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INTRODUCTION 
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Multi-modal Sensing

■ A variety of professional 

sensors are gradually 

attracting attention

– Depth cameras

– Thermal cameras

– mmWave radars

– LiDARs

■ Provides multi dimensions 

information than single modal 

sensing
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Privacy Concern

■ Collecting data from widely used RGB cameras incurs privacy risk

– Encryption methods

– Distributed Cooperative Machine Learning (DCML) [1]

■ Homomorphic encryption and differential privacy

– Advanced privacy protection techniques

– High computation and communication overhead

■ Split Learning (SL [2]) and Federated Learning (FL [3])

– SL and FL provide source data protection DCML

– SL is slower than FL

– SL usually works under organizations (data providers, 

computing resource providers)
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Federated Learning

■ Federated learning [1] workflow

(FedAvg)

– Distribute server model

– Client training

– Upload client model

– Aggregation 

■ Advantage: Protects client’s privacy and reduces 

communication cost

■ Disadvantage: low model performance and convergence 

speed caused by data incompleteness 

– Non-independent-identically distributed (non-i.i.d.): 

concept drift/shift, covariate shift
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Motivation

■ Multiple sensors generate data that has diverse degrees of 
privacy concerns

– RGB images → privacy-sensitive 

– Depth images, mmWave point clouds → privacy-insensitive

■ The root cause of the performance degradation of FL models: 
data incompleteness

– Scattered data

– Non-i.i.d. data

■ The utilization of privacy-insensitive data has never been 
considered
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Problem Statement

■ Target

– Utilize the privacy-insensitive data to improve FL 

model performance

– Reduce the impact of non-i.i.d. data on the model

■ Condition 

– Each clients has a multi-modal dataset with 

heterogeneous degrees of privacy levels

– No obviously privacy risk

– Lower communication and computation overhead

■ Solution

– Request all clients upload privacy-insensitive data to 

the server

– Add an additional model fine-tuning at the server 
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Challenges

■ Utilization of insensitive data for 
improving model performance

– No similar work in the literature

– Multi-modal models require 
multi type data as inputs

– Privacy-sensitive data are not 
available at the server

■ Training with single insensitive data 
can bias the models
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Contributions 

■ We are the first group who considered multi-sensor (or 

multi-modal) classification problems, in which sensor 

data have diverse privacy sensitivity levels

■ We apply HPFL on a semantic segmentation network, an 

emotion recognition network, and get 18.2% 

improvement in foreground accuracy and 4.2% in F1-

score, compared to FedAvg

■ HPFL outperforms state-of-the-art advanced FL 

optimization algorithms, FedProx, FedAdam, FedDyn, 

FedCon, 12.4%-17.7% improvement in foreground 

accuracy and 2.54%-4.1% in F1-scores
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Data Sharing

■ To overcome the inference of non-iid data distribution

■ Redistribute the data that collect from clients or public 
dataset to balance local data (①, ②)

■ Employ the collected data to carry out additional training 
after the client training (①, ③)

■ Summary

– Not realize the heterogeneous 

privacy sensitivity levels data

– Still have privacy concern

– Unable to confront strong non-iid

degree, performance improvement

is small (2%~5%)
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Distillation and
Federated Distillation
■ Distillation was initially proposed to compress neural 

networks

■ Federated distillation was proposed for two targets:

– Trade model accuracy for lower communication cost

– Server-side distillation for better server model 

performance and compatible heterogeneous client 

model structure

■ We only collect insensitive data to server, so, we cannot 

perform the offline distillation at server 
14



Federated Transfer Learning
■ Transfer learning focuses on transferring a domain knowledge to 

a different but similar domain

■ FTL belongs to personalization FL 

– The server model may not adapt to every participating client

■ FTL freezes the parameters related to high-level features, but 

HPFL freezes the parameters related to sensitive data

■ FTL focuses on optimizing client model but HPFL focuses on 

optimizing server model
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Advanced FL Algorithms

■ Common target: improve server model performance in FL

■ Optimize client trainer:

– FedProx [1]: add a L2-regularize term on client trainer →

reduce the distance between client and server model

– FedDyn [2]: consider history updates and distance to 

server model → smooth updating 

– FedCon [3]: consider the feature learned by client model 

and server model need to be similar → fast converge

■ Optimize server aggregator:

– FedAdam [4]: use Adam optimizer to replace average 

aggregator in FedAvg → fast converge
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HETEROGENEOUS 
PRIVACY FEDERATED 

LEARNING
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HPFL Workflow
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Client model: used by the clients to train with locally collected sensor data

Server model: aggregated from models sent by all clients

Distillation model: trained by insensitive data from all clients at the server



Client Side Design
■ Target

– Better utilize sensor data with different privacy levels in federated 

learning

■ Methodology (for each client k in K)

– Classify the local sensor data (D𝑘) into sensitive (S) and 

insensitive (I) ones (D𝑘 = D𝑆
𝑘 + D𝐼

𝑘)

– Upload the insensitive data (D𝐼
𝑘) to the server (only once)

– Train a client model (M𝐶
𝑘) with all locally 

available sensor data

M𝐶,𝑡+1
𝑘  = 

M𝐶,𝑡
𝑘  

𝑎𝑟𝑔𝑚𝑖𝑛
 𝐿𝑘(D𝑘, 𝑌𝑘|M𝐶,𝑡

𝑘 )

– Upload trained model and learning target (T𝑘)
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Server Side Design

■ Better utilize the insensitive data to reduce the negative 

impacts caused by non-i.i.d. sample distribution

■ The complete model needs sensitive and insensitive data 

as input, but no sensitive data is available

■ Methodology

– Aggregator: aggregate (e.x. FedAvg) the model and 

learning target that received from the client

– Initializer: initialize the distillation model parameters 

– Server Trainer: optimize the distillation model with 

insensitive data and learning target

– Merger: merge distillation model and server model for 

next round
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Aggregator

■ Compute a server model and average learning target 

based on all client model and learning target

■ The default aggregator is FedAvg

■ HPFL can generalizes for advanced aggregator
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Initializer

■ Target

– Generate the distillation model from server model for 

training with insensitive data

■ Remove the model parameters relevant to sensitive data
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Baseline Trainer

■ Baseline algorithm (HP): server trainer trains distillation 

model with insensitive data

■ Train multi-modal model with single modality data 

causes performance drop

■ Distillate the knowledge from client models to 

distillation model
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Learning Target

■ Improved federated distillation: 

– The server only has insensitive data and cannot perform 

regular distillation

– We propose to have clients upload some layer outputs 

as learning target to guild the server for distillation 

■ Decoder Distillation (HPD) uses the outputs of the last 

decoder layer as learning targets

■ Encoder Distillation (HPE) 

uses the outputs of all last

insensitive data encoder 

layer as learning targets

■ Passive inputs: (HPP) 

uses the outputs of all last

sensitive data encoder layer 

as learning targets.
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Server Trainer

■ Train the distillation model with insensitive data and 

learning target

■ Server loss

– Label loss (𝐿𝐺) : the loss between the distillation 

model prediction and ground truth

– KD loss (𝐿𝐷): the loss between the distillation 

model middle layer output and learning targets

■ Overall server loss is a weighted sum of distillation and 

label loss, where parameter λ is the weight

    𝐿𝑆 = λ 𝐿𝐺 + (1 - λ) 𝐿𝐷

■ The choice of λ makes the effect of 𝐿𝐺 and 𝐿𝐷 on the 

model closer
25



Merger
■ Clients need a complete multi-modal model for next round training

■ Merge the trained distillation model back to the server model

■ The merged part depends on different application models

■ The contribution of the distillation model to the server model is 

controlled by parameter α

   𝑀𝑆 = α 𝑀𝑆 + (1 - α) 𝑀𝐷

26Server model                                         Distillation model
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MULTI-MODAL 
REPRESENTATION 

LEARNING
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Multi-modal Representation 
Learning
■ The HPFL can be applied to many machine learning 

tasks

■ MMRL [1] has become a hot topic due to the growth of 

multiple sensors and data

– Video classification

– Emotion recognition

– Activity detection

– Sentiment analysis

– Semantic segmentation

■ We choose the emotion recognition and semantic 

segmentation as sample applications
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Semantic Segmentation

■ Labels each pixel of an image with one or multiple classes

■ We choose MFNet [1] as a semantic segmentation task 

example

■ We consider RGB image as

sensitive data, thermal image

as insensitive data

      RGB input       Thermal input
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Distillation Model for 
Semantic Segmentation

■ We remove the encoder of RGB image input (sensitive data  

encoder) 

■ We put the work point of HPD and HPE in distillation model

■ HPP does not work well with MFNet

30Distillation model                                  Results of HPP      



Emotion Recognition

■ We choose LMF [1] as a emotion recognition task example

■ We consider video and text as sensitive data, audio as 

insensitive data

■ Data provided by IEMOCAP [2]

dataset are preprocessed for 

features
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Distillation Model for
Emotion Recognition

■ We remove the encoder of text and video input (sensitive data  

encoder) 

■ We put the work point of HPD and HPE in distillation model

■ The learning target of HPP contains averaged

text and video encoder output from clients
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EXPERIMENT SETUP
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Benchmarking Algorithms

■ FedAvg [1]: the earliest federated learning algorithm

■ FedProx [2]: optimize client trainer by proximal term

■ FedAdam [3]: add an Adam optimizer on aggregator

■ FedDyn [4]: optimize client trainer by linear and quadratic 

penalty

■ FedCon [5]: optimizes the client trainer to decrease the 

distance between representation learned from client model 

and server model
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Dataset and Data Distribution

■ MFNet: totally 1600 and 300 pairs of RGB and thermal 
images in the training and testing sets

■ LMF: totally 3515 and 938 triplets of video, audio, and text 
data in the training and testing sets

■ We utilize the Dirichlet distribution to generate three sample 
distribution degrees
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Parameters

■ Distillation model contribution: α ∈ {0.0, 0.1, 0.3, 
0.5, 0.7}

■ Loss balance parameter: λ ∈ {0.05, 0.1, 0.2}

■ Distillation method ∈ {HP, HPD, HPE, HPP*}

■ Data distribution ∈ {i.i.d., non-i.i.d.} or ∈ {0.1, 1, 10}.

■ Number of clients ∈ {8, 16, 32}

■ Neural network parameters and baseline algorithm 
parameters have been tuned and fixed

■ The merge part selection experiments were omitted
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Metrics

■ Background accuracy: The ratio of background pixels that are 

correctly classified in the semantic segmentation problem.

■ Foreground accuracy: The ratio of non-background pixels that 

are correctly classified in the semantic segmentation problem.

■ F1-score: The weighted F1-score in the emotion recognition 

problem.

■ Throughput: The network resource consumption for 

transmitting model parameters and learning targets.

■ CPU time: The time taken by each client in a round.
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EXPERIMENT 
RESULTS
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MFNet: α = 0.5 is a Better Choice 

39

• Smaller α values lead to slightly higher foreground 

accuracy but much lower background accuracy

• Omit the α = 0.0 experiments in MFNet 

• α = 0.5 gives 57.59% on foreground accuracy and 

94.27% on background accuracy



MFNet: λ = 0.1 is a Better Choice 

40

• λ = 0.1 results in the highest foreground accuracy

• FedAvgHPD and FedAvgHPE achieve higher (7.51%, 

7.99%) foreground accuracy than FedAvgHP

• Select λ = 0.1 in the following MFNet experiments



MFNet: FedAvgHPE Leads to 
Lower Communication Overhead

41

Method Model Insensitive data Learning target

MFNet

HP

5.96

MB

96.62%

6.25

 MB

3.38% / /

HPD 36.86% 1.29% 10 MB 61.85%

HPE 94.05% 3.29% 169 KB 2.67%

• The percentage represents the proportion of overhead 

during training

• FedAvgHPD consumes 61.85% communication overhead 

on transmit learning target

• Select FedAvgHPE in the following MFNet experiments



LMF: α = 0.1 and FedAvgHPP 
Leads Higher F1-score

42

• Omit the experiments of λ, which has little effect on results

• In two bias sample distributions (0.1, 1), α = 0.1 outperform 

other α values

• Select α = 0.1 and FedAvgHPP in the following LMF experiments



MFNet: FedAvgHPE Works 
Under both i.i.d. and Non-i.i.d.

• FedAvgHPE achieves higher foreground accuracy under 

two sample distributions

• FedAvgHPE results 40.05%, 37.34% test samples with 

75%+ foreground accuracy under two sample distributions

• FedAvgHPE only losss 3.54% foreground accuracy from 

i.i.d. to non-i.i.d.
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MFNet, LMF: FedAvgHPE/P

Works with Different No. Clients

44

• FedAvgHPE outperforms FedAvg by at least 14.42% on 

foreground accuracy (MFNet)

• The background accuracy loss is negligible 0.81%

• FedAvgHPP outperforms FedAvg 8.41% on F1-score (LMF) 

• HPFL improves the robustness with more clients

14.42%

0.81%

8.41%



LMF: FedAvgHPP Works with 
Different non-i.i.d. Deg.

■ FedAvgHPP outperforms FedAvg 

3.07% ~ 7.9% on F1-score 

■ Select the hardest distribution 1 

in the following experiments
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HPFL Outperforms Other 
Advanced FL Algorithms

■ FedAvgHPE outperforms all state-of-the-art advanced FL algorithms

at least 12.39% on foreground accuracy (MFNet)

■ FedAvgHPE losses negligible 0.64% on background accuracy (MFNet)

■ FedAvgHPP also outperform all state-of-the-art advanced FL 

algorithms by 2.55% on F1-score (LMF)
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Qualitative Results
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HPFL Applies on Advanced FL 
Algorithms

■ Update the client trainer to implement FedProx, FedDyn, and 

FedCon

■ Replace the aggregator with Adam to implement FedAdam

■ Apply HPFL on most of advanced FL algorithms can obtain 

performance improvement
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HPFL Incurs Low Communication 
and Computation Overhead

Methods Model Insensitive data Learning target

MFNet

HP

5.96

MB

96.62%

6.25

 MB

3.38% / /

HPD 36.86% 1.29% 10 MB 61.85%

HPE 94.05% 3.29% 169 KB 2.67%

LMF
HP 1.07

 MB

99.87% 413

 KB

0.13% / /

HPP 99.85% 0.13% 0.26 KB 0.02%
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Methods HPFL FedAvg FedAdam FedProx FedDyn FedCon

Computation 

Overhead*

100% 100% 100% 114% 124% 120%



Conclusion 

■ First considered multi-sensor classification 

problems in the FL setup, where sensor data have 

diverse privacy sensitivity levels

■ Proposed HPFL algorithm to utilize privacy-

insensitive data at server-side for reduce the 

performance gap between FL and centralized ML

■ Conducted an extensive comparison of HPFL and 

other state-of-the-art advanced FL algorithms: 

– HPFL causes no client-side computation 

overhead and little communication overhead
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Future Work

■ Optimization on communication 

and performance 

■ Convergence and privacy analysis

■ Support complex model structure 
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Limitation 
■ Dataset

– HPFL can only work on multi-modal dataset and 
application

■ Distillation model generation

– All performance gain comes from distillation model

– No obvious standard to generate distillation model

– Hard to generate distillation from complex model 
structure

■ System optimization

– HPFL introduces extra tunable parameters

– Client and serve-side optimization are inferencing each 
one
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Support more Complex Multi-
modal Network Structures

■ We only consider the popular joint representation 
structures in our experiments

■ Generating distillation model from complex models 
is challenging for HPFL

■ We will select more representative multi-modal 
structures, and apply HPFL on them

■ We will propose a generalize rules about applying 
HPFL on multi-modal model and selecting HPD, 
HPE, and HPP
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Optimization on Communications 
and Computations

■ HPFL system requires a powerful server

■ The insensitive data and learning target transmit may cause 

network congestion

■ The HPFL server requires about 6 times of training time than 

clients

■ We will develop a efficient learning target and insensitive data 

sharing algorithm under limited network resource

■ We will consider more efficiency training scenario
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Deeper Privacy Analysis

■ Privacy leakage risk from: insensitive data, learning target, 

model parameters

■ Multi-modal machine translation may break the gap between 

sensitive and insensitive data (depth, thermal images…)

■ We will provide completely privacy analysis and apply some 

privacy-prevention technology (DP) on HPFL

■ We will explore the performance impact of these privacy-

preserving technologies on HPFL
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◼ Target function:

◼ Merger: 

◼ Difficulties

◼ The merge part (distillation model) is various in different models

◼ No such reference work did the similar prove

◼ Hybrid Federated and Centralized Learning [2] merges the same 

client and server model

Convergence Analysis

61
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Server-side Distillation 
Method

■ Apply learning target (HPD, HPE) has little performance 

improvement (MFNet, LMF)
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Generalization for 
Split Learning

■ Split learning (SL) significantly reduces client computing overhead

■ Similar but different to SL, HPFL cut the model based on diverse 

privacy-sensitive levels

■ We target to distributed train sensitive data at client-side and 

centralized train insensitive data at server-side 
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Full Algorithm
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