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New Content Life Cycle

Content




Problems in Mobile Network

Network overload

Sporadic connectivity

Battery constraints




Mobile users can tolerate some delay

» 55% of mobile multimedia contents are uploaded after
1+ day [Trestian INFOCOM'11]

» We collect traces from 1400+ users for 5 months and
categorize the application fraffic into:

» F|astic
» Real-time
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More than 50% users
generate at least 65%
and 70% elastic traffic in
downlink and uplink
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Dynamics of Network Condifion

» Network condition varies over fime
» \We are all different € user profiles
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Problem Statement

» Scheduling delay-tolerant transfer on mobile devices

» The scheduling should guarantee user experience

» The scheduling supports different optimization objectives
= Minimizing network resource consumption

» Minimizing energy consumption
» Minimizing access cost




Proposed Solution

» Propose large time-scale transfer scheduling

» There has a deadline constraint in the scheduling to
guarantee user experience

®» Design and implement a framework to schedule the
data transmission on mobile devices




Outline

» | arge Time-scale Transfer Scheduling
» UPDATE Framework
» Trace-Driven Simulations

» Model Derivation Overhead
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Large Time-scale Transtfer
Scheduling




Large Time-scale Scheduling

» Most of the existing work consider small time-scale, from
seconds to minutes

» \We consider a large time-scale scheduling, from minutes
to hours

®» There is an application-specified deadline for
guaranteeing good user experience

» Can optimized for different optimization criteria, such as
throughput, energy and network load




UPDATE Framework




UPDATE API

UPDATE Framework

Applications

Human User

Profiler

User Profiles Resource Manager
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» Profiler: collect user profiles

= Resource Manager: manage the transfer
requests

» Policy Generator. generate scheduling
policies based on user profiles

» Scheduler: make scheduling decision
according to the policies

» Application API: the inferface of mobile
application and UPDATE framework



Optimal Stopping Scheduling
(OSS)and Lightweight Optimal Stopping
Scheduling (OSS,) (NOSSDAV'12)

= The algorithms are based on Markov decision process
(optimal stopping problem)

» The algorithms decide the best fransfer fime without
exceeding the deadline N

» The algorithms compare the current transfer cost X; and
the expected optimal cost between t and the deadline
N in each timeslot

» |n OSS,, the fransfer cost only depends on time



Batched Optimal Stopping Scheduling
(BOSS)and Lightweight Batched Optimal

Stopping Scheduling (BOSS, )

(MobiCom’' 13 under review)

» |n UMTS networks, waste in tail time is significant when
serve small network transfers

» We consider batching in scheduling: combine multiple
small data into a single transfer

=TIy 10cCh

Data fransmission

Tail Energy

[Balasubramanian et. al IMC'09]




Trace-driven Simulations




PhotoSync and Profiler

NS Q& Q& 5944
7 Photosync_PRIVATE >

®» PhotoSync is an Android application which
uploads photos to Facebook automatically

®» We also implement the profiler to record the
user contexts and periodically upload the
profiles to a server

» We publish PhotoSync with profiler to Google
Play Store and collect profiles form 1400+ users
for 5 months




Profiles Analysis

®» The analysis shows that the users are from worldwide

» The longest profile length is 136 days and there are up to
500+ users in some days
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APP Traffic Analysis

» \We roughly classify the top 10 applications fraffic into
two groups and the traffic is about 60% of total traffic

» Delay-tolerant (multimedia content upload,
Dropbox, ...)

» Real-fime (Browser, Youtube, ...)

» There are on average 65% (uplink) and 70% (downlink)
delay-tolerant traffic




Trace-driven Simulator

» Driven by traces from real users
» Implemented in Matlab
= Running on a Linux server with 2.6 GHz AMD CPU

» We implemented the four proposed algorithms: OSS,
OSS,, BOSS, and BOSS,

» Also implemented a baseline algorithm called Instant
(INS) and an offline optimal algorithm (OPT) and two
state-of-art algorithms named BAR (Schulman et. al
MobiCom'10) and SALSA (Ra et. al MobiSys'10)



Trace-driven Simulations

» \We report the results when optimized for throughput,
network load and energy consumption

» We report the results of single-jobbs and multi-jobs (with
batching) transmission

» We report the complexity and performance of each
algorithm

» We empirical choose the system parameters: 5 min
timeslots and 40 min deadline




Algorithm Complexity

Time Complexity (sec) :

Deadline | 2 3 1 16 » OSS consume more fime
OSS 24.65 | 63.33 | 102.56 | 457.20 | 3403.38

0SS, 0.02 0.03 0.05 0.08 0.15 and Mgt COmpOred

Memory Requirement during Camputation Wwith OSSL

OSS (GB) | 0.25 | 0.56 0.99 396 | 15.82 )
OSS. (KB) | 2.25 | 338 | 45 g | 18 ®» The complexity of BOSS
Time Complexity (560 Is foo high can’t work in

Deadline 2 3 i [ 8 16 real system
BOSS I 2200.23 | 8403.63 | - - -
BOSS, oo | L15 25 | 40 | 10229

Memory Reguirement during Computation
BOSS (GB) 3.95 15.82 - - -
BOSS; (KB) 18 36 | 576 | 147456




Simulation Results

» We report the results with different optimized criteria

» QOur algorithms outperform other algorithms

» BOSS, algorithm has better performance because of
batching
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Model Derivation
Overhead




Model Derivation in Dynamic System

» Profiles upload to the server every T days

» Training windows size L. consider profiles in last L days
when training model parameters

Profile Upload and - Model Parameter
Model Parameter Download Derivation
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Limitations of OSS

» Fven the OSS algorithm with the best training window

size, OSS does not outperform OSS; and consumes more
resources

Opt. for Throughput with L = 15 days

Nor. Performance Training Cost
Algo. | Min | Mean | Max | Time (sec) | Memo
0SS 0.01 |]356] | 555 || 238.67 || 3.96 GB |
OSS. | 0.01 ||5.55] | 1416 | L_0.06 _JL_9KB
Opt. for Network Load with L = 60 days

0SS | 0.001 | 0.56 2.73 231.46 3.96 GB
OSS, | 0.001 | 0.65 | 22.98 0.07 9 KB
Opt. for Energy with L = 30 days
0SS | 0.003 | 0.93 4.5 278.82 3.96 GB
OSS,. | 0.003 | 0.90 3.08 0.08 9 KB
BOSS,. | 0.001 | 0.47 3.28 38.96 576 KB




Implication of Training Window Size
(single-job)

® | arger training window size causes longer fraining tfime

» We recommend Le[15, 30] and Le [30, 45] days when
optimized for throughput and network load
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Implication of Training Window Size
(multi-job)

» The training time of BOSS, does not impact by training
window size

» We recommend Le [30, 60] when optimized for energy
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Training Window Size

® |n summary, our algorithms preform well when L=30
» We consider L=30 in the rest of the experiments




User Clustering for Reducing
Model Derivation Overhead




User Clustering

» To mitigate the model fraining overhead, we propose to
cluster users then train a single set of model parameters
for each group

» We cluster users according to the opfimization criteria

» Two system parameters: fimesloft size T for partitioning
contexts and clustering ratio a = %/,, where K is the
number of clusters and N is the number of users

» We implement 3 clustering algorithms and 4 distance
meftrics in our simulator



Clustering Algorithm Complexity

» K-Medoids algorithm consumes the longest time and
hierarchical clustering is the fastest algorithm

» Cosine distance consumes the longest time and
Cityblock distance consumes the shortest fime

Average Running Time (sec)
Distance Hierarchical | K-Means | K-Medoids

Cosine 0.01 1.27 15.80
Euclidean 0.01 0.53 2.05
Cityblock 0.01 0.32 1.97

Correlation 0.01 0.86 2.13




Comparison of Clustering Methods

» We report the performance loss due to clustering

» |Jse K-Means/cityblock, K-Medoids/cityblock, and K-
ans/cosine when optimized for: throughput, network
oad, and energy
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Reducing Time Overhead and
Performance Impact

» About 12% throughput improvement, 118% and 117%
performance ratio when optimized for throughput,
network load, and energy

» Total time savings with our user clustering algorithms are
58.8%, 37.5% and 59.9% when optimized for throughput,
network load, and energy




Conclusion and Future
Work




Conclusion

» We propose and implement UPDATE, a user-profile-
driven framework to schedule data traffic for improved
battery performance and network efficiency

» We study the overhead of training the model
parameters

» |n order to reduce the training overhead, we propose to
cluster users

® [N our simulation results, our proposed solution saves up
to 59.9% on training tfime with <18% performance
degradation



Future Work

» Classify user profiles intfo different profile types (e.g.,
weekday and weekend)

» Defermine the best context for clustering users

®» Propose new clustering approach that incorporates the
batched transfers




Conftributions

» Collect user profiles form general public

» User profiles analysis

» Quantify model derivation overhead

» Reduce model derivation overhead by clustering users
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Scheduling Model

®» Fach transfer request has a specific deadline: N

» At each time slot, the scheduler makes a decision D;e
{Wait, Transfer}

» The decision are based on the current fransmission cost
(X; te[1, N]) and future estimates V;

» V. is the optimal cost to fransfer data between time slot t
and N

» V., can be calculated using the stafistics of X;



Optimal Stopping Scheduling (OSS)

Transfer, X, < E(V,.1|X});
D{. —

Wﬂit, X; > E(";+1|Xt)

E(Vn|Xn-1) = E(XN|XN-1);
E(Vi|Xi—1) =

Y P(X; = c|Xy—1) min(c, E(Vi1 | Xy = ¢)).

OSS requires longer user profiles to derive model
parameters and with higher complexity




Lightweight Optimal Stopping
Scheduling (OSS))

5 Transfer, X; < E(Vi411)
t — 9
Wait, X > E(‘/H-l)

The transfer cost X; only depends on fime in OSS;




Collected User Profiles

Context Profiling Type | Period (min) | Profiling Level (>)
WiFi Connectivity Event-driven - Default
3G Signal Strength Event-driven - Default
Activity Information Periodical 5 Verbose
Task Information Periodical 5 Verbose
Battery Level Periodical 5 Baseline
Network Throughput Periodical 5 Default
Application Traffic Amount Periodical 5 Default
~ GPS Location Periodical 30 Verbose
Neighboring WiFi AP Information Periodical 30 Verbose
Neighboring Cell Tower Information Periodical 5 Verbose




Profiler Overnead

®» The average power overhead of our profiler is 2.94
MW, or 6% of the total power consumption

» The battery lifetime is longer than 4.5 days with the
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Batching Scheduling Model

» (Q denotes the scheduler queue at the beginning of the
time slot; Q" the queue after job arrivals; and Q™ the
queue after fransfer the job with the closest deadline

» \We call a fimeslot active if one or more content transfers
are scheduled, otherwise the timesloft is inactive.

» AQ, / CQ  the expected cost when using the optimal
policy in active/inactive fimeslot



Batched Optimal Stopping Scheduling
(BOSS)

® |f NO job is fransmitted in the current timeslot -1
C"th—l - C'Vt(y- 452—1 - C‘Yt.(2+-

®» |f schedules the job with the earliest deadline in the
queue, and stays in the current timeslot t —1

CO =0+ X1 +AY A% =X, + AY .



Batched Optimal Stopping Scheduling
(BOSS) (cont.)

® [N an inactive timeslot -1, if , then transmit no requests, and
go to next timeslof;

» Ofherwise, tfransmit the first request, and stay in the current
timesloft

® |n an acftive timeslot -1, if , fransmit no more request, and go
to the next timeslof

» Otherwise, transmit the request with the closest deadline, and
stay in the current timeslot

» Complexity of BOSS is very high because the number of states
is large



Lightweight Batched Optimal Stopping
Scheduling (BOSS, )

C? =P(X; 1 >CP— A% —0)C?
+P(X,_1 <CP —AY |, —0)(X,_1 + AY | + 0):

4?lzp(\t 1>(7Q— 4?1)60
+P(X;1 SCP — AZ ) (X1 + AZ ).

(,‘? =0+ |Q|E(XT)
A? = |Q|E(X7).




Energy Model

» \We measure the energy consumption of HTC Sensation
XE phone, using an Agilent 66321D power meter

» We place the phone in locations with different RSSI
values, and compute the mean current of each
location based on 100,000 samples

®» We use the same setup to measure the WiFi ramp and
cellular tail energy

WiFi Network Interface
RSSI (dBm) | -81.24 | -71.24 | -60.94 | -46.60 | -36.6
Current (A) 0.28 0.26 0.25 0.24 0.23
Cellular Network Interface
RSSI (dBm) | -91.65 | -86.14 | -73.16 | -67.05
Current (A) 0.33 0.26 0.22 0.21




Timestamp, context

Timestamped
log files
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N days profiles
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Vector Representation
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Average context
value in each fimeslot



Impact of System Parameters in User

Clustering (T)

» The best T when optimized for throughput, network load
and energy consumption are 900-sec, 1800-sec and 600-
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Nor. Throughput

Impact of System Parameters in User

Clustering (a)

» Consider hierarchical clustering algorithm and cosine
distance when clustering users

» OSS§, with clustering can achieves 92.6% of original
throughput, 5.2% additional network load and 25.5%
additional energy with only 30% of original model

parameters fraining fime when a = 0.3
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