
Reducing Training Overhead 
of Large Time-Scale Transfer
Scheduling for Mobile 
Devices
Author: Ting-An Lin
Collaborator : Yichuan Wang, Xin Liu (UC Davis)

Some slides were created by Y. Wang



New Content Life Cycle

Created on Mobile

Consumed on Mobile

Content



Problems in Mobile Network

Network overload

Sporadic connectivity

Battery constraints



Mobile users can tolerate some delay

´ 55% of mobile multimedia contents are uploaded after 
1+ day [Trestian INFOCOM’11]

´ We collect traces from1400+ users for 5 months and 
categorize the application traffic into:
´Elastic
´Real-time

More than 50% users 
generate at least 65% 
and 70% elastic traffic in 
downlink and uplink



Dynamics of Network Condition

´Network condition varies over time
´We are all different ß user profiles

How to determine the best transfer time?



Problem Statement

´ Scheduling delay-tolerant transfer on mobile devices
´ The scheduling should guarantee user experience
´ The scheduling supports different optimization objectives

´Minimizing network resource consumption
´Minimizing energy consumption
´Minimizing access cost



Proposed Solution

´ Propose large time-scale transfer scheduling
´ There has a deadline constraint in the scheduling to 

guarantee user experience
´ Design and implement a framework to schedule the 

data transmission on mobile devices



Outline

´ Large Time-scale Transfer Scheduling
´ UPDATE Framework
´ Trace-Driven Simulations
´ Model Derivation Overhead 
´ User Clustering for Reducing Model Derivation Overhead
´ Conclusion and Future Work



Large Time-scale Transfer 
Scheduling



Large Time-scale Scheduling

´ Most of the existing work consider small time-scale, from 
seconds to minutes

´ We consider a large time-scale scheduling, from minutes 
to hours

´ There is an application-specified deadline for 
guaranteeing good user experience

´ Can optimized for different optimization criteria, such as 
throughput, energy and network load



UPDATE Framework



UPDATE Framework

´ Profiler: collect user profiles
´ Resource Manager: manage the transfer 

requests
´Policy Generator: generate scheduling 

policies based on user profiles 
´Scheduler: make scheduling decision 

according to the policies 
´Application API: the interface of mobile 

application and UPDATE framework



Optimal Stopping Scheduling
(OSS)and Lightweight Optimal Stopping 
Scheduling (OSSL) (NOSSDAV’12)
´ The algorithms are based on Markov decision process 

(optimal stopping problem)
´ The algorithms decide the best transfer time without 

exceeding the deadline N
´ The algorithms compare the current transfer cost Xt and 

the expected optimal cost between t and the deadline 
N in each timeslot

´ In OSSL, the transfer cost only depends on time



Batched Optimal Stopping Scheduling
(BOSS)and Lightweight Batched Optimal 
Stopping Scheduling (BOSSL)
(MobiCom’13 under review)
´ In UMTS networks, waste in tail time is significant when 

serve small network transfers
´ We consider batching in scheduling: combine multiple 

small data into a single transfer

Tail Energy

[Balasubramanian et. al IMC’09]

Data transmission



Trace-driven Simulations



PhotoSync and Profiler

´ PhotoSync is an Android application which 
uploads photos to Facebook automatically

´ We also implement the profiler to record the 
user contexts and periodically upload the 
profiles to a server

´ We publish PhotoSync with profiler to Google 
Play Store and collect profiles form 1400+ users 
for 5 months



Profiles Analysis

´ The analysis shows that the users are from worldwide
´ The longest profile length is 136 days and there are up to 

500+ users in some days



APP Traffic Analysis

´ We roughly classify the top 10 applications traffic into 
two groups and the traffic is about 60% of total traffic
´Delay-tolerant (multimedia content upload, 

Dropbox, …)
´Real-time (Browser, Youtube, …)

´ There are on average 65% (uplink) and 70% (downlink) 
delay-tolerant traffic



Trace-driven Simulator

´ Driven by traces from real users
´ Implemented in Matlab
´ Running on a Linux server with 2.6 GHz AMD CPU
´ We implemented the four proposed algorithms: OSS, 

OSSL, BOSS, and BOSSL
´ Also implemented a baseline algorithm called Instant 

(INS) and an offline optimal algorithm (OPT) and two 
state-of-art algorithms named BAR (Schulman et. al 
MobiCom’10) and SALSA (Ra et. al MobiSys’10)



Trace-driven Simulations

´ We report the results when optimized for throughput,
network load and energy consumption

´ We report the results of single-jobs and multi-jobs (with 
batching) transmission

´ We report the complexity and performance of each 
algorithm

´ We empirical choose the system parameters: 5 min 
timeslots and 40 min deadline



Algorithm Complexity

´ OSS consume more time 
and memory compared 
with OSSL

´ The complexity of BOSS 
is too high can’t work in 
real system



Simulation Results

´ We report the results with different optimized criteria
´ Our algorithms outperform other algorithms
´ BOSSL algorithm has better performance because of 

batching



Model Derivation 
Overhead



Model Derivation in Dynamic System

´ Profiles upload to the server every τ days
´ Training windows size L: consider profiles in last L days 

when training model parameters 



Limitations of OSS

´ Even the OSS algorithm with the best training window 
size, OSS does not outperform OSSL and consumes more 
resources



Implication of Training Window Size 
(single-job)

´ Larger training window size causes longer training time
´ We recommend L∈ [15, 30] and L∈ [30, 45] days when 

optimized for throughput and network load



Implication of Training Window Size 
(multi-job)

´ The training time of BOSSL does not impact by training 
window size

´ We recommend L∈ [30, 60] when optimized for energy



Training Window Size

´ In summary, our algorithms preform well when L=30
´ We consider L=30 in the rest of the experiments



User Clustering for Reducing 
Model Derivation Overhead



User Clustering

´ To mitigate the model training overhead, we propose to 
cluster users then train a single set of model parameters 
for each group

´ We cluster users according to the optimization criteria
´ Two system parameters: timeslot size T for partitioning 

contexts and clustering ratio 𝛼 = ⁄! ", where K is the 
number of clusters and N is the number of users 

´ We implement 3 clustering algorithms and 4 distance 
metrics in our simulator



Clustering Algorithm Complexity

´ K-Medoids algorithm consumes the longest time and 
hierarchical clustering is the fastest algorithm

´ Cosine distance consumes the longest time and 
Cityblock distance consumes the shortest time 



Comparison of Clustering Methods

´ We report the performance loss due to clustering
´ Use K-Means/cityblock, K-Medoids/cityblock, and K-

Means/cosine when optimized for: throughput, network
load, and energy



Reducing Time Overhead and 
Performance Impact

´ About 12% throughput improvement, 118% and 117% 
performance ratio when optimized for throughput, 
network load, and energy

´ Total time savings with our user clustering algorithms are 
58.8%, 37.5% and 59.9% when optimized for throughput, 
network load, and energy



Conclusion and Future 
Work



Conclusion

´ We propose and implement UPDATE, a user-profile-
driven framework to schedule data traffic for improved 
battery performance and network efficiency

´ We study the overhead of training the model 
parameters

´ In order to reduce the training overhead, we propose to 
cluster users

´ In our simulation results, our proposed solution saves up 
to 59.9% on training time with <18% performance 
degradation



Future Work

´ Classify user profiles into different profile types (e.g., 
weekday and weekend) 

´ Determine the best context for clustering users 
´ Propose new clustering approach that incorporates the 

batched transfers



Contributions

´ Collect user profiles form general public
´ User profiles analysis
´ Quantify model derivation overhead
´ Reduce model derivation overhead by clustering users



Publications

´ Conference Papers
´ Yichuan Wang, Xin. Liu, Angela Nicoara, Ting-An Lin, and Cheng-Hsin 

Hsu, “Smarttransfer: Transferring your mobile multimedia contents at the 
“right” time”. In Proc. of ACM International Workshop on Network and 
Operating Systems Support for Digital Audio and Video (NOSSDAV’12), 
Toronto, Canada, June 2012.

´ Ting-An Lin, Yichuan Wang, Cheng-Hsin Hsu, and Xin Liu, “Poster: Mobile 
user clustering in large time-scale data transfer scheduling”. In Proc. of 
ACM International Conference on Mobile Systems, Applications, and 
Services (MobiSys’13), Taipei, Taiwan, June 2013.

´ Shu-Ting Wang, Ting-An Lin, Yichuan Wang, Cheng-Hsin Hsu, and Xin Liu, 
“Poster: Fusing Prefetch and Delay-Tolerant Transfer for Mobile Videos”. 
In Proc. of ACM International Conference on Mobile Systems, 
Applications, and Services (MobiSys’13), Taipei, Taiwan, June 2013.



Publications(cont.)

´ Conference Papers
´ Ting-Yi Lin, Ting-An Lin, Chung-Ta King, and Cheng-Hsin Hsu, “Context-

Aware Decision Engine for Mobile Cloud Offloading”. In Proc. 2013 IEEE 
WCNC Workshop on Mobile Cloud Computing and Networking 
(MCC’13), Shanghai, China, April 2013.

´ Yu-Sian Li, Chien-Chang Chen, Ting-An Lin, Cheng-Hsin Hsu, Yichuan 
Wang, and Xin Liu, “An End-to-end Testbed for Scalable Video 
Streaming to Mobile Devices over Http”. IEEE International Conference 
on Multimedia and Expo (ICME’13), San Jose, California, USA.

´ Journals Paper
´ Yichuan Wang, Ting-An Lin, Cheng-Hsin Hsu and Xin Liu, "Region and 

action aware virtual world clients". ACM Transactions on Multimedia 
Computing, Communications, and Applications, Volume 9 Issue 1, 
February 2013.



Q & A



Backup



Scheduling Model

´ Each transfer request has a specific deadline: N
´ At each time slot, the scheduler makes a decision Dt∈

{Wait, Transfer}
´ The decision are based on the current transmission cost 

(Xt , t∈ [1, N]) and future estimates Vt

´ Vt is the optimal cost to transfer data between time slot t 
and N

´ Vt can be calculated using the statistics of Xt



Optimal Stopping Scheduling (OSS)

OSS requires longer user profiles to derive model 
parameters and with higher complexity



Lightweight Optimal Stopping 
Scheduling (OSSL)

The transfer cost Xt only depends on time in OSSL



Collected User Profiles



Profiler Overhead

´ The average power overhead of our profiler is 2.94 
mW, or 6% of the total power consumption

´ The battery lifetime is longer than 4.5 days with the 
profiler running



Batching Scheduling Model

´ Q denotes the scheduler queue at the beginning of the 
time slot; Q+ the queue after job arrivals; and Q− the 
queue after transfer the job with the closest deadline

´ We call a timeslot active if one or more content transfers 
are scheduled, otherwise the timeslot is inactive.

´ AQ
t / CQ

t :the expected cost when using the optimal 
policy in active/inactive timeslot



Batched Optimal Stopping Scheduling
(BOSS)
´ If no job is transmitted in the current timeslot t−1

´ If schedules the job with the earliest deadline in the 
queue, and stays in the current timeslot t −1



Batched Optimal Stopping Scheduling
(BOSS) (cont.)
´ In an inactive timeslot t−1, if , then transmit no requests, and 

go to next timeslot; 
´ Otherwise, transmit the first request, and stay in the current 

timeslot
´ In an active timeslot t−1, if , transmit no more request, and go 

to the next timeslot
´ Otherwise, transmit the request with the closest deadline, and 

stay in the current timeslot
´ Complexity of BOSS is very high because the number of states 

is large



Lightweight Batched Optimal Stopping 
Scheduling (BOSSL)



Energy Model

´ We measure the energy consumption of HTC Sensation 
XE phone, using an Agilent 66321D power meter

´ We place the phone in locations with different RSSI
values, and compute the mean current of each 
location based on 100,000 samples

´ We use the same setup to measure the WiFi ramp and 
cellular tail energy



Vector Representation

Timestamp, context 
⋮

𝑐!,! ⋯ 𝑐!,#
⋮ ⋱ ⋮
𝑐$,! ⋯ 𝑐$,#

Timestamped
log files

N days profiles 
and T timeslots 

per day

𝑣!, 𝑣%, … , 𝑣#

Average context 
value in each timeslot



Impact of System Parameters in User 
Clustering (T)
´ The best T when optimized for throughput, network load

and energy consumption are 900-sec, 1800-sec and 600-
sec



Impact of System Parameters in User 
Clustering (α)

´ Consider hierarchical clustering algorithm and cosine
distance when clustering users

´ OSSL with clustering can achieves 92.6% of original 
throughput, 5.2% additional network load and 25.5% 
additional energy with only 30% of original model 
parameters training time when α = 0.3


