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 PC-tethered HMDs constrain the mobility of the user

 Standalone HMDs don’t have enough rendering power

Limitation on Today’s Head-Mounted Displays (HMDs)
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HTC VIVE Meta Quest 2

Cloud VR Gaming

 Offload rendering workload to powerful servers

Motivation



 Consists of three parties

 Game developers

 Cloud VR gaming service providers

 VR gamers

 Dictates short response time and high resolution

Cloud VR Gaming 
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Motivation



Sample Cloud VR Games
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Motivation
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 Goal: Design a cloud VR gaming system achieving optimal 

gamer QoE 

 Challenges:

Quality-of-Experience (QoE) Optimization
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Goal & Challenges

Diverse factors influence 

gamer QoE

?

Time-consuming user

study to understand 

gamer QoE

Non-trivial adaptations

in dynamic systems

 Three steps approach: QoE 

evaluations, QoE modeling, QoE-

driven dynamic adaptations



❑ Build a cloud VR gaming testbed and carry out comprehensive QoE

evaluations using a user study

❑ Construct cloud VR gaming QoE models based on the user study to

predict gamer QoE

❑ Develop a QoE-driven adaptation algorithm to adapt the encoding

settings dynamically for maximizing gamer QoE

Contributions
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Goal & Challenges

Traditional cloud gaming, Local Area Network (LAN) VR

gaming→Wide Area Network (WAN) cloud VR gaming

The very first models built for cloud VR gaming systems

QoE-driven adaptation in cloud VR gaming hasn’t been investigate before
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Cloud VR Gaming Platform

System Design

 NVIDIA CloudXR

 Only the client side is open-sourced

 Both wired and wireless streaming are supported

 Both local and remote rendering are supported

 Air Light VR (ALVR) / Air Light XR (ALXR)

 Fully open-sourced

 Only supports wireless streaming

 Only works in LAN settings

 We chose ALXR as the starting point of

our cloud VR gaming platform:

      (i) It is a fully open-source platform

      (ii) It supports more HMD models

We make it to support WAN
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Our Cloud VR Game Streaming System

Internet

System Design

ALXR ALXR
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ALXR Architecture

System Design

server-centric to

client-centric

QoE-driven

adaptation
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❑ Subjective assessment of an individual‘s overall satisfaction and 

perception of the quality of a service or application

❑ System factors (ex: bandwidth, delay, ……)

❑ Context factors (ex: task types, surrounding environments, ……)

❑ Human factors (ex: age, gender, ……)
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Quality-of-Experience (QoE)

QoE User Study



❑ Understand the gamer QoE under the influence of different 

factors, including diverse:

❑ Game genres

❑ Encoding settings

❑ Network conditions

❑ The user study results can be utilized for building QoE models
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Why User Study?

QoE User Study



❑ Leisure game

❑ AngryBird

❑ Time-sensitive game

❑ BeatSaber

❑ Quality-sensitive game

❑ ArtPuzzle

HighLow 

Low

High

BeatSaber

Visual

Quality

Responsive 

Requirement

AngryBird
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Games in the User Study

ArtPuzzle

QoE User Study



❑ Different encoding settings

❑ Bitrate: {2, 8, 32} Mbps

❑ Frame rate: {12, 24, 36, 72} fps

❑ Resolution: {1408x768, 2112x1184, 2880x1568}

❑ Different network conditions

❑ Delay: {0, 100, 300, 500} ms
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Experimental Setup

 Each subject undergoes 33 sessions

(12 subjects)

QoE Rating

Overall Quality 1 (Bad) – 5 (Excellent)

Visual Quality 1 (Bad) – 5 (Excellent)

Immersive Level 1 (Low) – 5 (High)

Cybersickness 1 (No problem) – 5 (Unbearable)

Continue 0 (No) – 1 (Yes)

24 sessions

9 sessions

QoE User Study

Absolute Category Rating (ACR)

Single stimulus



❑ Networking metrics

❑ Throughput

❑ Packet loss rate

❑ Delay

❑ Frame loss rate
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Considered Objective Metrics

❑ Video quality metrics

❑ Peak Signal-to-Noise Ratio (PSNR)

❑ Structural Similarity Index (SSIM)

❑ Video Multimethod Assessment Fusion 

(VMAF)

We use the default 1080p HDTV screen model of VMAF

 Inputs for QoE modeling

QoE User Study



❑ Bitrate affects the gamer QoE the most among other settings

❑ Mean Opinion Score (MOS) growth rate decelerates as bitrate 

increases

22

1. Key Control Knob: Bitrate

6 Mbps 24 Mbps

 Bitrate needs to be carefully considered

QoE User Study



❑ Art puzzle is more sensitive to bitrate changes

❑ Beat saber is more sensitive to frame rate changes
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2. Different Game Genres Have Different Requirements

Smallest p value (< 0.001)

2 Mbps

32 Mbps

12 fps

 Game genres affect gamer QoE QoE User Study



❑ Significant changes only occur when frame rate < 24 fps

❑ Some subjects are comfortable even under extreme settings, e.g.,

12 fps
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3. Cybersickness Highly Depends on Subject

𝛥 = 0.78

24 fps

12 fps

We leave modeling cybersickness as future work

QoE User Study
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❑ System Factor

❑ Bitrate / Frame rate / Resolution

❑ Throughput / Delay / Packet loss 

rate / Frame loss rate

❑ PSNR / SSIM / VMAF 
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Modeling Methodology: Inputs & Outputs

❑ Content Factor

❑ Game genres (SI / TI)

❑ Human Factor

❑ VR experience

❑ Gaming experience

QoE Model

Encoding Settings

Network Conditions

Video Quality Metrics

Overall qualitySystem Factor 

QoE ModelContent Factor 

Human Factor 

QO

Visual quality

Immersive Level

QV

QI

No / Yes

Naive, Intermediate, Advanced

Spatial Information / 

Temporal Information



❑ Regression models

❑ Random Forest (RF)

❑ Gradient Boosting (GB)

❑ Ada Boosting (AB)

❑ Polynomial (Poly)
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Modeling Methodology: Models & Metrics

❑ Metrics

❑ R2 (0 ~ 1)

❑ PLCC (-1 ~ 1)

❑ SROCC (-1 ~ 1)

QoE Model

We split the user study results by subjects and conduct 3-fold 

cross-validations



❑ We train the model in two ways

❑ Per-game models

❑ General models

❑ Random forest achieves up to 0.85 in R2, 0.93 in PLCC, and 

0.92 in SROCC
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Random Forest Performs the Best

w/o game genres

Use SI/TI to represent game genres
Max ∆R2 = 0.02

QoE Model



❑ Some model inputs are measured with external tools

❑ Frame loss rate

❑ PSNR

❑ SSIM

❑ VMAF

❑ The performance gaps between original and lightweight 

models are at most 0.02 in R2, 0.01 in PLCC, and 0.02 in 

SROCC 
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Lightweight Models for Dynamic Adaptations

QoE Model

We exclude these inputs and trained 

lightweight models

QO→QO 
~

QV→QV 
~

QI→QI 
~
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❑ For each adaptation, find the best encoding settings e* that 

leads to the highest QoE
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Problem Formulation

Dynamic Adaptation

We consider overall quality      

     for concrete discussions

QO 
~

❑ 𝛼 denotes the overhead

❑ B denotes the available bandwidth

Bitrate, Frame rate, 

Resolution15%



❑ QoE evaluations are time-consuming → cannot try too

many encoding settings

❑ Measured inputs, throughput, delay, and packet loss rate 

scatter across large ranges → huge search space

❑ Numerically optimal algorithms take excessive running time 

→ bad for real-time cloud gaming
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Faced Challenges

Dynamic Adaptation



❑ Adopt quadratic function to interpolate encoding settings that 

were not in the user study → increase the considered 

encoding settings

❑ Discretize the range of each measured input into multiple 

bins → lower the search space

❑ Construct a lookup table QO from QO to search for e* → 

reduce (actually, eliminate) run time complexity
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Our Solution Approach

Dynamic Adaptation

^ ~



❑ Measure network conditions, including throughput, delay, 

and packet loss rate

❑ Place measured network conditions into closest bins

❑ Take the bin values along with human factors and game 

genres and search for e* in the lookup table QO 
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QoE-driven Adaptation (QDA) Algorithm

Dynamic Adaptation

^

 Overhead of QDA algorithm is < 20ms

 QDA is executed every 𝛿 seconds

bitrate Frame rate …… Throughput Delay …… MOS

32 36 …… 24 50 …… 3.67

32 60 …… 30 20 …… 4.15
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❑ Real 5G network traces [1]

❑ Bandwidth is dedicated to one client (C1)

❑ Bandwidth is equally divided among five clients (C5)

❑ Bandwidth is equally divided among ten clients (C10)

❑ Baselines

❑ No adaptation (NA)

❑ Delay threshold-based adaptation (DTA)
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Technical Setup

Evaluations

 Bandwidth lower than 3 Mbps 

is excluded 

ALXR’s adaptation

[1] Darijo Raca, Dylan Leahy, Cormac J Sreenan, and Jason J Quinlan. 2020. Beyond throughput, the next generation: a 5G dataset with

channel and context metrics. In Proc. of ACM Multimedia Systems Conference (MMSys). Istanbul, Turkey, 303–308.
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Demo Videos

Evaluations

NA DTA QDA



16

90

❑ 33 gaming sessions

❑ 3 game genres

❑ 8 encoding settings + 3 network conditions

→ 3 adaptation algorithms, 3 network conditions
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Test Methods 

Evaluations

 Pick 16 random ones for each 

subject

QoE Rating

Overall Quality 1 (Bad) – 5 (Excellent)

Visual Quality 1 (Bad) – 5 (Excellent)

Interaction Quality 1 (Not Responsive) – 5 (Completely Responsive)

Cybersickness 1 (No problem) – 5 (Unbearable)

27

 20 subjects, 11 ~ 12 samples

for each scenario

Absolute Category Rating (ACR)



𝛥 = 0.58
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1. QDA Achieves the Best Quality in MOS

Evaluations

𝛥 = 2.00

𝛥 = 0.28

𝛥 = 0.98

 QDA’s packet loss rate is 7.59% lower than DTA

and 24.56% lower than NA 
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2. QDA Demonstrates the Highest Responsiveness

Evaluations

𝛥 = 2.50

𝛥 = 0.92

 QDA’s round-trip network

delay is 3 ms lower than

DTA and 3.5 ms lower

than NA
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3. QDA Reduces the Cybersickness Score

Evaluations

 QDA’s cybersckness score is 0.34 lower than DTA and 0.63 

lower than NA on average

AngryBird BeatSaber ArtPuzzle
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❑ Constructed a cloud VR gaming system and conducted 

comprehensive QoE evaluations

❑ Built QoE models that achieve up to:

❑ 0.93 in PLCC

❑ 0.92 in SROCC

❑ Developed QoE-driven adaptation algorithm which:

❑ Improved the MOS of overall quality by up to 1.86 on average across 

three game genres

❑ Reduced cybersickness score by up to 0.63 on average across three game 

genres 43

Conclusion

Conclusion & Future Work
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Future Directions

Conclusion & Future Work

5G Fixed

Wireless Access

(FWA) / Cellular

Network

More Human

Factors

QoS Metrics

Radio

Information

Network Service

(RNIS)
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Thank you for listening

Thank for the help of Dr. Ashutosh Singla (CWI), Dr. Pablo Cesar

(CWI), Jia-Wei Fang, Yuan-chun Sun and all lab mates. 
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