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Challenges of Streaming 360° Videos

Image Source: Qualcomm
2 Mbps 510 25 Mbps 50 to 200 Mbps

Video conferencing Two-way telepresence Next-gen 360° video (8K, 90+

* 360" videos contain wider 775 R, strcson

view than conventional videos G
= extremely large file size
1 Mbps 2 t0 20 Mbps 10to 50 Mbps 200 to 5000 Mbps

. . Image and workflow 3D model and data  Current-gen 360° 6 DoF video
(> 1 3 O M b pS n H EVC fo r 4 K Vi eWp O rt) downloading visualization video (4K) or free-viewpoint

>

Critical for immersive experiences

* Shape distortion and
diverse user behavior o
= hard to capture QoE using\

existing quality metrics

Insufficient bandwidth & complex and unknown QoE
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360° Video Streaming Platform

* Three crucial phases in 360° video streaming

Clients

|

@Production @ Delivery

Streaming Server Video
HTTP Request Requester

6_ — —

Video Data Decoder

Production Server

: Videos
Video High Low
Encoder = -

MPD

@ y Consumption

et [ : L e
Raw Videos E

Viewer




360° Video Streaming Platform

[NOSSDAV’17, TMM’19]

Fixation Prediction @ Delivery __Clients
- predict the future fixation that Video
would be viewed by the viewer HTTP Request Requester
- avoid wasting resource on <3 ~ | |
unwatched parts _
—' Video Data
- Limited B/W L
- Frequently
changing

viewports



How to Save Bandwidth When
Streaming 360 Videos:

* The HMD viewer only gets to see a small part of the
whole 360° video (< 1/3)

= HEVC Tiles
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Viewport-Adaptive Streaming

* Tiling with MPEG DASH (Dynamic Adaptive Streaming over HTTP)
Temporal Spatial

A
A Single Video

>
Time (Segments )

* Basic transmission unit: Tiled-segments



Fixation Prediction Results




LSTM-Based Neural Networks

* Future-aware network works the best
* Sensor features: viewer’s yaw, roll, and pitch
* Content features: saliency maps and motion maps

Saliency map

m n Pﬁ+1,f+n) Output: Predicted
T "\ viewing probabilities
|

7

69.7% | 64.3%] 67.2%| 0.7%

LSTM ]

T

7

Motion map

\mm}{mM}

Sahency Saliency Saliency
. F r nten
Motion Motion Motion \ uture content
features
.S:ensor Orientation Orientation = _ |

Features



The Adopted Saliency Maps in the
Content Features are Faulty

* Existing saliency detection networks are typically
trained with photos taken by 2D cameras

* Existing codecs do not support spherical videos

—>Distortion due to mapping spherical videos to
other coordinate system

* E.g., shape distortion and ill segmentation

= We need a new model!



Overlapping Virtual Viewport (OVV)

. Virtual Viewport
* OWV covering the whole sphere space /™ -
* d,:viewable degree [, mpleofd, = go° 7 S
* d.: sampling degree and d,=45°
dy e B
= free from shape distortion é
and ill segmentation 1
Stitched OVV m n | Pes pn
) [ ! \ l_‘_\ T
LSTM }“{ LSTM }"'> LSTM ]
T T T
Saliency Saliency Saliency
< ————————  Motion e Motion wee Motion
3 T Orientation Orientation _ = Orientation
o e B p

Features 10



Evaluations

* Prediction

10 videos (1800
frames) and 50
viewers = 900k
samples

* Higher accuracy and F-score

* Streaming in ns-3 simulator

dwidth Savi
consumption,

lower rebuffering time, and

comparable video quality
-PSNR

e Lower bandAw

<-1 dB(\:i
e Small-scale user stu

ViR

Category

Videos

Mega Coaster

NI, fast-paced

Roller Coaster

Driving with

Shark Shipwreck

Perils Panel

NI, slow-paced

Kangaroo Island

SFR Sport

Hog Rider

CG, fast-paced

Pac-Man

Chariot Race

* Lower MOS score by < 0.1 (out of 5)
while saving 41% of bandwidth
compared to the current practice

Our 81.8% 63.1%
» K=0 | 13.1% 31.0%
K=2 73.0% 53.4%
CUB360 K=5 73.0% 54.3%
K=10 722% 54.6%
%30 : :
& 41% I Cur
= ; EIDR
= 20 1 [1Our|.
b=
= ==
=
@) 10+ J
-
: m
g
g0
= Broadband WiFi 4G
Network

[1] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang, “Cub360: Exploiting cross-users behaviors for viewport prediction in 360 videat
adaptive streaming,” in Proc. of IEEE International Conference on Multimedia and Expo (ICME’18), 2018, pp. 1-6.




State-of-the-Art Prediction Algos

Approach | Classification

LSTM

CNN +
LSTM

Spherical
CNN

Others

Others,
e.g, SVM,
LR, RL

None

None
None
None

Video content,
viewer’s behavior,
or per video

Fan et al. 2017, Fan et al. 2019, Nguyen et al.
2018, Xu et al. 2018, Hou et al. 2019, Hou et al.
2020

Xu et al. 2018, Chen et al. 2020, Feng et al.
2020, Cheng et al. 2018

Zhang et al. 2018, Wu et al. 2020

Bai et al. 2017, Qian et al. 2018, Xu et al. 2018,
Vielhaben et al. 2019, Xu et al. 2018

Feng et al. 2019, Nasrabadi et al. 2020, Ban et
al. 2018, Xie et al. 2018
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Tiled 360° Video Streaming Platform

D [INOSSDAV’17, TMM'19
Fixation Prediction

- predict the future tiled-segments
that would be viewed by the
viewer
leverage LSTM with sensor and

Clients

Tiled-Segment
HTTP Request

content features = ==-4| Requester /
leads to comparable video quality b
while saving up to 41% of

bandwidth ) e Data

- Frequently
changing
viewports
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Tiled 360° Video Streaming Platform

Quality

Version A S|ng|e Video
et High BIW Covering a broad
es range of client
hleciug IIIIIII MedumBW  network bandwidth
Low |HEEEEEN Lov B/w

@Production | Ve

i i (Segments )
Production Server Streaming Server g

) Tiled-Segments
Tiled-Segment High ~ Low

1 210 HFEN .~

Encoder wysm (M
‘. : -gﬂi

MPD

T - Heterogeneous
clients

- Plenty of quality
combinations encoded and stored on the

Raw Videos among tiles Streaming server
- Limited space maximize Overa” ViEWing quallty

Optimal Laddering [TCSvT'20]
- determine tiled-segments to be

14



Optimal Laddering Problem

Encoding Ladder _,
» Determine the optimal - A 19207 10%0
encoding ladder to cover E _ /1280 %720
a broad range of clients < _
:Conventional Video
* Challenges for tiled 360° | ——— >

' Bitrat
videos b1 b2 bx b3 itrate
Clients with b/w at bx

e Different FII?S have different request the video in
characteristics and lead to huge 1280 x 720 resolution

amount of quality version L e

combinations L NP Sy
ﬂm-u.\.w 'M‘“" LY

 Storage space is limited R S 1 =]

. “ﬁ.‘




Problem Statement

Bandwidth/Videos
Client Distribution

Goal: Maximize the overall
viewing quality of clients

Streaming Server m

5
Tiled-Segments (\ s
% =
R s MenE < j
S S =
Storage Limit \/\/
Streaming

Which version of tiled-segment

of each video should be stored
Video Models  op the server?
Tile Complexity Viewing Probability

Tile Importance

Bitrate
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Problem Formulation

¢ distortion model

min Z Z fo. Dol Z dy(q)Te. 4 | Minimize the overall client distortion

c=1gpcP

The bitrate of the tiled-segment streamed to

N Q
Z_: Z: re(Q)Tp.c.q < be each class is bounded by the available bandwidth

bitrate model . : —
Q The required size for storing tiled-segments

Z Z T (q)Yp,q < S is bounded by the storage limit

peP g=1
. < yy Only the tiled-segments stored on the server
“¢eq = Je.4 can be selected to be streamed to clients

Q
Z Tp,c,q = 1 Only one version of tiled-segment is selected
for each class

Tp.cq € 10,1} cel[l,Cl,qge[l,Q],¢ € ®;

Yo .q € {0q 1} qE [1~Q]~¢E D.

¢ = tn)

®={(v,t,n)|ve[l,V],te[1,T],ne[lN]} 17



Decompose the Problem
(Divide-and-Conquer)

* Per-class optimization:
minimize the distortion
under the bandwidth
constraint for each class

* Global optimization:
minimize the overall
distortion under the
storage limit

Bandwidth
Constraints

bl-

b, A

Video 1

| Per-Class Optimization

"I Per-Class Optimization

')l Per-Class Optimization

Video V'

M Per-Class Optinuzation

"l Per-Class Optimization

"I Per-Class Optimization

T

Global
Optimization

T Storage
S Limit

1

Video Model d, r

Viewing Probability p

(Qlient Distribution f

18
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Sample Formulation: Per-Class Optimization

T N Q
min Z Z Pv,t, nOn Z d-v,t,n. (Q)mv ,t,m,c,q Minimize the VieWing
t=1n=1 q=1 distortion of class
N Q
st Z ot (D To.t.m.c.q < be The bitrate is bounded by
n—1qg—1 the available bandwidth

e
3
~
]
sl
|
[

u}
I
[y

mv,t,n.,c,q — {0’ 1}

* Lagrangian-Based Algorithm (PC-LBA)
* leverages the convexity of the video models

* Greedy-Based Algorithm (PC-GBA)
* runs more efficiently

19



LBA to Solve the Subproblem

Convex Optimization
* Leverage the Lagrangian Multiplier to transform the

constrained problem into an unconstrained problem
N

Objective min Z Ayt n Kyt n)Pv,tnln
";1 Decision Variable QP

Constraint st: z rv,t,n(Kv,t,n) < bn

n=1
N Lagrangian N Unconstrained problem
Multiplier
Imin L(Kv,t,c;ﬂ) — E dfu,t,n (Hlv,t,n,c‘F_E( E Tv,t,n(f'ffv,t,n,c) — bc)
" Objective " Constraint
—1In 'U‘O‘I'Z,t,nﬁ;,t,n
“ad  pd —
QP d r v,t,n v, t,nPv,t,nn
1 — Bv,t,n /Bv,t,n 1—p4d ;
—_ ,{”U,t’n’C p— = W( ] v,t,n )
v,t,n 1 — v,t,n
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Greedy-based: PC-GBA

* Iteratively allocate more bitrate to the tile with the highest
coding efficiency by reducing its QP
* until there is no remaining bandwidth or all tiles are coded at the
smallest QP Weighted distortion reduction

P4

(dp(Kge — 1) — dp(Ke.c))Dpag
r¢(Kg,e — 1) = T4(Kg,c)

‘Qqﬁ,c —

Bitrate increment

Iteration m Iteration m+1th

Iteration O

g g b7
:;::9 Ky t1,c g Ky,t,1,c
-==> 2 — B[ el a
miterations O | T2, Qe o) VB2, e
N o
- Kv,t,3,c = Kv,t,3,c‘l ©
Bitrate Bitrate Bitrate
Ee ; o QP Options O Candidate QP
------- ile
® Current Selected QP % Next Selected QP
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Global Optimization

* Greedily adjust the per-class solutions
»c to minimize the expected distortion
while meeting both the client bandwidth
constraints and overall server storage
limit
* iteratively select the tiled-segment
with the minimum €4 g

Bandwidth
c N

Video 1

1 "I Per-Class Optimization

¢ +P|Per-Class Optimization

2 -')i Per-Class Optimization f

|
|
|

2 -P| Per-Class Optimization =

Video V'

Global
Optimization|

1 P Per-Class Optimization [f—>

¢ "P|Per-Class Optimization H#—-<

Client Distribution f |

Weighted distortion gain step size
4
1% C
€ = D o=t Dot Jrie - [do(q+6) — dy(q)]PgagTe,c,q
q

Reduced storage size on server if the
QP value of tiled-segment increases

re(q) — re(q + 0)(1 — Yp,q+5)|Ye.q

already selected to be stored
on the server or not
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Sample Results

e User’s bandwidth follows

Production Server

Streaming Server

Client

the distribution in Cisco’s report [5]

* An ABR for 360 videos [6] is employed during streaming

100

400 600

800
Storage Limit (MB)

1000 1200 oo

-=- Excellent

Tiled-Segment Video <| Network HTTP/L.1 b 360° Video
Encoder (Kvazaar) Database Emulator (tc) Player (AStream)
7y TA2010)) v
Encoding Representation
Ladder & Status Logger
Encoding Evaluation Metrics:
Ladder m _________ 5 Viewing Quality,
Optimizer Bandwidth Utilization, etc.
Raw Video Reconstructed Video

3

5

100
80 1
60 A
40 +
20 1 B GL-ITAA | |
I ISM
01 E—§

10

Number of Bandwidth Classes

Our solution outperforms ISM by up to 43.14 in V-VMAF and
has good scalability under both storage limits and bandwidth classes
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User Study Evalutation

* 12 subjects watch the 12 viewport videos from a
random user trace (6 video x 2 storage limits)

* MOS [175] 4 -

3_

MOS

2 A

B Ours
L P ISM

400 800
Storage Limit (MB)

Our solution outperforms ISM and has good scalability

under different storage limits
24



Comparison with the Optimal Solution

* OPT directly solves the ILP problem using CPLEX

* Reduced problem size:
C =3, T =15,and S = {40,50,60} MB

800 . 100
= B Ours
Q |
.'é 600 B OPT I 80
= £
é = 60 1
400 - s =
= >
@ 1 40 A
et -
[&]
£.200 - I
EROPT
0- i 0
40 50 60 40 50 60
Storage Limitation (MB) Storage Limit (MB)

Our solution achieves very close expected distortion and
actual viewing quality (V-VMAF) to OPT

Run at least 8.5 times faster than OPT

25



Fairness Among Client Classes

 Max-min fairness: e Jain’s fairness index:
maximize the minimum T(F1o fore e fy) = (2;}%} fn,)j _ 1
allocated resource for any Ny f2 1475
clients * Objective:

» Objective: min,_max D max T el —max L

* The revised solution:

* Per-class optimization: minimize the distortion of each
class, which is restricted by b,

 Global optimization: iteratively increases the QP of the
tiled segment having the lowest €,  ,, - o, Where

k k .
v,c’) = ar min D
( ) g ve[1V]ce[c] V¢

q’



Tiled 360° Video Streaming Platform

Optimal Laddering [TcsvT20]
- determine tiled-segments to be

@PrOdUCt \ ’\ stored on the streaming server to
Streaming Server

maximize overall viewing quality

: Tiled-Segments roblem decomposition with
Tiled-Segment High g_Low E z id d P
Encoder 2;5_‘% '*;g;fg% s Iivide-an .conque:r : :
ST Res STTRed /" mathematical optimization

leads to higher viewing quality

clients ] ( and better scalability under
- Plenty of quality different storage limits
combinations

Raw Videos among tiles

- Limited space " Viewer

27



Tiled 360° Video Streaming Platform

QOE Modeling [Submitted to ACM TOMM]

- investigate comprehensive
relationship among factors and

QoE l .
estimate the perceived QoE by @ Consumption

the viewer ”

- Diverse behavior Viewer
- Complex and unknown QoE

28



Existing Quality Metrics Failed to
Reflect Real User Experience

Viewport PSNR: ~43 dB Viewport PSNR: ~34 dB




QoE is Affected by Plenty of Factors

The Composition of QoE Definition
Overall QoE 0Q Comprehensive
// r\ user experience
QoE Features 10 FG IM CS AT Nameable
 Perceived image quality, perce1'ved user
perceived cybersickness /. /... SpEtEnLe
level, etc. aspects
QoFE Factors L L, T Primitive and
* Content factors: encoding bitrates, video types, etc. measurable
* Human factors: gender, historical motion sickness level, etc. metrics

* Context factors: environments, moving speeds, etc.
* System factors: video players, devices, etc.

30



QoE Features and Factors

* QOE Features

. Lowest Highest

Feature | Question Score (1) Scogre 9)

Overall QoE - How would you rate the overall quality? Bad Excellent

Image Quality (0] How would you rate the image quality? Bad Excellent
Fragmentation FG How would you rate the fragmentation level? None Severe

Immersion IM How would you rate the immersion level? Bad Excellent
Cybersickness CS How would you rate the perceived cybersickness level? None Severe

Attractiveness AT How would you rate the attractiveness level? Not Attractive | Attractive

* QoE Factors

= * ¢ Content factors: bitrate, complexity, motion, video
quality, video quality variance

* Human factors: gender, historical sickness, avg. head/gaze
rotation speed

* Context factors: head/gaze rotation speed, viewport
complexity, viewport motion, viewport quality, viewport
quality variance

31



Testbed and Test Videos

* Unity-based testbed with eye-tracking feature

360 Video Player

Unity-Based 360° SteamVR Plugin

Video Player

SRanipal SDK

Tiled Videos

* Test videos

° 6 raw VideOS from JVET’ Fixed SkateboardTrick  8192x4096 60 fps

Camera

ERP to EAC, 384OX1920, Harbor 8192x4096 30 fps
PoleVaul 3840x1920 30f

20 seconds oletaut " P

. . Moving Landing 6144x3072 30 fps

* 12x8 tiles, bitrates: Camera Balboa 6144x3072 30 fps

1,3, 6, 9,12, 15 Mbps BranCastle 6144x3072 30 fps

32



Subjects and Procedure

* 24 Subjects

Gender Male: 58%, Female: 42%
Age Range: [19,30], Standard Deviation: 2.78
HMD Experience Never: 4%, Seldom: 79%, Medium: 17%
Vision Correction Glasses: 13%, Contacts: 75%, None: 12%
Education High School: 37%, Bachelor: 42%, Master: 21%

e Procedure follows ITU-T 910
* Absolute Category Rating (ACR)

e Score: [1,9] sy, - BE [s1s, - [s]i,

20 s 20's S5min = 90 20's O Start

|— 18 Rounds ——] Break |— 18 Rounds —— @ Finish

[1] Jukka Hakkinen, Tero Vuori, and M Paakka. 2002. Postural stability and sickness symptoms after HMD use.
In [EEE International Conference on Systems, Man and Cybernetics, Vol. 1. 147-152. 33



Analysis

* Different videos drive different viewing behaviors

More Camera Movements

—_
@ FC MC
>
= :
5 * o ST
-
s = + = HB
127 112w
0.8 0.8 5 ____________ 1%
= « LD
z 0.6 g 0.6 Q @) X BB
=1 = -~ i
30 04 3° 0.4 < MA o
5 a g BC
o
0.2 0.2 s

-1/27

=127

0

Longitude

127

-1/2m

- -12m 0 12w by
Longitude
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QoE Modeling

* Overall QoE, IQ, FG, IM, CS
* Mean Opinion Score (MOS) and Individual Score (IS)

* Dataset: 70% training set (5-fold validation)

* Metrics: Pearson Linear Correlation Coefficient (PLCC) and
Spearman Rank Order Correlation Coefficient (SROCC)

* Regressors

Resressor Parameters Training Set Validation Set
g PLCC | SROCC | PLCC | SROCC
Linear - 0.9925 | 0.9823 | 0.9518 | 0.9175

Max No. No Max
Random . o
Forest Features | Estimators Depth 0.9686 0.9501 0.9215 0.8541
auto 200 8
) Max No. No Learning
Gradient . <
. Features | Estimators Rate 0.9934 0.9761 0.9451 0.8962
Boosting
. sqrt 100 0.01
Support Max C €
LVfgor Iterations i ' 0.9880 0.9730 0.9350 0.9021
20 10 0.05 35




Performance ratio:
Normalize to the
model using all

MOS Modeling

* Our derived models model well on the overall QoE and QoE
features using all factors (content, human, and context)

CS

Model _loa__Jia___[F6___im___[cs [N
PLCC 0.988 0.989 0.980 0.944 0.908 SROCC > 0.88
SROCC 0.971 0.977 0.975 0.889 0.902

with the dominating category with Fhe dlomirllatinlg factor

100 e
100 ' —
= > 20 Il Content
S 30 2 I Human
E = 601 [ ]Context
e 60 g
@ 3 401
5 40 - 2
S Il Content ks 20'
£ 20 Il Human |} =) i
o N | |:|?0ntext - OQE-] IQE] FG;[ IMg] ngi
oM 1oM EGM MM csM Model
C °C e e e - (Gaze) VMAF dominates the
Content dominates the category: factors for 0Q, 1Q, and FG
> 98% performance ratio - Optical flow dominates the

factors for CS 36



Compared to the State-of-The-Art

| QoE Factor | o QoE Feature | Model Type |

Model Content | Human | Context Overall QoE | FG | IM | CS | MOS IS
Ours v v v v v | vV |V | Y v v
“Yao et al. [1] v v v
VI-VMAF [2] v v v
VI-VA-VMATF [3] v v v v

100
§i M M
9 * 0Q4 and 0Q( outperform
290 .~ other state-of-the-art QoE
S models
av]
= 30 | [EOQY HllYao et al [1] -+ VI-VMAF outperforms 0Q¥
< ||[IOQ¢ EAVI-VMAF [2]
&i [:FQQ%T:IVLVAJHMAF[]f

~J
o

PLCC SROCC

[1] S. Yao et al. Towards Quality-of-Experience Models for Watching 360° Videos in Head-Mounted Virtual Reality. In Proc. of QMEX’19.
[2] S. Croci et al. Voronoi-Based Objective Quality Metrics for Omnidirectional Video. In Proc. of QoMEX’19.

[3]S. Croci et al.. Visual attention-aware quality estimation framework for omnidirectional video using spherical Voronoi diagram.
Springer Quality and User Experience 5, 1(2020). 37



IS Modeling

* IS modeling leads to slightly inferior results compared
to MOS modeling

* Heterogeneous characteristics and behaviors among
different subjects PLCC, SROCC > 0.70

Model _OQ___lla___|FG___|IM___lCs

PLCC 0.915 0.896 0.883 0.801 0.579 CS needs more
SROCC 0.868 0.847 0.868 0.725 0.594 human factors

* Observations are similar to MOS modeling
* Content dominates the factor category except for FG

* achieve > 97% performance ratio for the overall QoE and
most QoE features

* IM cannot be well modeled by a single factor

38



Tiled 360° Video Streaming Platform

QoE Modeling
Estimate the perceived QoE by the

viewer
We derived models for both MOS and IS

We identify the dominating factor
categories and factors

Several observations are made for
future improvements




Optimized 360" Video Streaming Platform

Production Server

Streaming Server

Clients

P Fixation Prediction
Network

Content Feature Content ~\
Extractor Features
T = sI° QOE Model |<
Encoding Ladder Tiled-Segments = — -
Optimizer High  Low o Tiled-Segment
I Carweam (WewaE - Requestor
| Tiled-Segment i i ) )
> Encoder MPD 5| Tiled-Segment
\}J Decoder [

QoE-Driven Optimized 360° Video Streaming Platform

40




Future Research Directions

N\

e 6DoF Content
Streaming

More @ :C&\

Immersive ;F

e Movie Creation
for XR Content

e Live Video
Streaming

@
h— Real-
LIVE Tim(::ess

Killer App

Creative
Content

e VR Cloud
Gaming




Real-Timeness:
PY ° PY '
Live Video Streaming rLI\?:]

* Applying our proposed solution
* Optimal laddering: per-class optimization

* Challenges: dependence of content features

* Possible solutions:

* Speed up content feature generation, e.g., real-time
saliency detection [1]

* Eliminating the dependence of content features, e.g.,
video prediction network [2]

[1] H. Zhou, X. Xie, J. Lai, Z. Chen, and L. Yang. Interactive two-stream decoder for accurate and fast saliency
detection. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), June 2020.
[2] O. Shouno. Photo-realistic video prediction on natural videos of largely changing frames. arXiv preprint
arXiv:2003.08635, 2020. 42



More Immersive:
6DoF Content Streaming

* Challenges
* Even larger data size
* More complex computation
* Unknown QoE

Mesh Point Cloud

43



Killer App: VR Cloud Gaming ooud

with Multiple Observers

* Viewport prediction using
in-game context for better

bitrate allocation

* QoE-optimized 6DoF
streaming

* Cross-layer optimized
for global resource
allocation

Gamers with Observers with
optimal gaming arbitrary viewpoints
experience 44



Creative Content:
Movie Creation for XR Content

* Challenges
* the richness of the story are difficult to express
* any scene transitions can ruin the audience's immersion
* the comfort needs to be improved

e 'y 3 o -3y . R
hy - 2

¥ e’

 Possible solutions:

* factors investigation for gaze attraction and sickness
elimination, e.g., motion, glance, and transition effects

= scene presentation and transition recommendation

45
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State-of-the-Art Prediction Algorithms

Literature Approach Classification| Considered Features Output

Fan et al. [55, | LSTM No Historical sensor data, saliency | Future tile view-

57] maps, and motion maps of frames | ing probabilities

Nguyen et | LSTM No Saliency maps and historical orien- | Future saliency

al. [142] tation maps of frames maps

Bai et al. [13] Neural Net- | No Historical orientation Future  orienta-

work tion

Xuetal [221] LSTM No Historical orientation Future  orienta-
tion

Qian et al. [167] | Regressor No Historical orientation Future  orienta-
tion

Xuetal [223] Regressor No Historical orientation Future  orienta-
tion

Zhang et | Spherical No Spherical video frames Future saliency

al. [230] CNN maps

Xuet al. [222] CNN+LSTM | No Historical viewer fixation trajecto- | Future gaze tra-

ries, video frames jectory

Hou et al. [77] LSTM No Historical orientation Future  orienta-
tion

Hou et al. [75] LSTM No Historical viewed tiles Future  viewed
tiles

Wuetal. [214] | Spherical No Video frames, viewport, and motion | Future viewport

CNN

48



State-of-the-Art Prediction Algorithms

Literature Approach Classiﬁcationl Considered Features Output
Chen et al. [30] | CNN+LSTM | No Video frames and historical orienta- | Future  orienta-
tion tion
Fenget al. [59] | CNN+LSTM | No Video segment and historical orien- | Future  orienta-
tation tion
Vielhaben et | Regressor No Historical orientation Future  orienta-
al. [203] tion
Cheng et al. [31] | CNN+ConvolutjoNsl Faces of cubic frames Future saliency
LSTM maps
Xuet al. [220] Reinforcement | No Historical viewer orientation and | Future head-
Learning video frames moving  direc-
tions
Feng et al. [60] | Bayes predic- | Clustered Viewer orientation and video | Future tile view-
tion by video || frames ing probabilities
content

and viewer

behavior
Nasrabadi et | Extrapolation [ Clustered Historical and other's orientation Future orienta-
al. [137] by  viewer tion
behavior
Banetal. [12] KNN Per video Historical and other’s orientation Future tile view-
ing probabilities
Xieetal [217] | SVM Per video Historical orientation Viewing behavior

class
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Cloud VR Gaming 6-DoF Streaming

Cloud Seryers 3_DO|:  Dor
EL; Game Scenes |

v
Encoded Video

Sequence

Thin Clients
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Viewport-Adaptive Streaming

* Tiling with MPEG DASH (Dynamic Adaptive Streaming over HTTP)

Temporal Spatial
Quality A
Best
Bandwidth
Medium
Low E 5
>

Time (Segments )

* Basic transmission unit: Tiled-segments
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Sample Application:
Cloud VR Gaming

* Viewport prediction using
in-game context for better
bitrate allocation

* QoE-optimized 6DoF
streaming

* Cross-layer optimized
for global resource
allocation

Gamers with Observers with
optimal gaming arbitrary viewpoints
experience
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A Small-Scale User Study

* Play the viewport videos to 7 subjects and collect
the MOS scores (1-5)

* Our fixation prediction network achieves similar
MOS scores while saves 41% bandwidth on average

Missing Ratio < 10%

Tr MOS Bandwidth (Mbps)
ace Cur DR Our Cur DR Our
Roller Coaster | 3.14 | 2.86 | 2.86 | 24.35 | 24.33 15.32

Hog Rider 343 | 343 | 343 | 24.18 | 24.21 | 13.32
SFR Sport 3.14 | 3.00 | 3.29 | 24.19 | 24.25 | 13.71
Average 3.24 | 3.10 | 3.20 | 24.24 | 24.26 | 14.12

-0.04 ~ 0.1 MOS score -41% bandwidth
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Lagrangian-based: PC-LBA

d
dv,t,n (q) = ag,t,nqﬁv't'n + Vg,t,n

e Both distortion and bitrate models are convex

T
Toen(q) = agene Boen

N
P’(’US t‘ C) - I]'lill Z dv,t,n(ﬁ:v,t,n,c)pv,t,na‘n i TranSform the discrete
n=1 o o .
N decision variables xy, t 1, ¢ 4
sti ) Totn(Kutne) < be; into continuous decision
n=1
U, Ko, t,n,c € [hmzn "'{'maa:]- Varlables Kv,t,n,c (QP)
o N N o |
E min L(Kv,t,c: ,U) = Z dv,t,n(ﬁv,t,n,c)pv,t,nan + ,U(Z Tv,t,n(ﬁ?v,t,n,c) - bc) Unconstrained prOblem
E n=1 <7 TLEI N
E —_—> g(”) — KiIlf (Kv’t’c7 ILL) — iIlf (Z dv’t)n(f{fu’t’n,c)pvﬁt’naxn + /J:(Z T’U,t,’n (Iiv,t,n,c) - bc))
i votie vit,e n=1 n=1
| oL Brtn—1 rooar Bl
i > Ok . :(O‘g,t,n S,t,nﬁu,t:tﬁ,c )pv,t,n.an+ ;uav,t,nBv,t,neﬂv’t’n vibme = ()
E —1n d“‘a:,td,nﬂg,t,n
: QP 1 o d r _aﬁ,t,ﬂﬁ-v,t,npvytﬁnan
E I{/v7t’n’c — T’/B(b"t’n W( /Bv,t&ny e 1_/35,t:71 )
! v,t,n 1 — v,t,n 54



Sample Results: Per-Class Optimization

* 10 bandwidth classes: 3.12 -- 119.87 Mbps

* (10 users, 6 videos) in each bandwidth classes

100 P 1
0.8 -

80
= 0.6
= 60 - A
S 60 FPCLBA|| Oy
> ~f-PC-GBA '

40 1 ICC I 0.2 1

-F MM
20 - - 0 . - - -
0 50 100 0 20 40 60 80 100
Bandwidth (Mbps) V-VMAF

Our solution outperforms others by
up to 52.17 and 26.35 in V-VMAF
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Procedure

* ITU-T 910, Absolute Category Rating (ACR)

« Random order
* 36 rounds ITL‘ o ._._IT

20's 20's 5 min

* Scores: [1,9] F—— 18 Rounds =] Break —— 18 Rounds =i

* Questionnaire

20 s

20 s

: Lowest Highest

Feature | Question Score (1) Score (9)

- How would you rate the overall quality? Bad Excellent

(0] How would you rate the image quality? Bad Excellent
FG How would you rate the fragmentation level? None Severe

IM How would you rate the immersion level? Bad Excellent
CS How would you rate the perceived cybersickness level? None Severe

AT How would you rate the attractiveness level? Not Attractive | Attractive

56




Tiled 360° Video Streaming Platform

* Three crucial phases in tiled 360° video streaming

@Production @ Delivery Clients
Production Server __>treaming Server e Tiled-Segment
: Tiled-Segments || 5| [€= —--{| Requestor
Tiled-Segment High  Low 8
Encoder %;gg:; %;gg:‘; = . Tiled-Segment
i Video Data Decoder
- Limited space - Limited B/W
- Heterogeneous Frequently @ B umption
clients changing v
Raw Videos viewports gj)

- Diverse behavior
- Complex and unknown QoE

Viewer
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360° Video Streaming Platform

* Three crucial phases in 360° video streaming

@Production @ Delivery __ Clients
. Streaming Server Vid
Production Server HTTP Request ideo
: Videos Al l€- —.-l| Requestor
Video High  Low o
i N .
Encoder é:::‘; %:ég:; = L Video
- Video Data Decoder
- Limited space - Limited B/W
- Heterogeneous .
p J - Frequently  (3) | Consumption
clients changing -
viewports gﬁ); """""""

Raw Videos

- Diverse behavior
- Complex and unknown QoE

Viewer
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Tiled 360° Video Streaming Platform

* Three crucial phases in tiled 360° video streaming

Fixation Prediction

predict the future tiled-segments
that would be viewed by the

viewer
avoid wasting resource on
unwatched parts

@ Delivery

Clients

S1HTTP Request

=

— Video Data

- Limited B/W L

- Frequently
changing
viewports

Tiled-Segment
Requestor

\Il
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