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INTRODUCTION




Multi-modal Sensing

m A variety of professional
sensors are gradually
attracting attention . .

- Depth cameras
Self-driving cars Health cares
- Thermal cameras

- mmWave radars @
- LiDARs
m Provides multi dimensions ‘ ' ’
information than single modal o

sensin
g Robot systems Smart agricultures
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m Collecting data from widely used RGB cameras incurs privacy risk

- Encryption methods
— Distributed Cooperative Machine Learning (DCML) [1]

m Homomorphic encryption and differential privacy
- Advanced privacy protection techniques
- High computation and communication overhead

m Split Learning (SL [2]) and Federated Learning (FL [3])
- SL and FL provide source data protection DCML

- SL is slower than FL

- SL usually works under organizations (data providers,
computing resource providers)

[1] Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press, 2011.
[2] Vepakomma P, Gupta O, Swedish T, et al. Split learning for health: Distributed deep learning without
sharing raw patient data[J]. arXiv preprint arXiv:1812.00564, 2018.

[3] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from
decentralized data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.




[2]
Federated Learning

m Federated learning [1] workflow

(FedAvg) S
1 i Data » A _"O
- Distribute server model maner [PE O S
. L . Client  -w' : z
- Client training : “_ﬂ_fgc_*_e_'_); gQ;”’ 2
- Upload client model ata > Tramer [ ()} O
- Aggl’egatlon O Client Server
Model Parameters
m Advantage: Protects client’s privacy and reduces
communication cost
m Disadvantage: low model performance and convergence
speed caused by data incompleteness
- Non-independent-identically distributed (non-i.i.d.):
concept drift/shift, covariate shift
[1] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks
from decentralized data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.
[2] http://vision.cloudera.com/wp-content/uploads/2018/11/2018-10-31-181344-
6

federated_learning_animated_labeled.gijf




Motivation

m Multiple sensors generate data that has diverse degrees of
privacy concerns

- RGB images — privacy-sensitive
— Depth images, mmWave point clouds — privacy-insensitive
m The root cause of the performance degradation of FL models:
data incompleteness
- Scattered data
- Non-i.i.d. data

m The utilization of privacy-insensitive data has never been
considered

RGB image Depthimage  mmWave point cloud ~




Problem Statement

m Target

— Utilize the privacy-insensitive data to improve FL
model performance

- Reduce the impact of non-i.i.d. data on the model

m Condition

— Each clients has a multi-modal dataset with
heterogeneous degrees of privacy levels

— No obviously privacy risk
- Lower communication and computation overhead

m Solution

- Request all clients upload privacy-insensitive data to
the server

— Add an additional model fine-tuning at the server




Challenges

m Utilization of insensitive data for
improving model performance

- No similar work in the literature

- Multi-modal models require
multi type data as inputs

- Privacy-sensitive data are not
available at the server

m Training with single insensitive data
can bias the models

Sensitive Insensitive
Data Dita
Sensitive Insensitive
Data Data
Encoder Encoder
Sensitive Insensitive
Features Features
Decoder
Output

An example multi-modal

model



Contributions

m We are the first group who considered multi-sensor (or
multi-modal) classification problems, in which sensor
data have diverse privacy sensitivity levels

m We apply HPFL on a semantic segmentation network, an
emotion recognition network, and get 18.2%
improvement in foreground accuracy and 4.2% in F1-
score, compared to FedAvg

m HPFL outperforms state-of-the-art advanced FL
optimization algorithms, FedProx, FedAdam, FedDyn,
FedCon, 12.4%-17.7% improvement in foreground
accuracy and 2.54%-4.1% in F1-scores
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RELATED WORK




Data Sharing

m [o overcome the inference of non-iid data distribution

m Redistribute the data that collect from clients or public
dataset to balance local data (), 2))

B Summary

m Employ the collected data to carry out additional training
after the client training (1), 3))
(% (% Public
DE
— Not realize the heterogeneous
privacy sensitivity levels data
- Still have privacy concern T TR ST

- Unable to confront strc_)ng non-iid @ —> Redistribute
degree, performance improvement 2 Addtional Training
is small (2%~5%)
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Distillation and
Federated Distillation

m Distillation was initially proposed to compress neural
networks
m Federated distillation was proposed for two targets:
- Trade model accuracy for lower communication cost

- Server-side distillation for better server model
performance and compatible heterogeneous cllent

model structure

3 Soft [ Hard ¢

TargetfTarget
Client Server Ground
Model Model Truth
----- » Communicate with model
Input lnput | » Communicate with logits

m We only collect insensitive data to server, so, we cannot
perform the offline distillation at server y




Federated Transfer Learning

m Transfer learning focuses on transferring a domain knowledge to
a different but similar domain

m FTL belongs to personalization FL
— The server model may not adapt to every participating client

m FTL freezes the parameters related to high-level features, but
HPFL freezes the parameters related to sensitive data

m FTL focuses on optimizing client model but HPFL focuses on
optimizing server model

Data
Data Data N In

] [ |
I | ! Frozen [ ] | | Train
Frozen [ | | | Frozen I o |
| | | |

[ | > Train I ¢ | 3~ Train

FTL HPFL 15




Advanced FL Algorithms

m Common target: improve server model performance in FL

m Optimize client trainer:

- FedProx [1]: add a L2-regularize term on client trainer —
reduce the distance between client and server model

- FedDyn [2]: consider history updates and distance to
server model — smooth updating

- FedCon [3]: consider the feature learned by client model
and server model need to be similar — fast converge

m Optimize server aggregator:

- FedAdam [4]: use Adam optimizer to replace average
aggregator in FedAvg — fast converge

[1] Sahu A K, Li T, Sanjabi M, et al. On the convergence of federated optimization in heterogeneous networks[J]. arXiv preprint
arXiv:1812.06127, 2018, 3: 3.

[2] Acar D A E, Zhao Y, Navarro R M, et al. Federated learning based on dynamic regularization[J]. arXiv preprint arXiv:2111.04263,
2021.

[3] Li Q, He B, Song D. Model-contrastive federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021: 10713-10722. [4] Reddi S, Charles Z, Zaheer M, et al. Adaptive federated optimization[J]. arXiv
preprint arXiv:2003.00295, 2020.
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HPFL Workflow

Client Upload Server

D? || >1D7li | | |Di| D}ﬂ
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Trainer
S : Server Merger —>(M
il PN ! Trainer S,
= @0
I DELY | o | @
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)
~o

Y

> A
! A . ——»Aggregator > Initializer >
Df —>| Client _)5; >
Trainer :: : .@ i :

i

@ Client Model Parameter @ Server Model Parameter Distillation Model Parameter

@ Learning Target Ds | Sensitive Data D; | Insensitive Data

Client model: used by the clients to train with locally collected sensor data
Server model: aggregated from models sent by all clients
Distillation model: trained by insensitive data from all clients at thelgerver



Client Side Design  [D[] Sient >
m Target @H

- Better utilize sensor data with different privacy levels in federated
learning

m Methodology (for each client k in K)

@ — Classify the local sensor data (D¥) into sensitive (S) and
insensitive (l) ones (D¥ = D¥ + D¥)

@ - Upload the insensitive data (Df‘ ) to the server (only once)

Sensitive Insensitive

@ - Train a client model (M§) with all locally Dita Dita
available Sens.or data Sensitive Insensitive
k _argmin k k k Data Data
MC,t+1 — Mk Lk(D J Y |MC,t) Encoder Encoder
Gt Sensitivel llnsensitive
@ - Upload trained model and learning target (T*) Features Features
Decoder
Sensitive data | Insensitive data Output

General client model
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Se rve r S i d e DeS i gn Aggregator| | Initializer ?;r.‘,’i.;i Merger

m Better utilize the insensitive data to reduce the negative
iImpacts caused by non-i.i.d. sample distribution

m The complete model needs sensitive and insensitive data
as input, but no sensitive data is available

m Methodology

Aggregator: aggregate (e.x. FedAvg) the model and
learning target that received from the client

Initializer: initialize the distillation model parameters

Server Trainer: optimize the distillation model with
insensitive data and learning target

Merger: merge distillation model and server model for
next round
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Agg re ga to r Aggregator|| | Initializer | | ™8T | | Merger

Trainer

m Compute a server model and average learning target
based on all client model and learning target

m The default aggregator is FedAvg
ke
Mg, = —ZM( T ZT

m HPFL can generalizes for advanced aggregator

21




I n iti a I izer Aggregator

Server

Initializer .
Trainer

Merger

m Target

— Generate the distillation model from server model for

training with insensitive data

m Remove the model parameters relevant to sensitive data

Sensitive Insensitive
Data Data

v v

Sensitive Insensitive
Data Data

Encoder | | Encoder Remove parameters
Sensitive Insensitive
Features Features

Decoder

v

Output

Insensitive
Data

v

Insensitive
Data

Encoder

Insensitive
Features

Trimmed

Decoder

v

Output

Server model Distillation model
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Baseline Tralner o e [ s || oo

m Baseline algorithm (HP): server trainer trains distillation
model with insensitive data

m Train multi-modal model with single modality data
causes performance drop

Insensitive
Data

v

Insensitive

m Distillate the knowledge from client models to
Data

distillation model '
@ Distillation | Encoder
©\ " =
RS Insensitive
IR YO Kt b @ Features

2& ".'V‘M AA0dality-1 @ Trimmed
T uly Modality-2

_-a.'-\—/ ....... Both @ Decoder
oL v
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Rounds Output
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401:
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Lea rn i n g Ta rget Agaregator] | Initializer | || SV} | Merger

m |Improved federated distillation:

— The server only has insensitive data and cannot perform
regular distillation

- We propose to have clients upload some layer outputs
as learning target to guild the server for distillation

@ Decoder Distillation (HPD) uses the outputs of the last

decoder layer as learning targets Client model Distillation model
o . Sensiti | iti Passive | iti
®) Encoder Distillation (HPE) ~ NN - J 5720w | PEhel | i ot
uses the outputs of all last Encoder || Encoder (HPP) Encoder
) .. Sy S "I Knowledge |~ Y
insensitive data encoder B 4 KX XA X | pistitation [KX X X0
: NN —— .. HPE) fm—————————
layer as learning targets Layers { Decoder PR Decoder
; ; Distillation
(m) Passive inputs: (HPP) Output —| oy |——
uses the outputs of all last 000 e
. N
sensitive data encoder Iayer Learning target Learning target Learning target
for HPD for HPE for HPP

as learning targets.
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S e rve r Tra i n e r Aggregator| | Initializer | || Server Merger

Trainer

m [rain the distillation model with insensitive data and
learning target

Mpio1 =argmin Lg(D;. Y, T:|M
m Serverloss 2T s(D1. Y. Ti[Mp,)

- Label loss (L¢) : the loss between the distillation
model prediction and ground truth

- KD loss (Lp): the loss between the distillation
model middle layer output and learning targets

m Overall server loss is a weighted sum of distillation and
label loss, where parameter A is the weight

Le=MALg +(1-NLp

m The choice of A makes the effect of L; and Lp on the
model closer

25




E s P Server
M rg r Aggregator| | Initializer Tainer Merger

m Clients need a complete multi-modal model for next round training

m Merge the trained distillation model back to the server model
m The merged part depends on different application models

m The contribution of the distillation model to the server model is
controlled by parameter o

MS=O(M5+(1'O()MD

o 1-«
Sensitive | Insensitve | | Insensitive” |
Data | Data | Data |
S ¢ [ ¢ I [ ¢ t I
ensitive nsensitive : nsensitive
Data I Data Adaptlve I Data I
Encoder || | Encoder | selection Encoder |
Sensitive | Insensitive | | Insensitive |
Features | Features | | Features |
| | | Trimmed
Dec!,oder | |_ Decoder I
Output Output

Server model Distillation model 26




MULTI-MODAL
REPRESENTATION
LEARNING




Multi-modal Representation
Learning

m The HPFL can be applied to many machine learning
tasks

m MMRL [1] has become a hot topic due to the growth of
multiple sensors and data

Video classification
Emotion recognition
Activity detection
Sentiment analysis
Semantic segmentation

m We choose the emotion recognition and semantic
segmentation as sample applications

[1] Zhang C, Yang Z, He X, et al. Multimodal intelligence: Representation
learning, information fusion, and applications. IEEE Journal of Selected Topics
in Signal Processing, 2020, 14(3): 478-493.
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Semantic Segmentation 1‘ =

m Labels each pixel of an image with one or multiple classes

m We choose MFNet [1] as a semantic segmentation task
example

m Weconsider RGBimageas ——
L. . Convolution  MaxPool
sensitive data, thermal image . T .

Unpooling Shortcut  Inception

as insensitive data D
RGB 3

Image

Output <€— |:|

RGB input Thermal input nn

Thermal N
Image

[1] Ha Q, Watanabe K, Karasawa T, et al. MFNet: Towards real-time semantic segmentation for
autonomous vehicles with multi-spectral scenes[C]//2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017: 5108-5115. 29




Distillation Model for =~ —
Semantic Segmentation ™ *Hﬂﬂ fJH ﬂ[w .

Thermal 3
Image

m We remove the encoder of RGB image input (sensitive data
encoder)

m We put the work point of HPD and HPE in distillation model
m HPP does not work well with MFNet

HPD HPE
+ A &«? 60 1
540
Output <€— |:| |:| |:| §
< 207 Accuracy
Thermal 0+ - - -
Image —>» 0 10 20 30
Rounds

Distillation model Results of HPP 30




Emotion Recognition

@ @ @@ w1

We choose LMF [1] as a emotion recognition task example

We consider video and text as sensitive data, audio as
insensitive data

Data provided by IEMOCAP [2]

———1
dataset are preprocessed for Fully Connected  LSTM
features

Fusion (Vector Multiplication)

[1] Liu Z, Shen Y, Lakshminarasimhan V B, et al. Efficient Text —» g
low-rank multimodal fusion with modality-specific Input -8
factors[J]. arXiv preprint arXiv:1806.00064, 2018. -
[2] Busso C, Bulut M, Lee C C, et al. IEMOCAP:

Interactive emotional dyadic motion capture database[J]. Video
;aréguage resources and evaluation, 2008, 42(4): 335- Input — *

59.
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Distillation Model for
Emotion Recognition

m We remove the encoder of text and video input (sensitive data
encoder)

m We put the work point of HPD and HPE in distillation model

m The learning target of HPP contains averaged HPE HPD
text and video encoder output from clients

—
Fully Connected LSTM

Fusion (Vector Multiplication) .
Audio
Audm

|nput T |FI[3UI
Text T
Input ‘ !

HPP
Video __y (Text and Video)

Input

mdmo
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EXPERIMENT SETUP




Benchmarking Algorithms

m FedAvg [1]: the earliest federated learning algorithm
m FedProx [2]: optimize client trainer by proximal term
m FedAdam [3]: add an Adam optimizer on aggregator

m FedDyn [4]: optimize client trainer by linear and quadratic
penalty

m FedCon [5]: optimizes the client trainer to decrease the
distance between representation learned from client model
and server model

[1] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized
data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.

[2] Sahu A K, Li T, Sanjabi M, et al. On the convergence of federated optimization in heterogeneous networks[J]. arXiv
preprint arXiv:1812.06127, 2018, 3: 3.

[3]Acar D AE, ZhaoY, Navarro R M, et al. Federated learning based on dynamic regularization[J]. arXiv preprint
arXiv:2111.04263, 2021.

(4] Li Q, He B, Song D. Model-contrastive federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2021: 10713-10722.
[5] Reddi S, Charles Z, Zaheer M, et al. Adaptive federated optimization[J]. arXiv preprint arXiv:2003.00295, 2020. 34



Dataset and Data Distribution

m MPFNet: totally 1600 and 300 pairs of RGB and thermal
Images in the training and testing sets

7/ ® @ ® o & o o 7 .
610 ® o & ©® ¢ @ @ 6 @ ® o @ o @
L@ @ @ o ® @ @ o mﬁ.".‘.
24 o o @ o 0 0 0 24 0 - 0@
S3/0 @ © @ 0 0 0 @ SZ3le 0 o e o o o
“1Jeo @ o 0o 0 0 0 @ {"z-‘. .....
i@ @ @ o« © @ ¢ @ 1o @ © o o o o o
e o o ¢ 0 ¢ o of o s - o o o o
01 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Clients Clients

m LMF: totally 3515 and 938 triplets of video, audio, and text
data in the training and testing sets

m  We utilize the Dirichlet distribution to generate three sample
distribution degrees

10 @ @0 00000:-00 00000000

G 0.1 ’ 1 5 10

¢ MY I XN B e @e @900 00000000
0 1 2 3 4 5 6 7 01 2 3 4 5 6 17 0 1 2 3 4 5 6 7

Clients Clients Clients




Parameters

Distillation model contribution: « € {0.0, 0.1, 0.3,
0.5, 0.7}

Loss balance parameter: A € {0.05, 0.1, 0.2}
Distillation method € {HP, HPD, HPE, HPP*}

Data distribution € {i.i.d., non-i.i.d.} or € {0.1, 1, 10}.
Number of clients € {8, 16, 32}

Neural network parameters and baseline algorithm
parameters have been tuned and fixed

The merge part selection experiments were omitted

* HPP only works on emotion recognition problem

36



Metrics

m Background accuracy: The ratio of background pixels that are
correctly classified in the semantic segmentation problem.

m Foreground accuracy: The ratio of non-background pixels that
are correctly classified in the semantic segmentation problem.

Low .__ -

background
i 16 Accuracy

Background pixels ——

Foreground pixels /

m Fl-score: The weighted F1-score in the emotion eoognition
problem.

m Throughput: The network resource consumption for
transmitting model parameters and learning targets.

m CPU time: The time taken by each client in a round.
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EXPERIMENT
RESULTS




MFNet: o« = 0.5 Is a Better Choice
|

S <100 >

. T | l—Vv

5__;1 {}0‘ FQ" 90

2 40 2 80

- R A4

= 20 FedAvg!'P s 2 FedAvgHP

S FedAvg!PD) & 7% FedAvg!FD

S B FedAvg™™ | < ' I B FedAvg'PE

c 0—= ' —— S 60— . —_—

= 0. 03 05 07 0 0.1 03 05 0.7
(4 04

 Smaller o values lead to slightly higher foreground
accuracy but much lower background accuracy

« Omitthe o = 0.0 experiments in MFNet

o= 0.5 gives 57.59% on foreground accuracy and
94.27% on background accuracy
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MFNet: A = 0.1 is a Better Choice

S # <100

g bf}_ % 9{}_’

s 5]

o AN - <

2 407 2 801

= 1 __HP = 1

° FedAvg?| £ /0

i ] B FedAvg!PE ,%J '

S 0 . . . 2 60

= 0.05 0.1 0.2 as 0.05 0 I 0.2

A

* A= 0.1 results in the highest foreground accuracy

« FedAvg'"P and FedAvg'E achieve higher (7.51%,
7.99%) foreground accuracy than FedAvg™®

e Select A = 0.1 in the following MFNet experiments
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MFNet: FedAvg"PE Leads to
Lower Communication Overhead

HP 96.62% 3.38% / /

MFNet  \op | 990  36.86% 8.25 129% | 10MB  61.85%
VB VB

HPE 94.05% 320% | 160KB  2.67%

* The percentage represents the proportion of overhead
during training

» FedAvg"tP consumes 61.85% communication overhead
on transmit learning target

» Select FedAvg"*® in the following MFNet experiments
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LMF: o = 0.1 and FedAvg"**
Leads Higher F1-score

70
FedAvg HP FedAwHPE
1 FedAv oHPD B Fed AvgHPP
v 60+
2
I ) J J J
40) ‘ ‘—

0.0 0.1y 03 05 0.7

70

Fl-score

40

70

FedAveH? Ml FedAvgHPE

60+

50+

o))
=]

Fl-score

Lh
<

FedAve'P MM FedAvg'PE
FedAvg PP I FedAvetPP

FedAv oHPD- FedAve nHPP 1 | l ] I
D 3 0.5

I
o

00 0.1 03 05 07
(9

0.1

* Omit the experiments of A, which has little effect on results
* |n two bias sample distributions (0.1, 1), o = 0.1 outperform

other o values

* Select o = 0.1 and FedAvg"*" in the following LMF experiments

42



MFNet: FedAvg"PE Works
Under both I.1.d. ar

dNonlld

Q 100 —

N . e FedAvg™ ol 'Tf‘

Q‘b 751 FedAvg/IID e |
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Round Foreground Accuracy (%)

Accuracy (%)

|
N

n
=

2
n
1

3.54%

FedAvg
B FedAvg'PE

0 FG-IID BG-IID FG-NIID BG-NIID

Method

« FedAvgHPE achieves higher foreground accuracy under
two sample distributions
» FedAvgHPE results 40.05%, 37.34% test samples with
5%+ foreground accuracy under two sample distributions
« FedAvgHPE only losss 3.54% foreground accuracy from

I.I1.d. to non-i.i.d.
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MFNet, LMF: FedAvgHPE/P
Works with Different No Clients

-

© = 100
- ] > a FedA\egHPP
5: ()D_ ;... 9() 1 O 81%) B FedAvg
= : 2 60
- 1 _‘ 5
g 40 L 0 .
ERY E = 50 8.48%
= 20 2 0-
= ] F dAvg =1 70
éJ D: F dAvg gHPE & 60 10
= R A 16 32 3 16 32
C llema Clients Clients

FedAvgHPE outperforms FedAvg by at least 14.42% on
foreground accuracy (MFNet)

The background accuracy loss is negligible 0.81%
FedAvgHP? outperforms FedAvg 8.41% on F1-score (LMF)
HPFL improves the robustness with more clients
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LMF: FedAvg"*?Y Works with
Different non-i.i.d. Deg.

70 70 "
-===- FedAvg 1 TR
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Round 10

4072 100 200 300 0
0.1 Round 1

Round
70
m FedAvg"** outperforms FedAvg |
3.07% ~ 7.9% on F1-score a‘ '

m Select the hardest distribution 1
in the following experiments 40,
0.1 | 10

Dirichlet Distribution Parameter
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Foreground Accuracy (%)

HPFL Outperforms Other
Advanced FL Algorithms

= 100 0-64%
g )
60 g | o)
12.39% 2 9 Lol 2.55%
40 % 20 §
E = 50
20 2 70 ‘
o0
B
0 Z 60 40-
SANVC = > ) > Q >
:%* Ny v o bQ‘\ ‘ §8 & & < S ;§/0\ \{\?‘b

m FedAvg"E outperforms all state-of-the-art advanced FL algorithms
at least 12.39% on foreground accuracy (MFNet)

m FedAvg'PE |osses negligible 0.64% on background accuracy (MFNet)

m FedAvg"®? also outperform all state-of-the-art advanced FL
algorithms by 2.55% on F1-score (LMF)
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I Qualitative Results
R et — I
7

HPFL Ground Truth Centralized

b, 4 . o
s b ‘::L- 1 M ) Y,
T iy ~ ' [
4 Z
1] o -
a

FedProx FedDyn FedAdam FedCon
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HPFL Applies on Advanced FL
Algorithms

Algorithms FedAvg FedProx FedDyn FedAdam FedCon
and Models | Orig. | HPFL | Orig. | HPFL | Orig. | HPFL | Orig. | HPFL | Orig. | HPFL
| MFNet 39.39 | +18.2 | 39.89 | +17.21| 45.19| +12.98 | 42.63 | -0.36 | 40.42 || +14.25
(Fore. Accu.)
LMF - - <
S3.12 ) +4.2 | 5322 ) +3.54 ) 5478 -0.81 | 53.62 | +1.42 | 53.75 || +5.48
(F1-score)

m Update the client trainer to implement FedProx, FedDyn, and
FedCon

m Replace the aggregator with Adam to implement FedAdam

m Apply HPFL on most of advanced FL algorithms can obtain
performance improvement
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HPFL Incurs Low Communication
and Computation Overhead

Methods Insensitive data Learning target

HP 96.62% 3.38% / /
MEREL wpp | 50 sesen | S 120% | 10MB  61.85%
HPE 94.05% 329% | 169KB  2.67%

ME HP 1.07 99.87% 413 0.13% / /
HPP MB 99.85% KB 0.13% | 0.26 KB 0.02%

Methods FedAdam FedDyn

Computation 100% 100% 100% 114% 124% 120%
Overhead*
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Conclusion

m First considered multi-sensor classification
problems in the FL setup, where sensor data have
diverse privacy sensitivity levels

m Proposed HPFL algorithm to utilize privacy-
insensitive data at server-side for reduce the
performance gap between FL and centralized ML

m Conducted an extensive comparison of HPFL and
other state-of-the-art advanced FL algorithms:

- HPFL causes no client-side computation
overhead and little communication overhead
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Future Work

m Optimization on communication
and performance

m Convergence and privacy analysis "

m Support complex model structure
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Limitation

m Dataset
- HPFL can only work on multi-modal dataset and
application
m Distillation model generation
- All performance gain comes from distillation model
— No obvious standard to generate distillation model
- Hard to generate distillation from complex model
structure
m System optimization
- HPFL introduces extra tunable parameters

— Client and serve-side optimization are inferencing each
one
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Support more Complex Multi-
modal Network Structures

m We only consider the popular joint representation
structures in our experiments

m Generating distillation model from complex models
is challenging for HPFL

m We will select more representative multi-modal
structures, and apply HPFL on them

m We will propose a generalize rules about applying
HPFL on multi-modal model and selecting HPD,
HPE, and HPP
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Optimization on Communications
and Computations

m HPFL system requires a powerful server

m Theinsensitive data and learning target transmit may cause
network congestion

m The HPFL server requires about 6 times of training time than
clients

m  We will develop a efficient learning target and insensitive data
sharing algorithm under limited network resource

m  We will consider more efficiency training scenario
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Deeper Privacy Analysis

m Privacy leakage risk from: insensitive data, learning target,
model parameters

m Multi-modal machine translation may break the gap between
sensitive and insensitive data (depth, thermal images...)

m We will provide completely privacy analysis and apply some
privacy-prevention technology (DP) on HPFL

m We will explore the performance impact of these privacy-
preserving technologies on HPFL
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Convergence Analysis

M Target function:

1 00
lim — Z ’LS(DEY’MST) — LS(DEY’M:)’ — O where
=1

t—oo f

M, comes from Eq. 4.4,

(8.1)
M is the optimal server model, and
1 D
Ls(Dg. Y[Msy) = r5- > CE(Msy(Dg,),Y:)
El =
B Merger: Mg =ax Mg+ (1—a)xXMpy. (4.4)

M Difficulties
B The merge part (distillation model) is various in different models
B No such reference work did the similar prove
B Hybrid Federated and Centralized Learning [2] merges the same

client and server model
Ref: [2] Elbir A M, Coleri S, Mishra K V. Hybrid federated and centralized learning[C]//2021 29th
European Signal Processing Conference (EUSIPCO). IEEE, 2021: 1541-1545. 61




Server-side Distillation
Method

m Apply learning target (HPD, HPE) has little performance
improvement (MFNet, LMF)

Inputs: . @ D;
L@—)Soﬁ Target 1 ) @

Average
@ »@—» Soft Target 2] | Soft Son | pard
= = . Target l ' ]
@ _’@_’SOﬂ Targetk| J (1-)) KLD loss + A CE loss

Remove the
Sensitive Part

Client Model Parameter Distillation Model Parameter

Client Model Parameter
(Insensitive Part)
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Generalization for
Split Learning

m Split learning (SL) significantly reduces client computing overhead

m Similar but different to SL, HPFL cut the model based on diverse
privacy-sensitive levels

m We target to distributed train sensitive data at client-side and
centralized train insensitive data at server-side

Client Server

| Trainer : Trainer —
l Data > Nng — gl L [T Label

- I._' : :._

| - .

. Client - Server
|:| Client-side model Server-sidemodel 77770 ' Gradient for
""" Client cut layer output Server output back propagation
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Full Algorithm

Algorithm 1 The Proposed HPFL Procedure

[

. Initialize Mg o with random parameters
- for client k =1.2,..., K (in parallel) do

Upload insensitive data D% to the server

- for eachround t =1.2,... do
for client £ = 1.2,..., K (in parallel) do
Receive Mg ;1 from server
Compute I\/I;C"—;:t*_ TF using Eq. (1) // Client trainer

Compute Mg ¢, T using Eq. (2) // Aggregator
Initialize M p ; using Eq. (3) // Initializer
Compute M p ; using Eq. (4) // Server trainer
Compute Mg+ using Eq. (5) // Merger

Break if Mg ¢ converges

fod [ =—

I = O O 00 =] O
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