconfiguration

MHER: With reconfiguration

Trigger reconfiguration

T2CMHER Incurs
Acceptable Overhead

▪ T2CMHER has a CPU utilization of ≤ 5%, which is only a few ms for
each invocation

▪ T2CMHER consumes extra bandwidth for reconfiguration, but the
average throughput is < 1.5 Mbps

47

1 2 3 4 5 Avg.

Run

0

1

2

3

4

5

C
P

U
 U

ti
liz

a
ti
o
n

 (
%

)

T2C
MHE

T2C
MHER

1 2 3 4 5 Avg.

Run

0

0.5

1

1.5

2

C
o

n
tr

o
l
O

v
e

rh
e

a
d

 (
M

b
p

s
)

T2C
MHE

T2C
MHER

Planning

Phase

Operation

Phase

MHE: Without reconfiguration

MHER: With reconfiguration

Summary

▪ T2CMHE achieves 6.8X throughput at low latency

▪ T2CMHER improves up to 35% satisfied ratio
48

Multi-task and Hitchhiking

improve throughput

Early exit

reduces latency

Reconfiguration

increases satisfied ratio

Conclusion &
Future Work

49

Conclusion

▪ Propose the T2C system for deploying DNNs in a thing-to-cloud
continuum

▪ Leverage multi-task, hitchhiking, early exits, and reconfiguration

▪ Divide the deployment decision-making process into planning and
operation phase

▪ Solve the deployment planning problem and dynamic
reconfiguration problem

▪ T2CMHE achieves 6.8X throughput at low latency

▪ T2CMHER improves up to 35% satisfied ratio

50

Future Work

51

Cost of reconfiguration

Multiple devices

in each infrastructure layer
Adaptive aggregation period

Thank you for listening
Chia-Ying Hsieh (cyinghsieh@gmail.com)

Thanks for the help of Prof. Hsu, Prof. Venkatasubramanian, Praveen Venkateswaran,
Tung-Chun Chang, Chao-Wen Chen, Kuan-Yu Lee, and all lab mates

▪ Publications

▪ C. Hsieh, P. Venkateswaran, N. Venkatasubramanian, and C. Hsu T2C: A Multi-User System for
Deploying DNNs in a Thing-to-Cloud Continuum. In Proc. of IEEE International Conference on
Mobility, Sensing and Networking (MSN’22), December 2022, invited paper.

▪ P. Venkateswaran, K. Benson, C. Hsieh, C. Hsu, S. Mehrotra, and N. Venkatasubramanian
REAM: A Framework for Resource Efficient Adaptive Monitoring of Community Spaces.
Pervasive and Mobile Computing, September 2021.

▪ T. Chang, G. Bouloukakis, C. Hsieh, C. Hsu, and N. Venkatasubramanian SmartParcels: Cross-
Layer IoT Planning for Smart Communities. In Proc. of ACM/IEEE Conference on Internet of
Things Design and Implementation (IoTDI’21), May 2021.

▪ T. Chang, G. Bouloukakis, C. Hsieh, C. Hsu, and N. Venkatasubramanian SmartParcels–A What-
if Analysis and Planning Tool for IoT-Enabled Smart communities. In Proc. of ACM/IEEE
Conference on Internet of Things Design and Implementation (IoTDI’21), Demo Session, May
2021.

▪ C. Hsieh, Y. Li, C.Hsu, Y.Kuo, C. Chen, C. Hsu, and J. Sheu Stream Processing of Software-
Defined Video Analytics on a Smart Campus. In Proc. of IEEE International Conference on Big
Data Intelligence and Computing (DataCom’19), Demo Session, Kaohsiung, Taiwan, October 2019.

52

Multi-task Networks
▪ Originally proposed to share weights of prefix layers of different

tasks [ML’97]

▪ Trained several DNNs for multiple video analytics with different
number of shared layers to trade accuracy and complexity
[ATC'18]

▪ Trained popular networks and replaced the classifier (fully-
connected layers) and some of the convolution layers with that
of the target tasks [SEC’20]

53

Deploy multi-task model in the thing-to-cloud

continuum has not been thoroughly studied

[ML’97] R. Caruana. Multitask learning. Springer Machine Learning, 28(1):41–75, July 1997.
[ATC’18] A. Jiang, D. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky, M. Kozuch, P. Pillai, D. Andersen, and G. Ganger.
Mainstream: Dynamic stem-sharing for multi-tenant video processing. In Proc. of Internatioal USENIX Annual Technical
Conference (ATC’18), pages 29–42, Boston, MA, July 2018.
[SEC’20] M. Chao, R. Stoleru, L. Jin, S. Yao, M. Maurice, and R. Blalock. AMVP: Adaptive CNN-based multitask video
processing on mobile stream processing platforms. In Proc. of IEEE/ACM Symposium on Edge Computing (SEC’20), pages 96–
109, Virtual, November 2020.

Early Exits and Deployment
▪ Infer with prefix layers as long as the accuracy reaches the

target [ICPR'16]

▪ Dynamically selected partition and exit points between an IoT
device and an edge server [WC’19]

▪ Partitioned the DNNs and guaranteed that the local device has
at least an exit point [MobiCom’20]

54

1. Only considered the decision between thing-edge

or edge-cloud, the topology of thing-edge-cloud

has not been fully studied yet

2. Focus on one-time request

[ICPR’16] S. Teerapittayanon, B. McDanel, and H. Kung. Branchynet: Fast inference via early exiting from deep neural
networks. In Proc. of IEEE International Conference on Pattern Recognition (ICPR’16), pages 2464–2469, Cancun, Mexico,
December 2016.
[WC’19] E. Li, L. Zeng, Z. Zhou, and X. Chen. EdgeAI: On-demand accelerating deep neural network inference via edge
computing. IEEE Transactions on Wireless Communi- cations, 19(1):447–457, October 2019
[MobiCom’20]S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane. Spinn: synergistic progressive inference of
neural networks over device and cloud. In Proc. of the Annual International Conference on Mobile Computing and Networking
(Mobi- Com’20), pages 1–15, London, UK, April 2020.

Reconfiguration

▪ Reconfigured mobile apps during cloud offloading to maximize
the execution speed [CC’14]

▪ Investigated if reconfiguration of DNN is useful [CLOUD’21]

▪ Reduced service downtime of reconfiguration [IC2E’21]

55

Reconfiguration of DNNs has not been integrated in a

deployment system

[CC’14] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri. Run time application repartitioning in dynamic mobile cloud

environments. IEEE Transactions on Cloud Computing, 4(3):336–348, September 2014.

[CLOUD’21] F. McNamee, S. Dustdar, P. Kilpatrick, W. Shi, I. Spence, and B. Varghese. The case for adaptive deep

neural networks in edge computing. In Proc. of IEEE International Conference on Cloud Computing (CLOUD’21),

pages 43–52, Chicago, IL, September 2021.

[IC2E’21] A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese. NEUKONFIG:Reducing edge service downtime when

repartitioning DNNs. In in Proc. of IEEE International Conference on Cloud Engineering (IC2E’21), pages 118–125,

San Francisco, CA, October 2021.

Overhead under Different
Workload Compared to NEU

▪ T2C algorithms do not incur significantly more overhead when
workload is heavier

56

1X 20X 40X 60X 80X

Workload

0

0.5

1

1.5

N
o

rm
a
liz

e
d

 C
P

U
 U

ti
liz

a
ti
o

n

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

1X 20X 40X 60X 80X

Workload

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 C

o
n

tr
o

l
O

v
e

rh
e

a
d

NEU

Edgent

T2C
M

T2C
MH

T2C
MHE

Our system scales well under heavy workload

Latency Reduction by
Reconfiguration
▪ T2CMHER changes the partition points to reduce latency

57

1 2 3 4 5 Avg.

Run

0

0.1

0.2

0.3

0.4

0.5

0.6

L
a

te
n

c
y
 (

s
)

T2C
MHE

T2C
MHER

1 2 3 4 5 Avg.

Run

0

0.5

1

1.5

2

2.5

D
a

ta
 P

la
n

e
 T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

T2C
MHE

T2C
MHER

7.67% lower 10.28% lower

Performance under
Different Workload
▪ T2CMHER always achieves better satisfied ratio under different

workload

▪ Higher control overhead but still < 1.5 Mbps

58

40X 60X 80X 100X 120X

Workload

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 S

a
ti
s
fi
e

d
 R

a
ti
o

T2C
MHE

T2C
MHER

40X 60X 80X 100X 120X

Workload

0

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 C

o
n

tr
o

l
O

v
e

rh
e

a
d

T2C
MHE

T2C
MHER

	投影片 1: A Multi-Tenant System for Deploying Deep Neural Networks in a Thing-to-Cloud Continuum
	投影片 2: Outline
	投影片 3: Motivations
	投影片 4: Numbers of IoT Sensors are Growing Rapidly
	投影片 5: DNN Deployment Problem
	投影片 6: Goals and Challenges
	投影片 7: Goals and Challenges
	投影片 8: Observations
	投影片 9: Proposed Thing-to-Cloud (T2C) System Features
	投影片 10: Related Work
	投影片 11: DNN-based IoT Analytics Deployment
	投影片 12: Reference
	投影片 13: System Overview
	投影片 14: System Design
	投影片 15: Controller
	投影片 16: Controller
	投影片 17: Computing Devices
	投影片 18: Research Problems
	投影片 19: Goals of DNN Deployment
	投影片 20: Deployment Plan Decision-Making Process
	投影片 21: Planning Phase
	投影片 22: Multi-task Model Requests
	投影片 23: Resource Status
	投影片 24: Deployment Planning Problem
	投影片 25: Performance Prediction
	投影片 26: Scaling Factors
	投影片 27: Throughput
	投影片 28: Deployment Planning Algorithm
	投影片 29: Operation Phase
	投影片 30: Dynamic Reconfiguration Problem
	投影片 31: Dynamic Reconfiguration Algorithm
	投影片 32: Implementations
	投影片 33: Testbed
	投影片 34: Multi-task Networks
	投影片 35: Compared Algorithms
	投影片 36: Evaluations
	投影片 37: Evaluation Setup
	投影片 38: Perforamance Metrics
	投影片 39: Results: Planning Phase
	投影片 40: Multi-task and Hitchhiking Improve Throughput without Sacrificing Satisfied Ratio
	投影片 41: Early Exits Reduce Latency while Satisfying Accuracy Requirements
	投影片 42: Our System Incurs Acceptable Overhead
	投影片 43: Our System Scales Well under Heavy Workload
	投影片 44: Results: Operation Phase
	投影片 45: T2CMHER Obtains Highest Throughput and Satisfied Ratio
	投影片 46: Reconfiguration Improves Satisfied Ratio
	投影片 47: T2CMHER Incurs Acceptable Overhead
	投影片 48: Summary
	投影片 49: Conclusion & Future Work
	投影片 50: Conclusion
	投影片 51: Future Work
	投影片 52: Thank you for listening Chia-Ying Hsieh (cyinghsieh@gmail.com)
	投影片 53: Multi-task Networks
	投影片 54: Early Exits and Deployment
	投影片 55: Reconfiguration
	投影片 56: Overhead under Different Workload Compared to NEU
	投影片 57: Latency Reduction by Reconfiguration
	投影片 58: Performance under Different Workload

