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Abstract

Dynamic 3D point clouds enable an immersive user experience and thus
have become increasingly more popular in volumetric video streaming appli-
cations. When being streamed over best-effort networks, point cloud frames
may suffer from lost or late packets, leading to non-trivial quality degrada-
tion. To solve this problem, we proposed the very first error concealment
pipeline framework, which comprises five stages: pre-processing, matching,
motion estimation, prediction, and post-processing. Alternative algorithms
can be developed for each stage, while algorithms of different stages could
be mixed and matched into pipelines for end-to-end performance evaluations.
We discussed the design goal and proposed multiple algorithms for each
stage. These algorithms were then quantitatively compared using dynamic
3D point cloud sequences with diverse characteristics. Based on the compar-
ison results, we proposed four representative pipelines for: (i) diverse degrees
of motion variance, i.e., minor versus significant, and (ii) different application
requirements, i.e., high quality versus low overhead. Extensive end-to-end
evaluations of our proposed pipelines demonstrated their superior concealed
quality over the 3D frame-copy method in both: (i) 3D metrics, by up to 5.32
dB in GPSNR and 1.7 dB in CPSNR; as well as (ii) 2D metrics, by up to 2.22
dB in PSNR, 0.06 in SSIM, and 11.67 in VMAF. Adding to that, a user study
with 15 subjects indicated that our best-performing pipeline achieved a 100%
preference winning rate over the state-of-the-art learning-based interpolation
algorithms while consuming merely up to 8.55% of running time.
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中文摘要

動態 3D點雲技術提供了沉浸式使用者體驗，因此在體積視訊串流
應用中變得越來越受歡迎。 在透過網路進行串流傳輸時，點雲幀可
能會因遺失或延遲的封包而受到大幅度的視覺品質下降。 為了解決
這個問題，我們提出了首個錯誤隱蔽的流水線框架，該框架包括五個
階段：前處理、匹配、運動估計、預測和後處理。每個階段都可以開
發替代演算法，而不同階段的演算法可以混合搭配成管線，以進行端
到端效能評估。我們討論了設計目標，並為每個階段提出了多種演算
法。然後，我們使用具有不同特徵的動態 3D點雲序列對這些演算法
進行了定量比較。基於比較結果，我們提出了四個代表性管線，分別
適用於：（i）不同程度的運動變化，即輕微與顯著，以及（ii）不同
的應用需求，即高品質與低開銷。對我們提出的管線進行了廣泛的端
到端評估，結果表明，它們在以下兩方面的隱蔽品質明顯優於3D幀複
製方法：（i）3D 指標中，GPSNR 提高了多達5.32 dB，CPSNR 提高
了1.7 dB；以及（ii）2D指標中，PSNR提高了多達2.22 dB，SSIM提
高了0.06，VMAF 提高了11.67。 此外，一項對 15 名受試者的用戶研
究表明，我們性能最佳的管線在消耗僅 8.55%的運行時間的情況下，
實現了對最先進的基於學習的插值演算法 100%的偏好勝率。
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Introduction
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Figure 1.1: Dynamic 3D point cloud streaming scenarios: (a) on-demand streaming,

which is quality sensitive, and (b) teleconferencing, which is delay sensitive. Different

types of distortion are also illustrated in (b).

Immersive technologies have brought the user experience of multimedia applications

to the next level in several business sectors, including entertainment, education, health-

care, and retail. A recent market report forecasts that the global immersive technology

market will grow rapidly from 22.6 billion in 2021 to 138.5 billion USD in 2030 [42].

Immersive multimedia applications employ 3D content, which can be represented in var-

ious formats, including RGB-D videos, dynamic meshes, voxel sequences, and dynamic

3D point clouds. Among them, 3D point clouds can be natively captured by commodity

sensors while preserving unquantized geometry and attribute data. The geometry data are
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essentially coordinates of a set of unordered 3D points, while the attribute data include

color, normal, reflectiveness, etc. Hence, 3D point clouds are popular with multimedia

applications [11] for: (i) machines, such as autonomous driving and robotics, where accu-

rate scene understanding is crucial and (ii) humans, such as telecommunications, culture

heritage, metaverses, telesurgery, and remote sensing, where six degree-of-freedom inter-

actions are critical.

In this thesis, we consider dense point clouds meant for human consumption. Partic-

ularly, Fig. 1.1 illustrates two typical dynamic 3D point cloud streaming scenarios: (i)

on-demand with one-way streaming of pre-recorded content, where visual quality is im-

portant, and (ii) teleconferencing with two-way streaming of live-captured content, where

low end-to-end delay is crucial. In both scenarios, streaming raw dynamic 3D point clouds

leads to extremely high bandwidth requirements and thus is infeasible.

Point cloud codecs, such as the open-source Draco and standardized MPEG G-PCC

and V-PCC [48], could help mitigate the pressure caused by high bandwidth requirements.

Among them, V-PCC [22] projects 3D point cloud frames onto multiple 2D images, which

are, in turn, encoded with highly optimized, often commodity 2D video codecs. The

coded bitstream is sent over networks before being decoded and projected onto 3D point

cloud frames. V-PCC has two strengths compared to other codecs. First, V-PCC has

been shown to achieve high coding efficiency [9,22]. Second, 2D video codecs have been

massively produced, often in hardware, leading to cost- and energy-effective deployment

of immersive multimedia applications. However, like other multimedia codecs, lost or

late packets could result in distorted 3D point clouds at the receiver, which leads to a

poor user experience. For example, a recent work [7] conducted subjective experiments

under different packet loss rates when streaming using the V-PCC codec. Their results

showed that the subjective quality can drop by more than 1 to 1.5 in 5-point Mean Opin-

ion Score (MOS) under merely 0.5% packet loss rate, indicating an urgent need for error

concealment methods in dynamic 3D point cloud streaming. We carried out similar exper-

iments and give sample distorted 3D point clouds from the V-PCC reference software in

Fig. 1.1(b), due to: (i) geometry, i.e., coordinate loss; (ii) attribute, i.e., color loss; and (iii)

error propagation from already distorted frames. We observed that V-PCC is vulnerable to

lost or late packets because it relies on the 2D Frame-Copy (2DFC) method for error con-

cealment. Because the geometry and attribute data are not aligned across 3D point cloud

frames, V-PCC could produce catastrophically distorted 3D point clouds at the receiver.

Similar observations were also made in Wu et al. [49] and Hung et al. [18, 19].

This thesis tackles the problem of distorted 3D point cloud frames caused by unsuc-

cessful transmission over best-effort networks. Corruption in attribute data can be effec-

tively concealed by copying the attributes of the nearest points in the preceding frame

2



to the corrupted frame [18, 19]. In contrast, geometry distortion is typically catastrophic

and needs to be concealed by rebuilding the missing frame from scratch [49]. This task,

unfortunately, can not be properly accomplished by existing hole-filling [8,15,30,31,44]

or point-cloud completion methods [4, 47, 50], which rely on intra-frame operations and

do not work when large portions of decoded frames are gone. Concealing geometry dis-

tortion by interpolating between two received point cloud frames was first proposed by

Wu et al. [49]. Multiple state-of-the-art neural-based interpolation algorithms [2, 43, 55]

for point clouds have also been proposed, but they are computationally expensive and

often support a fixed, small, number of points. Therefore, how they perform in different

dynamic 3D point cloud streaming scenarios (see Fig. 1.1) in typical best-effort networks

is unclear.

Concealing catastrophically distorted point cloud frames is no easy task for several

reasons. One key challenge is matching unsorted points across frames to estimate point

motions, which at first glance may look similar to 3D pose estimation [45], stereo match-

ing [12,25], or optical/scene flow estimation [20] problems. Whether algorithms designed

for those problems can be augmented for matching points of 3D point cloud frames re-

mains largely unknown because: (i) dynamic point clouds often involve non-rigid trans-

forms, and (ii) point cloud frames consist of diverse numbers of points. For example,

Ingale and Udayan [20] reported that existing optical/scene flow estimation algorithms

are mostly tailored for non-rigid motions, which suffer from large motions that could be

caused by consecutive frame drops.

1.1 Contributions

This thesis proposed an end-to-end investigation on error concealment of dynamic 3D

point cloud streaming, while our initial results were presented in a conference version [18,

19]. This thesis makes the following contributions:

• We propose a general multi-stage pipeline framework for error concealment of 3D

point cloud streaming in Sec. 4. The framework can incorporate alternative algo-

rithms in each stage.

• We developed and quantitatively compared a suite of algorithms for individual

stages in Secs. 4.3–4.6. The algorithms in different stages can be mixed and matched

into diverse error concealment pipelines for diverse usage scenarios.

• We constructed multiple representative pipelines following the insights gained in

per-stage comparison and extensively evaluated these pipelines through end-to-end

experiments in Sec. 5.

The end-to-end evaluation results depict the advantages of our proposed pipelines tai-
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lored for dynamic 3D point cloud streaming: (i) with diverse degrees of motion variance,

i.e., from minor to significant, and (ii) under different application requirements, i.e., high

quality or low overhead. More concretely, in objective experiments, our best-performing

pipeline outperforms the 3D Frame-Copy (3DFC) method by up to (on average): (i) 5.32

dB (3.01 dB) in Geometry Peak Signal-to-Noise Ratio (GPSNR), (ii) 2.22 dB (1.28 dB)

in Peak Signal-to-Noise Ratio (PSNR), and (iii) 11.67 (5.59) in Video Multi-Method As-

sessment Fusion (VMAF) [1] among seven dynamic 3D point cloud sequences from the

MPEG dataset [6]. In subjective tests, our best-performing pipeline achieves a 100%

winning rate on the overall video preference over the state-of-the-art learning-based al-

gorithms [2, 55]. Such improved concealment quality could attract and retain users of

immersive multimedia applications. More importantly, as we made our implementation

publicly available [16], our proposed pipeline framework can facilitate and stimulate fu-

ture innovation on the algorithms in one or multiple stages to further optimize error con-

cealment of dynamic 3D point cloud streaming in different scenarios.

1.2 Organization

In Ch. 1, we introduce the concept of interpolation and transmission loss in dynamic 3D

point cloud streaming. We summarize our contributions along with the challenges and

limitations faced during this study. In Ch. 2, we discuss the representation formats of 3D

data, highlighting their advantages and disadvantages. We investigate point cloud com-

pression methods used for streaming, analyze the packet loss pattern in the compressed

bitstream, and categorize the errors into attribute and geometry error concealment. In

Ch. 3, we survey the existing literature, summarizing prior work related to 2D and 3D

video error concealment, and other concepts that inspired our design. In Ch. 4, we pro-

vide a high-level overview of our proposed pipeline framework. For each stage in the

pipeline, we propose alternative solutions to accommodate different conditions or usage

scenarios. We evaluate the performance of each solution on a synthetic dataset and ana-

lyze their time complexity. In Ch. 5, we combine the proposed methods into four distinct

pipeline combinations, each aiming to achieve different goals. We describe the imple-

mentation of our system prototype and evaluate its performance in terms of view quality.

Objective tests are conducted to compare our pipeline with 3D Frame Copy (3DFC). In

Ch. 5.4, a user study is conducted to compare our pipelines with 3DFC and two learning-

based methods, providing insights into user preferences and experiences. Finally, we

summarize the whole thesis in Ch. 6 and present the possible future work.
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Chapter 2

Background

In this chapter, we begin by exploring commonly used 3D representation formats, then

delve into compression techniques and discuss the challenges posed by missing or delayed

packets during streaming.

2.1 3D Representations

Capture Keying Depth
Estimation

3D Data
Fusion

3D Point
Cloud

Figure 2.1: Point cloud generation steps.

Point cloud representation is a pivotal format for volumetric streaming, enabling high

levels of interaction such as voxelization, manipulation, and easy semantic segmenta-

tion. Fig. 2.1 illustrates the generation and production process of point clouds [40]. To

acquire high-resolution volumetric videos, Fig. 2.2 presents an exemplary camera setup

employed by Sky Studio, involving over a hundred depth cameras placed strategically

around the subject to capture exhaustive data from various angles. After capturing im-

ages, the next step involves segmenting the subject from the background through image

capture from different perspectives. This is followed by depth estimation, where each

pixel’s depth information is accurately determined using stereo pairs to derive 3D data.

The final step involves 3D fusion, where depth data from each camera pair is integrated

to form a comprehensive 3D point cloud.

3D Mesh is another 3D representation format that efficiently approximates the sur-

faces of objects through polygons, typically triangles or quadrilaterals. The flexibility

and efficiency of 3D meshes allow for detailed and complex object modeling, enabling

the creation of highly realistic virtual environments. Fig. 2.3 compares the resolution be-
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Figure 2.2: Example cameras setup to capture volumetric video by Sky Studios [38].

tween different triangle densities of 3D mesh. Fig. 2.4 shows the generation process of 3D

mesh, following which we get the point cloud from the depth camera [40]. Initially, the

process involves a depth-based surface reconstruction from the point cloud data, leading

to the creation of a dense mesh composed of numerous vertices and faces. Subsequently,

a process of geometric simplification is applied to this high-density mesh. This step, often

referred to as mesh reduction, streamlines the mesh into a more manageable and consis-

tent form by reducing its complexity. After simplification, the meshes undergo a texturing

phase, where they are mapped with 2D texture images, converting them into recognizable,

standard 2D image file formats. The culmination of this process is the temporal registra-

tion of the meshes, which aligns them over time to produce animated meshes, adding a

dynamic dimension to the static models.

Neural Radiance Fields (NeRF) have emerged as a 3D representation format that

leverages deep learning to synthesize highly realistic images from novel viewpoints. NeRF

models the volumetric scene function using a fully connected deep neural network. This

function maps a spatial location (x, y, z) and a viewing direction (θ, ϕ) to a color (R,G,B)

and a density value. The density is indicative of the presence of material at each location,

while the color represents the appearance of that material from the given direction. To

train a NeRF model, people need to collect multiple pictures of a scene from different

viewing angles. The process of image synthesis in NeRF involves casting rays from the

camera into the scene, sampling points along these rays, and using the neural network to
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(a) (b)

Figure 2.3: Example 3D mesh representations with different levels of resolution: (a)

represent with more triangles and (b) represent with less triangles.

3D Point
Cloud

Mesh Post-
Processing

Mesh
Reduction

Temporal
Registration 3D Mesh

Figure 2.4: 3D mesh generation steps.

predict the color and density at each point. These predictions are then composited back

along the rays using volume rendering techniques to produce the final image, which al-

lows for the generation of photorealistic images from viewpoints that were not seen during

training, making NeRF a powerful tool for applications in virtual reality, augmented re-

ality, and visual effects. Unlike traditional 3D representation formats that rely on explicit

geometry (e.g., meshes or point clouds), NeRF captures both geometry and appearance in

a continuous, implicit form, enabling more detailed and nuanced renderings of complex

scenes.

3D Gaussian Splatting (3DGS) is a volumetric rendering technique used in visualiza-

tion to represent three-dimensional data. This method involves projecting 3D points onto

a discrete voxel grid, where each point is represented as a Gaussian distribution (splat).

The essence of this approach is to model the influence of each 3D point over a range of

voxels based on the Gaussian function, which is characterized by its mean (the point’s

location) and its standard deviation (controlling the spread of the splat). The intensity or

weight of each voxel is computed by summing the contributions of all Gaussians affecting

that voxel, effectively blending overlapping splats into a smooth, continuous field.

This technique is particularly useful in medical imaging, scientific visualization, and
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point cloud rendering, where it can be employed to create more natural and interpretable

visualizations of sparse or irregularly spaced data. By adjusting the Gaussian parameters,

users can control the smoothness and level of detail in the rendered output. 3DGS thus

offers a flexible and powerful means for the effective visualization of volumetric data,

facilitating the exploration and analysis of complex 3D structures.

In this thesis, our focus is on streaming dynamic 3D content; however, 3D content

typically requires a significant amount of storage space, necessitating compression before

streaming. Among all the 3D representation formats, point clouds offer better interaction

between frames and are much easier to process further (such as voxelization or motion

estimation). Additionally, research on point cloud compression has been extensively stud-

ied. As a result, we have selected dynamic 3D point clouds as the representation format

for error concealment during volumetric streaming.

2.2 Point Cloud Compression

The evolution of point cloud compression (PCC) standards, guided by the Moving Pic-

ture Experts Group (MPEG), marks a significant advancement in immersive technology

applications. Recognizing the potential of point clouds for immersive representations in

tele-immersive applications in 2013, MPEG has played a pivotal role in standardizing ef-

ficient coding solutions for this purpose. By 2017, MPEG launched a call for proposals

to identify innovative coding technologies for PCC [33], benchmarked against a base-

line derived from the point cloud library (PCL2). The initiative focused on three Test

Model Categories (TMCs): TMC1 for static objects and scenes, TMC2 for dynamic point

clouds, and TMC3 for dynamically acquired point clouds. Following a comprehensive

evaluation in 2018, TMC1 and TMC3 merged into TMC13, adopting octree coding for

geometry-based PCC (G-PCC), while TMC2, emphasizing 2D projection for video-based

PCC (V-PCC), leveraged existing video codecs like HEVC. The formulation of the V-PCC

and G-PCC standards was completed in 2020 and 2021, respectively. Currently, MPEG

is enhancing G-PCC with advanced features, such as scalability and temporal coding,

aiming to revolutionize lossy and lossless point cloud geometry/attributes compression.

Geometry-based point cloud compression (G-PCC) codes the geometry (x, y, and z

axis) and attributes (color, reflectance) separately. Fig. 2.5 shows the high-level overview.

The coding of attributes utilizes the decoded geometry to minimize discrepancies between

the original and reconstructed attributes. G-PCC standard mandates the use of integer

coordinates, necessitating the normalization and voxelization of input point cloud coor-

dinates to a specified bit depth. This initial step transforms point cloud coordinates into

a frame coordinate system, delineating a 3D bounding box that encompasses the entire
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Figure 2.5: High-level overview of geometry-based point cloud compression pipeline.

point cloud. The dimensions of this bounding box are then quantized based on the cho-

sen voxelization precision, a process that may result in duplicate points, which the codec

subsequently resolves.

G-PCC employs two primary encoding modes for geometry compression: octree cod-

ing, designed for high compression efficiency with various optimization modes, and pre-

dictive coding, a simpler method intended for low-latency applications like LiDAR dy-

namic acquisition, which sequentially predicts the current point’s value from previous

samples. In octree coding, following voxelization, the 3D space undergoes octree decom-

position. The compression becomes lossy when the octree is pruned at a specific depth,

significantly reducing the number of points at lower bitrates and impacting visual qual-

ity. To mitigate density loss, G-PCC introduces an advanced tool known as triangle soup

(Trisoup) coding, which employs surface approximation. At a particular octree level, a

leaf node, representing a 3D cube, may be filled or empty. The Trisoup method approx-

imates the cube’s surface by estimating intersections with the cube’s edges, resulting in

vertices that are entropy coded and included in the bitstream. The surface is then approx-

imated by a polygon through triangulation, further detailed in the literature. The decoded

geometry, represented by a point cloud, is obtained by rasterizing the triangles at a resolu-

tion determined by the voxel size, allowing for the reconstruction of smooth surfaces with

minimal information transmission. The detail of the triangulation algorithm is described

in [32].

G-PCC standard currently facilitates the encoding of color and reflectance attributes.

Color information is encoded using the YCbCr color space, necessitating a conversion

process for point clouds originally in different color spaces. Reflectance is encoded us-

ing a single color channel. Attribute encoding is performed subsequent to the geometric

decoding phase. In instances of lossy geometric encoding, discrepancies between the

original and coded point coordinates necessitate the transfer of color attributes to the

newly encoded geometry, executed exclusively at the encoder level, thus falling outside

the standardization framework.

Additionally, G-PCC incorporates the Region-Adaptive Hierarchical Transform (RAHT),
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a wavelet-like hierarchical spatial transform applied to the octree structure from its leaves

upwards. Each step of the RAHT generates approximation and detail coefficients, ef-

fectively concentrating the attribute signal’s energy into a minimal set of low-frequency

coefficients, thereby achieving a coding gain. For densely occupied voxel blocks, RAHT

is analogous to a 3D Haar transform, modified to account for empty voxels and variable

point cloud density by adjusting the Haar filter coefficients to reflect local density vari-

ations. Recent advancements have introduced a region-adaptive technique that forms a

hierarchical graph Fourier transform, with extensions including intra-prediction, offering

significant performance improvements over the traditional RAHT approach.

G-PCC concludes with context-based arithmetic coding, where the contexts are de-

termined by the utilized coding tools such as octree, triangle soup (Trisoup), or predic-

tive coding. The Direct Coding Mode (DCM) bypasses this step due to the challenge of

identifying statistical dependencies among isolated points. For octree occupancy coding,

contexts are primarily based on the Neighbor Configuration (NC), which refers to the oc-

cupancy status of adjacent nodes to the parent node. Moreover, compression efficiency

can be enhanced by considering the occupancy of encoded child nodes neighboring the

current node. G-PCC employs a diverse array of contexts, which can be streamlined by

recognizing and applying symmetries and rotations to invariant cases. For further insights

into arithmetic coding within G-PCC, readers are directed to consult the detailed codec

documentation.
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Figure 2.6: High-level overview of video-based point cloud compression pipeline.

Video-based Point Cloud Compression (V-PCC) utilizes the 2D projection principle

to transform the 3D geometry and attributes of point clouds into a sequence of optimized

2D patches for coding, as outlined in the simplified model of the V-PCC codec. Fig. 2.6

gives a high-level overview of the V-PCC pipeline. The initial phase involves dividing

the 3D point cloud into patches through a non-standardized method. For instance, the

heuristic used in the V-PCC reference framework involves calculating local normals for

each point and assigning these points to one of the six faces of a bounding box based

on normal similarity. This method aims to ensure projections retain maximum visible

surface detail. Subsequently, points are grouped by their normals and plane associations
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in a cyclical manner, resulting in three patch types: attribute projections that map initial

attributes, geometry projections detailing point distances and their 3D bounding box loca-

tions, and occupancy maps that denote the presence of voxels within the 2D projections,

as shown in Fig. 2.7.

After the patch packing process in V-PCC, attribute, geometry, and occupancy images

are created, collectively known as the atlas. The coding process might alter the geometry

of the decoded point cloud, leading to changes in point positions or their removal. To

address this, V-PCC incorporates a recoloring process, where the color of each point in

the decoded point cloud is adjusted based on the closest original point and its surrounding

neighbors. Additionally, an optional attribute smoothing step can be applied to minimize

seam artifacts at patch boundaries, executed as a post-process in the 3D domain to utilize

accurate neighborhood information.

The packed images present coding challenges due to the disjoint nature of the patches

and the presence of sharp edges and high frequencies. To make these images more con-

ducive to coding, both texture and geometry images undergo filtering processes. These

processes aim to mitigate discontinuities between patches and soften edges while retain-

ing object contours. Various methods have been suggested for padding attributes/textures

and geometry. For example, the reference G-PCC implementation uses a multi-resolution

guided filtering for textures, producing a smoother image that is easier to encode. Geom-

etry images are improved by filling the spaces between patches with a padding function

to create a piece-wise smooth surface, facilitating efficient encoding, such as with direc-

tional spatial prediction techniques in HEVC. This enhancement step is referred to as

geometry dilation.

Following the construction and padding of atlas images in V-PCC, they are subjected

to video compression, utilizing the HEVC standard. Notably, this framework is adapt-

able to newer compression standards like Versatile Video Coding. Occupancy maps are

encoded in the codec’s lossless mode to preserve detail. Bitrate adjustment is achievable

by packing occupancy images at block sizes larger than one pixel, effectively implement-

ing spatial downsampling. The individual streams of the atlas, along with crucial meta-

data—such as patch positions, orientations, and packing block sizes—are multiplexed to

form the comprehensive V-PCC bitstream.

In summary, G-PCC efficiently compresses point clouds within a three-dimensional

space, preserving the intricate 3D structures, and is capable of lossless compression. Con-

versely, V-PCC transforms point clouds into a two-dimensional space. This process com-

promises the structural integrity of the point cloud, but leverages the advanced devel-

opment of 2D video codecs, facilitating more efficient compression ratios and enabling

real-time streaming capabilities. The focus of this thesis is on V-PCC, given its superior
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compression performance and streaming potential.

2.3 Error Concealment Problem

The error concealment problem of dynamic 3D point cloud streaming aims to conceal

distorted 3D point cloud frames due to lost or late packets. It has been shown [18, 19,

49] that the frame distortion could be classified into: (i) attribute distortion, where point

colors are corrupted, and (ii) geometry distortion, where point coordinates are corrupted.

Attribute distortion is easier to conceal, as long as the geometry data remain accurate.

Specifically, Hung et al. [18,19] proposed to copy the attribute (color) of the nearest point

in the preceding frame to the distorted frame, which led to acceptable concealed quality.

In contrast, geometry distortion is typically catastrophic and can only be concealed from

scratch [49]. While the three error concealment algorithms proposed by Hung et al. [18,

19] improve the quality over the naive “copy-over” method, referred to as 3D Frame Copy

(3DFC), there exists some room for enhancement. Hence, in the rest of this thesis, we use

geometry error concealment and error concealment interchangeably. The distorted frame

can lose all structural information or even fail.

Wu et al. [49] and Hung et al. [18, 19] performed a thorough investigation on the

impact of dropping individual Network Abstraction Layer Units from all possible permu-

tations of the bitstreams in V-PCC. By observing a total of 43 corrupted V-PCC bitstream

permutations, Hung et al. [18, 19] classified them into attribute distortion, which affects

color or geometry distortion, which affects the point position of 3D point cloud.

The current naive error concealment method in V-PCC codec, which is a 2D frame

copy method (2DFC) at the pixel level, could suffer from serious quality drops. This is

because the intrinsic 3D object’s motion continuity is destroyed after the 2D projections,

as mentioned in [28]. Therefore, the projected patches of nearby frames can be placed in

totally different positions. Hung et al. [18, 19] showed that 2DFC suffers from a serious

quality drop in both 3D and 2D quality (as high as 25.08 dB in GPSNR and 0.45 in SSIM

compared to the correct decode frame) under 5% packet loss. This demonstrates the

necessity of 3D error concealment algorithms. For further experiment details and results,

please refer to [18, 19, 49].
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Figure 2.7: Example projection map of V-PCC: (a) geometry map, (b) attribute map, and

(c) occupancy map.
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Chapter 3

Related Work

In this chapter, we survey the literature on error concealment methods of different types

of 2D/3D content, along with methods for relevant yet different problems on 3D point

clouds.

3.1 Error Concealment of 2D Video Frames

Error concealment of 2D video frames due to lost or late packets has been thoroughly

studied in the literature [23]. A straightforward concealment method replaces a corrupted

video frame with the most recently decoded one. A more advanced method decodes as

many pixels as possible and spatially or temporally conceals the corrupted regions. Spatial

concealment uses the surrounding pixels of the same video frame for concealment. Two

classical methods are: (i) copy-over, where a nearby region is replicated to replace a

corrupted one, and (ii) averaging, where the average color of multiple nearby regions is

used to fill in a corrupted one. Temporal concealment employs motion vectors and their

referred pixels to conceal corrupted regions. Each corrupted or missing motion vector is

approximated using the adjacent motion vectors that are successfully received. While 2D

video error concealment methods are not directly applicable to dynamic 3D point cloud

streaming, they can be integrated with video-based codecs, such as MPEG V-PCC [22].

That said, it has been shown that concealing missing 3D point clouds in the 2D domain

leads to unacceptable concealed quality [18, 19, 49].

3.2 Inpainting of 2D/3D Content

Inpainting refers to filling up small missing regions of content. Inpainting has been ap-

plied to various 2D/3D content formats, including images [54], videos [27,51], meshes [5,

29,41], and point clouds [8,15,30,31,44]. For 2D content, Yu et al. [54] developed a gen-
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erative neural network to inpaint missing regions using both global image structures and

local image features. Their trained neural network successfully inpainted images with

holes at different locations and in various sizes. Inpainting videos are more challenging

because of the temporal coherency. To tackle this challenge, Lee et al. [27] trained a

deep neural network to duplicate regions in successfully decoded frames to fill the miss-

ing regions. Their neural network delivered visually appealing and temporally coherent

inpainted videos. Xu et al. [51] also employed a deep neural network to generate mo-

tion vectors across video frames. They then used the motion vectors to propagate the

decoded pixels to fill up the missing regions. For 3D content, inpainting 3D meshes is

also known in the literature as surface hole filling. For instance, Verdera et al. [41] gener-

alized image inpainting algorithms into a geometric partial differential equation system.

They then solved the equation system to inpaint missing regions of 3D meshes. Similarly,

Liepa [29] leveraged the meshes in surrounding regions to inpaint the triangular meshes

in the missing regions. Davis et al. [5] constructed a surface function to follow the meshes

close to each missing region and then diffused the function to cover the missing region.

Inpainting 3D point clouds has been recently considered. For example, He et al. [15]

first detected holes and formulated an optimization problem to find the most similar intra-

frame regions. Fu et al. [8] utilized intra-frame self-similarity and inter-frame consistency

to inpaint the missing regions of point clouds. The existing inpainting methods are suit-

able for fixing distortion in small regions caused by imperfect capturing devices, settings,

and processes. Because lost or late packets often result in catastrophic distortion in larger

regions, inpainting methods are inapplicable to the error concealment problem.

3.3 Completion of 2D/3D Content

Completion refers to generating large missing regions of content. Completion has also

been applied to different 2D/3D content formats, such as images [17], meshes [3, 36],

and point clouds [4, 47, 50]. For 2D content, Huang et al. [17] built multiple planes

from existing regions. They then employed the resulting planes to derive the offsets and

transformations of image patches from completing the missing regions. For completing

3D meshes, Breckon and Fisher [3] took a two-stage approach with the global fitting of

geometric surface and the local propagation of texture detail. Pauly et al. [36] took a

different approach using an object database of 3D meshes. In particular, they queried the

database for the 3D object closest to each incomplete one. The retrieved 3D object is

then warped and blended with the incomplete one. Completing 3D point clouds has also

been considered. For instance, Chen et al. [4] considered the problem of completing the

building facades in three steps: (i) projecting 3D point clouds onto building facades, (ii)
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applying generative adversarial 2D inpainting algorithms, and (iii) converting the building

facades back to 3D point clouds. Wen et al. [47] proposed to complete 3D point clouds by

analyzing local structure detail and leveraging a structure-preserving deep neural network.

The existing completion methods are mostly designed for: (i) 3D objects other than point

clouds and (ii) recreating missing regions using spatially nearby regions. In contrast, the

distortion caused by lost or late packets could totally destroy the structure of point cloud

frames, rendering these completion methods inapplicable.

3.4 Error Concealment of 3D Point Clouds

The error concealment problem addressed in this thesis aims to improve the rendered

quality of the received 3D point clouds. Similar targets have been considered in the lit-

erature, e.g., Yang et al. [53] chose to incorporate a super-resolution network to enhance

the perceptual quality of the rendered images from a 3D point cloud in their streaming

system. Compared to different user behaviors, the quality degradation caused by lost or

late packets is much more severe. Additionally, the super-resolution network’s input and

output are 2D images rather than 3D point clouds. Hence, their neural networks cannot

solve the error concealment problem studied in this thesis. Another cluster of prior works

performed temporal interpolation [2,43,55] of dynamic 3D point clouds using deep neural

networks mainly for increasing the frame rate. Particularly, Viola et al. [43] used a neural

network to estimate motion vectors of downsampled point clouds, and used the motion

vectors to generate intermediate point cloud frames. The resulting frame is upsampled

to get the final output. Zeng et al. [55] aligned the preceding and following point cloud

frames point-wise and performed linear interpolation using motion vectors between them

to get the output frame. To relax the limitation of the pre-determined number of points per

frame, Akhtar et al. [2] proposed a neural network to extract multi-scale features. They hi-

erarchically fused interpolated frames at different scales for the output point cloud frame.

These interpolation neural networks may not be general across datasets, or may only work

for point cloud frames with a pre-determined number of points as input. Hence, they are

less applicable to our error concealment problem in dynamic 3D point cloud streaming.

With that said, we will subjectively compare our proposed representative pipelines against

two state-of-the-art interpolation algorithms [2, 55] in Sec. 5.4. Our user study reveals

that these state-of-the-art algorithms suffer from inferior interpolated frame quality while

consuming a staggering amount of computational power.

To the best of our knowledge, Wu et al. [49] is the first work demonstrating the need

to conceal 3D point cloud frames due to lost or late packets in the 3D space. The current

thesis takes a step further and proposes: (i) multi-staged error concealment pipelines with
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a rich set of alternative algorithms for each stage, (ii) through end-to-end and stage-wise

performance evaluations, and (iii) a user study to quantify the user experience achieved

by different pipelines. Preliminary results of the current thesis were given in Hung et

al. [18, 19].
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Chapter 4

Error Concealment Pipeline
Framework

This chapter introduces our five-stage pipeline framework, outlining the design goals for

the algorithms at each stage. Following this overview, we delve into detailed discussions

of each individual stage, presenting and comparing alternative solutions for each phase.

4.1 Overview

Stage 1:
Pre-Processing

CH. 4.6

Stage 2:
Matching
CH. 4.3

Stage 3:
Motion Estimation

CH. 4.4

➝ Stage 4:
Prediction
CH. 4.5

Stage 5:
Post-Processing

CH. 4.6

Figure 4.1: The proposed error concealment pipeline framework for dynamic 3D point

cloud streaming.

Fig. 4.1 illustrates the framework of our error concealment pipelines. It generates the

error-concealed point cloud frame fc using the preceding frame fp and the next frame fn,

where each frame is composed of a set of points. We let f .i be the frame index of f , and

fc.r = (fc.i− fp.i)/(fn.i− fp.i) be the relative position of fc within the consecutive frame

drops. To control distortion, we started concealing fc from the closer reference frame

(either fp or fn), which we refer to as the anchor frame, while the other frame is called

the current frame. Specifically, fp is the anchor frame iff fc.r ≤ 0.5. Without loss of

generality, we assume fp is the anchor frame in our discussion.

Our pipeline framework consists of five stages: (1) pre-processing, (2) matching,

(3) motion estimation, (4) prediction, and (5) post-processing. The pre-processing stage
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downsamples point clouds to reduce the computational overhead of the following stages.

Specifically, it voxelizes fp and fn with voxel lengths l1 and l2 (where l1 ≥ l2), resulting

in two pairs of downsampled point clouds: (f l1p , f
l1
n ) and (f l2p , f

l2
n ). The coarser-grained

(f l1p , f
l1
n ) is utilized in the matching and motion estimation stages, which are computation-

ally demanding. In contrast, the finer-grained (f l2p , f
l2
n ) is adopted in the prediction stage

to produce a better quality f ′c. The pre-processing stage also computes a minimal 3D cube

of a side length of h to bound all points of fp and fn. It assigns all points in fp to a set

of cubes c with a side length of lc. The purpose of c is to (i) reduce the workload of

the computationally-intensive motion estimation stage, and (ii) avoid inconsistent motion

vectors among nearby points. The matching stage creates a matching table tl1p→n from f l1p

to f l1n , which records the point-to-point correspondence. The motion estimation stage gen-

erates motion vectors for either individual points or cubes using tl1p→n. The point-based

motion vectors are denoted as mp, while the cube-based motion vectors are denoted as

mc. The prediction stage produces an interpolated point cloud f ′c using mp or mc on

(f l2p , f
l2
n ). The post-processing stage applies refinement algorithms on f ′c to get fc. Our

pipeline framework is general as: (i) stages are optional and can be bypassed, and (ii)

each stage can be instantiated by alternative algorithms.

4.2 Design Objective

The eventual goal of error concealment algorithms is generating fc with high visual qual-

ity, which can be quantified by 3D and 2D quality metrics [48]. 3D metrics include: (i)

GPSNR is the PSNR of the Chamfer distance, which is the average distance of pair-wise

closest points of two frames. (ii) Hausdorff distance is the maximal shortest distance be-

tween the closest points of two frames. (iii) CPSNR (color PSNR) is a quality function of

the luminance distortion between the closest points of two frames.

2D metrics include (i) the average PSNR of the foreground object in the point cloud

sequence; (ii) the average Structural SIMilarity [46] (SSIM) of the foreground object in

the point cloud sequence; and (iii) VMAF, a data-driven quality metric from Netflix [1],

of the rendered point cloud sequence. Zerman et al. [56] reported that most VR users

view 3D avatars on their horizontal planes. Hence, to compute the 2D metrics, we render

eight inward 2D images at 45◦ intervals with Open3D [57], and report the average 2D

metrics across these eight images. We employ a rendering point size of 8 with sparser se-

quences [39] and that of 3 with denser sequences [6]. For convenience, we align the range

of the point coordinates of the sparser sequences [39] to that of the denser sequences [6].

As point matching is a common and essential stage in the pipeline, it is crucial to

evaluate the accuracy of a given point-matching algorithm. To the best of our knowledge,
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the quality of point matching across frames has never been investigated in the literature.

Hence, we propose two metrics for measuring the temporal and spatial smoothness of

a matching table tp→n. Let t∗p→n denote the ground-truth matching table. For any point

pi ∈ fp, we write the point-wise spatial smoothness based on coordinate distance as:

dg(tp→n, t
∗
p→n, pi) = ∆cor

(
tp→n(pi), t

∗
p→n(pi)

)
, (4.1)

where ∆cor(p, q) represents the 3D Euclidean distance of p and qs’ coordinates. We also

write the point-wise temporal smoothness on the angle between two motion vectors as:

dr(tp→n, t
∗
p→n, pi) = cos−1

−−−−−−→
pitp→n(pi) ·

−−−−−−→
pit

∗
p→n(pi)∣∣∣∣−−−−−−→pitp→n(pi)

∣∣∣∣∣∣∣∣−−−−−−→pit
∗
p→n(pi)

∣∣∣∣ , (4.2)

where −→pq represents the motion vector from p to qs’ 3D coordinates. We next generalize

these two smoothness metrics to the frame level as:

dg(tp→n) = Σpi∈fpdg(tp→n, t
∗
p→n, pi)/|fp|; (4.3)

dr(tp→n) = Σpi∈fpdr(tp→n, t
∗
p→n, pi)/|fp|. (4.4)

Smaller dg(·) and dr(·) values lead to higher spatial and temporal smoothness, respec-

tively.

4.3 Matching Stage

In this section, we elaborate on the goal of finding good matching between the previous

and next frames. Then we introduce three solutions approaches and compare the tradeoff

among all three methods between time and quality.

4.3.1 Alternative Solutions

The goal of the matching stage is to compute the matching table tl1p→n from the anchor

(f l1p ) to current (f l1n ) frames. Although the quality of the matching table tl1p→n strongly af-

fects the following stages, finding high-quality tl1p→n is challenging for real-world dynamic

point cloud sequences since each frame is composed of different numbers of unordered

points. As an illustrative example, we implement the Nearest-Neighbor (NN) algorithm

to find the matching table: tl1p→n =
{
argmin

q∈f l1n
∆cor(p, q)

∣∣∣p ∈ f l1p

}
. We use the se-

quences with ground-truth matched points in Sun et al. [39] in our experiments. Fig. 4.2

visualizes sample results from two frames of a dancing woman, in which matched points

are connected by lines. Fig. 4.2(b) reveals that NN matches some points of the avatar’s
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(a) (b)

Figure 4.2: Point matching results between overlaid (fp, fn): (a) ground-truth and (b) NN

matching. Only 2% of samples’ matched points are shown for clarity.

fingertips to those of her palms and some points of her left leg/foot to those of her left

thigh. These mismatched points would lead to significantly wrong motion vectors (both

in direction and magnitude) in later stages and result in catastrophically corrupted fc.

Hence, better matching algorithms are needed. We present two options for the matching

algorithms below.

Query-Radius (QR). The algorithm searches for the best matching point within a

given search radius τ to control the computational complexity. Particularly, for each

point p ∈ f l1p , we define s(p, τ) =
{
q ∈ f l1n

∣∣∣∆cor(p, q) < τ
}

as the candidate point set.

Next, we find the most similar point q∗ from s(p, τ) by: q∗ = argminq∈s(p,τ) ∆(p, q), with

a utility function:

∆(p, q) = α∆cor(p, q) + (1− α)∆rgb(p, q) + βt(q). (4.5)

Here, ∆rgb(p, q) represents the Euclidean distance of the RGB vectors of points p and q.

We also write per-channel color distance as ∆r(p, q), ∆g(p, q), and ∆b(p, q). In addition,

t(q) represents q’s previous matching times, which can be interpreted as a penalty term

to encourage 1-1 matching. α, β are parameters to tune the relative importance among

the three terms of ∆(p, q). Last, for any p ∈ f l1p with s(p, τ) = ∅, we match p to ∅ in the

resulting tl1p→n.

Adaptive QR (AQR). This algorithm extends QR by adapting the τ value for each

point. Larger τ leads to longer running time and higher chances of incorrect matches (like

from the left to right shoe), while smaller τ leads to a higher chance of missing the most
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suitable matches. The AQR algorithm is developed with two design rationales derived

from some pilot experiments. First, color similarity carries a non-trivial weight on point

matching between the anchor and current frames (in the temporal domain). Hence, we

cluster the points in the current frame based on their colors. Second, (spatially) close-

by points should be treated similarly when searching for matching points (and motion

vectors). Hence, we cluster the points in the anchor frame based on their coordinates.

The detail of the AQR algorithm is given below.

The AQR algorithm first clusters all points of f l1n by their colors in two passes. The first

pass scans through f l1n and incrementally builds a set of point clusters un. More specifi-

cally, for each p ∈ f l1n , we add {p} to un iff maxuj∈un

{
minqj∈uj

∆r(p, qj),minqj∈uj
∆g(p, qj),

minqj∈uj
∆b(p, qj)

}
≥ 32, where 32 is empirically selected. After the first pass, we get a

set of clusters, where each cluster contains a single point. The second pass scans through

f l1
n again and assigns each point to the cluster with the highest RGB color similarity with

individual clusters’ points. The assignment leads to the final color-based clusters un.

The AQR algorithm also clusters all points of f l1p by their coordinates. More specifically,

it voxel-downsamples f l1p into the coordinate-based clusters up using a voxel length of

h/10. Points in f l1p are associated with the closest clusters in up.

With un and up in hand, we next find the best τ value for each point pi ∈ f l1
p . We

locate the color-based cluster uj ∈ un with the smallest ∆rgb(pi, uj). Here, we consider

the mean RGB color of all points of uj . Then, we perform an NN search within uj to get

qi = argminq∈uj
∆cor(pi, q). Upon iterating through all pi ∈ f l1

p , we compute the τ ∗i for

all points in the coordinate-based cluster uk ∈ np by:

τk = γ max
pi∈uk

∆cor(pi, qi), (4.6)

where the scaling factor γ ∈ R+ is a system parameter. Notice that we go with the largest

search radius to accommodate the point with the largest motion vector.

After getting the best search radius τi for each pi ∈ f l1p , we invoke the QR algorithm

with τi to get the matching table. One last detail is, before doing that, we sort points

pi ∈ f l1p by their ∆cor(pi, qi). By doing so, the AQR algorithm matches the points with

smaller motion vectors (such as the torso of an avatar) earlier. Because these points get

a larger penalty t(qi) sooner, they are less likely to be matched with points having larger

motion vectors (such as the limbs of an avatar).

AQR can be performed with either forward (tl1p→n) or backward (tl1n→p) point match-

ing. We found that by performing the AQR algorithm in the direction with a larger average

magnitude of matching tables as computed by the NN algorithm, we can significantly im-

prove the smoothness. For example, with a dancing man sequence [39], up to 5.90% and

34.02% reductions on dg(·) and dr(·) were observed. Hence, we swapped fp and fn before
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running the AQR algorithm whenever backward point matching was more promising.

4.3.2 Comparison

We compared NN, QR, and AQR using a dancing man sequence [39] under different

numbers of consecutive frame drops in {1, 2, 4, 8, 16}. We ran QR on all sample frames

and chose the smallest τ to ensure that 95+% of points p in every frame had nonempty

s(p, τ). We sampled an fp frame every 10 frames, leading to 50 frames in total. The

voxel length l1 was set to 11. The following system parameters were empirically chosen:

α = 0.9, β = 0.1, and γ = 1.5.
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Figure 4.3: Sample smoothness comparison of matching algorithms with 4 consecutive

frame drops. Sample results from a sample frame of the dancing man sequence (a) spatial

and (b) temporal.

We first plot the Cumulative Distribution Function (CDF) of dg and dr from a sample

frame with four consecutive drops in Fig. 4.3. We observe that AQR can pick a matching

point closer to the ground-truth than QR and NN, and the direction will also be much

more correct. In this sample frame, AQR can achieve 80% point matching accuracy with

errors of less than 0.16 meters in dg and 0.3 radians in dr. On the other hand, QR and NN

have lower accuracy with errors of 0.20 and 0.23 meters in dg and 1.76 and 1.56 radians

in dr, respectively. at least 0.001 m in dg and 0.12 radian in dr

Fig. 4.4 gives the average smoothness results with 95% confidence intervals2. We

observe that as the number of consecutive frame drops increases, the spatial smoothness

1In this thesis, we assume coordinates are integers. Therefore, downsampling with a voxel length of 1

means skipping a downsample.
2Throughout this thesis, we plot 95% confidence intervals as errorbars, if not otherwise specified.
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Figure 4.4: Comparison of matching algorithms: (a) spatial and (b) temporal smoothness.

worsens, and the gap between AQR and NN enlarges. In contrast, the temporal smooth-

ness remains stable under different numbers of consecutive frame drops. Overall, AQR

outperforms NN by at least 16% and 47% in spatial and temporal smoothness, respec-

tively. QR’s performance lies between NN and AQR, and highly depends on the selection

of τ .
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Figure 4.5: Detailed smoothness comparison of matching algorithms with a diverse num-

ber of consecutive drops across the dancing man sequence: (a) spatial and (b) temporal.

The three segments of each bar represent 95, 75, and 50 percentiles.

We plot the 95th, 75th, and 50th percentile dg and dr error distribution for each method

at different consecutive frame drops in Fig. 4.5. It was found that AQR consistently

outperforms QR, and QR consistently outperforms NN in the 75th and 50th percentile

for dg and dr. However, QR achieves the best 95th percentile in dg. This is because QR

uses a fixed search radius τ , and the point is skipped if there are no candidates within this
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radius.

NN, QR, and AQR build k-d trees for searching in space. The dominating time com-

plexity of k-d tree searches on f is O(|f | log |f |) on average. As τ increases, the time com-

plexity approaches O(|f |2) in the worst case. In our experiments, although NN runs fast,

it produces matching tables with inferior smoothness levels. QR improves the smooth-

ness over NN. However, users have to manually find proper τ values in a trial-and-error

fashion. AQR achieves the best smoothness levels but takes longer to compute τ values

than QR.

4.4 Motion Estimation Stage

This section starts with proposing two motion estimation algorithms, examining both their

targets. Following this, we evaluate the performance of these algorithms through the use

of a synthetic dataset, which provides ground truth matches for assessment purposes.

4.4.1 Alternative Solutions

The motion estimation stage calculates the motion vectors from the anchor (f l1p ) to current

(f l1n ) frames. The motion vectors are either point-based mp or cube-based mc.

Point Motion (PM) generates point-based motion vectors by:

mp =

{−−−−−−→
pitp→n(pi)

∣∣∣∣pi ∈ f l1p

}
. (4.7)

whereas Cube Motion (CM) generates cube-based motion vectors by:

mc =

{
Σpi∈cj

−−−−−−→
pitp→n(pi)/|cj|

∣∣∣∣cj ∈ c

}
. (4.8)

Cube-based motion estimation aims to mitigate the point matching outliers in matching

tables, whose motion vectors are quite different from those of the nearby points. With that

said, point-based motion vectors have a chance to be more accurate if their smoothness

levels are small.

4.4.2 Comparison

We take the matching table produced by NN in Sec. 4.3 as input to validate whether

CM mitigates incorrect point matching. More precisely, we use the anchor frame (fp)

and motion vectors (mp or mc) to estimate the current frame f ′n. We then compare the

estimated current frame f ′n with the ground-truth current frame fn to quantify the 3D point

cloud quality in the GPSNR and Hausdorff distance. The system parameter lc = 128 is

empirically chosen.
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Figure 4.6: 3D quality comparison of motion estimation algorithms: (a) GPSNR and (b)

Hausdorff distance.

Fig. 4.6 gives the average 3D point cloud quality under different numbers of con-

secutive frame drops. This figure reveals that, with a dancing man sequence [39], CM

improves the 3D quality by up to 3.54 dB in GPSNR and 54.67% in Hausdorff distance

on average. This demonstrates that CM could mitigate the errors in point matching. Both

PM and CM need to iterate through all the points in f and query the corresponding match-

ing in tp→n and runs in O(|f |) time.

4.5 Prediction Stage

This section further explains the objective of using the previous stage’s motion estimation

to predict new frames. We then introduce three prediction methods that utilize interpola-

tion techniques and evaluate their performance in terms of quality.

4.5.1 Alternative Solutions

The prediction stage aims to generate f ′c in good visual quality using the anchor frame

and motion vectors. Doing so with prediction algorithms is no easy task because both

spatial and temporal smoothness must be maintained. Our earlier work [18, 19] revealed

that ill-designed prediction algorithms often lead to severe cracks, which dramatically

degrade the visual quality and can turn users away from the streaming services. Hence,

we propose several prediction algorithms to avoid cracks in the following.

For the sake of presentation, we generalize mc into functions returning the corre-

sponding motion vector, i.e.: (i)mc(cj) for any cube cj ∈ c and (ii) mc(pi) = mc(cj)

for any point pi ∈ f l2p , where pi falls in cj ∈ c. Similarly, we generalize mp into a func-
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tion mp(pi) for any pi ∈ f l2p , which returns the motion vector of the closest voxel in the

coarser-grained f l1p .

Point-based Prediction (PP). It generates f ′c from mp by:

f ′c = {pi + fc.r ×mp(pi)|pi ∈ f l2p }. (4.9)

Cube-based Prediction (CP). The set of cubes c (created in the pre-processing stage)

consists of mutually disjoint cubes with a side length lc. In our pilot tests, we noticed that

after applying mc to c for f ′c, the predicted cubes:

cc = {cj + fc.r ×mc(cj)|cj ∈ c} (4.10)

are no longer mutually disjoint. Because of that, adjacent cubes with larger gaps often

result in more severe cracks. Hence, we developed an adaptation approach to enlarge the

side lengths of selected cubes to eliminate these gaps as follows.

We let c′c = cc be all cubes that need to be inspected. We sorted all cj ∈ cc on their

magnitude |mc(cj)| in descending order to fill up larger gaps earlier. Next, we iterated

through all cj ∈ cc, and computed the cube center distance between cj and all adjacent

cubes ck ∈ c′c. Here, adjacent cubes ck are the six cubes that share a face with cj . To find

the six adjacent cubes of cj , we utilize lc and the coordinates in c (before applying mc),

which can be done in constant time. Among the six cube center distances after applying

mc, we find the largest one, say lm. If lm > lc, we enlarge cj’s side length to be lm. Next,

we remove cj from c′c and integrate it into the next cj ∈ cc. After |cc| iterations, we have

|c′c| = 0 and a cc with customized cube side lengths leading to minimal gaps. Using the

updated cc, we recompute the cube motion mc using Eq. (4.8). Last, with the updated

mc, we generate f ′c by:

f ′c = {pi + fc.r ×mc(cj)
∣∣∣pi ∈ f l2p }. (4.11)

Neighboring-cube-based Prediction (NP). Although CP minimizes the gaps be-

tween adjacent cubes, our pilot tests revealed that CP may produce irregular surfaces

due to sudden jumps in the side lengths among adjacent cubes. Hence, we propose an al-

ternative prediction algorithm that takes the motion vectors of all neighboring cubes into

consideration below. First, for any cube cj ∈ c, we define neighboring cubes as those

non-cj cubes ck ∈ c that share at least one vertex with cj . We collectively refer to all

neighboring cubes of cj as nj , where |nj| = 26. When predicting a point pi ∈ f l2p that

falls in cj ∈ c, we compute a weighted sum of all motion vectors of nj ∪ {cj}. We define

a weight for pi and ck ∈ nj ∪ {cj} as:

ei,k = 1/∆v(pi, ck), (4.12)
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where ∆v(pi, ck) denotes the volume of a cuboid with pi and the center of ck as two

opposite vertices. It is not hard to see that closer cubes have higher weights. With the

above notations, NP generates f ′c by:

f ′c =

pi + fc.r ×
∑

ck∈nj∪{cj} ei,kmc(ck)∑
ck∈nj∪{cj} ei,k

∣∣∣∣pi ∈ f l2p

. (4.13)

4.5.2 Comparison

To compare PP, CP, and NP, we let l1, l2 = 1. We conceal the most challenging middle

frame in different numbers of consecutive frame drops in {1, 3, 5, 7, 9}. We predict f ′c
by running PP, CP, and NP on ground-truth motion vectors. Other settings are consistent

with those used in Secs. 4.3 and 4.4.

Fig. 4.7 presents sample 2D-rendered views of a dancing man sequence [39]. Among

the three algorithms, we observe that CP (Fig. 4.7(b)) moves points in each cube toward

a single direction, leading to irregular surfaces on the avatar’s body and arms, while NP

(Fig. 4.7(c)) mitigates this issue. To better quantify their performance, Fig. 4.8 gives

overall spatial smoothness dg(·) under different numbers of consecutive frame drops. We

observe that the difference among different prediction algorithms is at most 0.01 m, which

is negligible (0.6%) to the height of the avatar (1.75 m). Similarly, the temporal smooth-

ness difference is also small (figures not shown for brevity). Fig. 4.9 reports the 2D

quality of rendered views (the figure on SSIM is omitted), which demonstrates that (i)

PP outperforms CP by 1.25 dB in PSNR and 0.06 in SSIM, and (ii) CP outperforms NP

by 0.26 dB in PSNR and 0.01 in SSIM. Note that the observed performance difference is

with ground-truth (perfect) motion vectors, which could be quite different in end-to-end

settings.

Next, we render the predicted frame into 2D images and compare the PSNR in Fig. 4.9

(we omit the figure for SSIM due to space limit). The results show that PP performs

better than CP, with a maximum difference of 1.25 in PSNR and 0.06 in SSIM. The visual

quality of CP and NP in 2D images did not show much difference, with a maximum

difference of 0.26 in PSNR and 0.009 in SSIM.

PP iterates through all points in Eq. (4.9) and has a time complexity of O(|f |). As

for CP, the motion vectors mc are firstly applied to the cubes c, whose time complexity

is O(|c|). Subsequently, the cubes in c are sorted according to their motion quantified

by |mc|, which takes O(|c| log |c|). For each cube cj ∈ c, we compute lm from its six

adjacent cubes in O(1) using their coordinates and lc, so the complexity for all cubes is

O(|c|). The final step recalculates the motions of the updated cubes and applies them to

points in f , whose time complexity is O(|f |). Thus, the overall time complexity of CP is
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(a) (b)

(c)

Figure 4.7: Sample 2D-rendered views from different prediction algorithms: (a) PP, (b)

CP, and (c) NP.

O(|c| log |c|+ |f |). For NP, initially, 26 neighbors are identified for each cube, yielding a

time complexity of O(|c|). Then, for every point in f l2p , the calculation of Eq. (4.13) takes

a time complexity of O(|f |). Hence, the overall time complexity of NP is O(|c| + |f |).
The complexity of our three prediction algorithms can be sorted in descending order as

CP, NP, and PP. In actual experiments, NP is, however, slower than CP because |f | is

typically much larger than |c|.
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Figure 4.8: Smoothness comparison of prediction algorithms: (a) average and (b) 95, 75,

50 percentile.
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Figure 4.9: 2D quality comparison of prediction algorithms: (a) PSNR and (b) SSIM.

4.6 Pre-Processing and Post-Processing Stages

To mitigate the high complexity caused by too many points, the pre-processing stage

downsamples point clouds using l1 and l2. If l1, l2 ̸= 1, |f ′c| < |fp|, |fn|. We use voxel

downsampling as it takes advantage of the discrete structure and the regular division of

3D space, endowing the unorganized point cloud with richer spatial knowledge and spatial

correlation among filled voxels [52].

The post-processing stage upsamples f ′c to acquire a similar point number (resolution)

fc, and applies surface refinement algorithms to improve spatial smoothness by repairing

the cracks and artifacts.

A simple yet effective surface reconstruction method, i.e., screened Poisson Surface
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Reconstruction (PSR) [24], is chosen for this task. PSR is based on the observation that

the oriented point samples can be regarded as samples of the gradient of the 3D model’s

indicator function, which takes normal vectors of points in f ′p as input.

Other simpler surface refinement algorithms (e.g., bilinear interpolation and moving

least squares [26]) can be applied as well in the proposed framework. These algorithms,

however, cannot handle point clouds that are distributed in a non-uniform manner or with

noise/outliers, which are inevitable in a practical setup. On the contrary, PSR considers all

the points at once, without considering heuristic spatial partitioning or blending, making

it highly resilient to noise [14].

To understand its potential, we compared the concealed frame quality with and with-

out PSR on the first 200 frames of MPEG Red&Blk sequence [6] with 3 consecutive

frame drops using AQR, CM, and NB as middle stages, and performed normal estima-

tion on f ′c using Open3D [57] for PSR. The PSR improves PSNR, SSIM, and VMAF by

0.59 dB, 1.42%, and 0.96 on average. To visualize the difference, Fig. 4.10 provides an

illustration of the rendered point clouds with and without PSR, demonstrating its effec-

tiveness on crack filling. PSR consumes considerable computational resources, even in

situations where the normals are pre-computed and are part of the attributes. Alleviating

this overhead is our future work.

To evaluate the tradeoff between 2D quality and running time, we tested different

downsample ratios s ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0} by adjusting l2 so that s× |fp| =
|f l2p |. We used PSR for surface refinement. We picked 20 random frames from Red&Blk [6]

and evaluated them for 10 rounds to acquire the average quality and running time.

Observation. Table 4.1 lists the average of PSNR, SSIM, and VMAF among the

first 200 frames with three consecutive drops. The dynamic point clouds with surface

refinement achieve 0.59 dB, 1.42%, and 0.96 improvements in PSNR, SSIM, and VMAF.

Fig. 4.10 provides an illustation of the rendered point cloud with and without surface

refinement. We can observe in Fig. 4.10(a) that large cracks appear among the surface of

point cloud. As discussed in Sec. 4.3, the surface distortion is caused by an unsatisfied

matching method. However, as shown in Fig. 4.10(b), the proposed surface refinement

method effectively alleviates the distortion, resulting in a smoother surface.

Table 4.1: Average 2D Quality among 200 Point Cloud Frames

PSNR (dB) SSIM (%) VMAF

Without PSR 22.06 64.92 41.31

With PSR 22.65 66.34 42.27

Fig. 4.11 shows the running time and quality under different s. We also added a

baseline without downsampling and PSR for comparison. First, as we found, PSR with
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Figure 4.10: Visual results of sample point clouds: (a) without and (b) with PSR.
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Figure 4.11: Tradeoff between quality and running time of the post-processing stage with

PSR as the surface refinement algorithm.

s > 0.3 achieves better quality than the baseline. This observation demonstrates the feasi-

bility of leveraging the spatial redundancy to reduce the overhead of spatial refinement by

downsampling. Moreover, we observed that the VMAF of the point cloud first increases

as the running time increases and reaches its peak at s = 0.7. This interesting trend sug-

gests that downsampling with a proper ratio can remove outliers of the point cloud, thus

improving the quality of concealed point cloud. Fig. 4.11 shows that optimal downsample

ratios may be chosen based on the application requirements.
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Chapter 5

Experiments

In this chapter, we first summarize and combine the proposed stage algorithms into dif-

ferent pipelines with different targets. Next, we evaluate the end-to-end performance of

our pipeline over baseline 3DFC in objective experiments, and also conduct a user study

to compare against state-of-the-art learning-based methods [2, 55].

5.1 Our Proposed Representative Pipelines

Table 5.1: Alternative Algorithms in Individual Stages

Algorithm
Stage

Pre-Proc. Matching M. Est. Pred. Post-Proc.

Adopted Downs. [52] NN (baseline) - - Ups. + PSR [24]

Proposed - QP, AQR PM, CM PP, CP, NP -

We have implemented error concealment framework and algorithms in C++ and Python

using libraries including PCL [37] and Eigen [10]. Our implementation [16] includes the

alternative algorithms proposed in Secs. 4.3–4.6, as summarized in Table 5.1. In addition,

we concatenate the proposed algorithms in different stages to form representative error

concealment pipelines for diverse usage scenarios, as listed in Table 5.2. More details are

given below.

• Fast (F): We combined QR with PP for minimum time complexity. We opted not

to use even simpler NN because of its inferior point matching quality. On the other

hand, AQR is too heavy but brings marginal quality improvement compared to QR

with a well-selected τ value.

• Balance (B): We combined NN with CM for a good tradeoff between quality and

time complexity. While NN is the fastest matching algorithm, it may produce noisy

matching tables. Therefore, we employed CM to mitigate the noise.
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• Quality (Q): We combined AQR with NP for the highest quality. We employed

downsampling voxel lengths (l1, 1) to speed up AQR by reducing its problem size.

However, AQR occasionally matches points that are too distant, resulting in incor-

rect motion vectors. NP was therefore selected to cope with mismatched points.

• Quality+ (Q+): Q+ is built upon Q, but uses the more expensive PSR for surface

refinement. Hence, we adopted downsampling voxel lengths (l1, l2) to speed up

both AQR and NP.

Table 5.2: Our Representative Error Concealment Pipelines

Pipeline
Stage

Pre-Proc. Matching M. Est. Pred. Post-Proc.

Fast (F) - QR PM PP -

Balance (B) - NN CM CP -

Quality (Q) Downs.(l1, 1) AQR CM NP -

Quality+ (Q+) Downs.(l1, l2) AQR CM NP Ups. + PSR

Table 5.3: Dynamic 3D Point Cloud Sequences

Property
Sequence

Queen Loot Red&Blk Soldier LongDress Basketball Dancer

Cplx. Low Low Low Low Medium High High

Pt. # (M) 1.00 0.78 0.70 1.50 0.80 2.90 2.60

Coor. [0, 1023] [0, 1023] [0, 1023] [0, 1023] [0, 1023] [0, 2047] [0, 2047]

5.2 Setup

We have found that the simplistic 2DFC suffers from significant quality degradation, as

briefly illustrated in Fig. 1.1(b) and detailed in the preliminary conference version [18,19]

of this thesis. For brevity, in this thesis, we employed 3DFC as the baseline. 3DFC

duplicates the anchor frame as the concealed frame. While 3DFC is lightweight, it could

lead to jerky playback as the same frame may be duplicated multiple (specifically, when

fn.i − fp.i − 1 > 1) times. We also report No Loss (NL) as an unrealistic benchmark

in some tests. Table 5.3 lists seven MPEG sequences [6] in the ascending complexity

levels. Each sequence contains a human avatar, which is a representative 3D object for

point cloud streaming. We consider the first 200 point cloud frames in each sequence in

our experiments. We evaluated the performance of the four representative pipelines using

V-PCC reference software [35] as the codec with the default settings defined in Common

Test Conditions (CTC) [34]. We adopted the more error-resilient All-Intra mode of V-

PCC at 30 frames-per-second (fps).
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To evaluate the representative pipelines under different network conditions, we vary

the number of frame drops from 1 to 5. The following parameters were heuristically

decided through a grid search: (i) l1 = 15, l2 = 1.9, and lc = 128 in the pre-processing

stage and (ii) τ = 2, α = 0.9, β = 0.1, and γ = 1.5 in the matching stage. We ran our

algorithms on an AMD Ryzen 7 5800X CPU at 3.8 GHz. We report the average results

across all concealed frames in the rest of this section.

In this thesis, we first use the Gilbert-Elliot (G-E) model [13] to simulate 5%, 7.5%,

10%, 12.5%, and 15% packet loss rate on geometry drop. Furthermore, to better under-

stand the impact under more severe conditions, we simulate drops of one to five frames in

our subsequent experiments.

5.3 Results

Fig. 5.1–5.5 show the overall quality of the concealed frame while simulating over G-E

Model under 5%, 7.5%, 10%, 12.5%, and 15% packet loss. Next, Fig. 5.6–5.10 show

the overall quality of concealed frame under 1, 2, 3, 4, and 5 consecutive frame drops.

Fig. 5.11–5.16 show the improvement of our pipeline over baseline 3DFC under 5%,

7.5%, 10%, 12.5%, and 15% packet loss. Finally, Fig. 5.17–5.22 show the improvement

of our pipeline over baseline 3DFC under 1, 2, 3, 4, and 5 consecutive frame drops. We

pick some of the representative result figures for the following observation.

Quality comparison over different sequences. We first discuss the results from our

pipelines F, B, and Q, which do not employ surface refinement algorithms. Fig. 5.6 plots

the overall quality of individual sequences under a single frame drop. We observe that

B and Q consistently outperform 3DFC in terms of all the metrics. However, F trails

3DFC with some sequences. Moreover, Q constantly outperforms B, while B constantly

outperforms F across all sequences. This confirms that more complicated matching and

prediction algorithms lead to better 2D and 3D quality.

Quality comparison under different numbers of consecutive frame drops. We

next zoom into two sample sequences to study the implications of different numbers

of consecutive drops. Figs. 5.19 and 5.22 give the overall quality improvement of our

reference pipelines over 3DFC with (low-complexity) Red&Blk and (high-complexity)

Dancer, respectively. With Red&Blk, Q outperforms 3DFC by at most 2.03 dB in GP-

SNR, 0.76 dB in CPSNR, 0.025 in SSIM, and 5.40 in VMAF across all numbers of con-

secutive frame drops. With Dancer, Q outperforms 3DFC by at most 5.32 dB in GPSNR,

6.15 K in Hausdorff distance, 2.20 dB in PSNR, and 11.68 in VMAF across all numbers

of consecutive frame drops. We also observe that the gaps decrease when more consec-

utive frames are dropped. This can be attributed to the larger errors in the matching and
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prediction stages. Take the fast-moving Dancer as an example; compared to single frame

drops, dropping 5 frames degrades Q’s quality improvement by 3.56 dB in GPSNR, 3.16

K in Hausdorff distance, 1.56 dB in PSNR, and 9.86 in VMAF. Designing error conceal-

ment pipelines that are more resilient to longer consecutive frame drops is among our

future tasks.

Implications of the surface refinement algorithm. We next discuss the results from

the PSR-enhanced pipeline Q+, which are also reported in Figs. 5.6–5.22. Fig. 5.23 de-

picts the same frame concealed by Q+ from Queen sequence in which the avatar is holding

a pad in her hands. We observe that before applying PSR, the pad in the avatar’s hand

retains a square shape. However, once PSR is applied, the pad becomes uneven. This

is because the pad is thin, making it challenging to obtain a precise normal estimation,

significantly impacting the PSR results. Consequently, the quality of the Queen sequence

with PSR is significantly decreased. Fig. 5.6 shows that excluding Queen, Q+ delivers

similar quality compared to Q: the maximal gaps across the other six sequences are 0.55

dB in GPSNR, 0.10 K in Hausdorff distance, 0.44 dB in PSNR, and 2.52 in VMAF. A

closer look at why Q+ performs badly with Queen reveals that it is largely caused by

imperfect normal estimation done by Open3D [57]. For example, normals of the tablet

held by the avatar are clearly ill-estimated (by Open3D), which significantly affects the

performance of PSR. Furthermore, Figs. 5.19 and 5.22 reveal that pipelines Q+ and Q

achieve similar quality improvement over 3DFC for different numbers of consecutive

frame drops. Take Red&Blk as an example; the gaps between Q+ and Q are: (i) [-0.42,

-0.32] dB in GPSNR, (ii) [0.00, 0.05] dB in CPSNR, (iii) 0.01 in SSIM, and (iv) [0.20,

0.36] in VMAF. Take Dancer as another example; the gaps between Q+ and Q are: (i)

[-0.37, -0.23] dB in GPSNR, (ii) [-0.08, 0.13] K in Hausdorff distance, (iii) [-0.16, -0.09]

dB in PSNR, and (iv) [-2.43, -2.08] in VMAF. We conclude that pipeline Q+ achieves

comparable concealed quality to Q.

Per-frame running time of different pipelines. We selected 24 random frames from

Loot, LongDress, and Dancer to measure the average per-stage running time under dif-

ferent sequence complexity levels. All the evaluations use a single CPU core without

parallelization. Moreover, for pipeline Q+, we assume that normals are precomputed.

Table 5.4 reports the per-frame average running time. We observe that F is consistently

faster than B, while B is consistently faster than Q. On the other hand, Q+ is faster than

Q, which can be attributed to the downsampling settings. Our proposed pipeline F, B, and

Q+ could work for on-demand streaming, in which larger buffers (say a few seconds) are

possible, while teleconferencing dictates further optimizing the running time in various

ways. For example, parallelization techniques, including but not limited to Single Instruc-

tion Multiple Data (SIMD) and General-Purpose Graphics Processing Unit (GPGPU), can
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Table 5.4: Per-frame Running Time Break-down from Loot/LongDress/Dancer: Second

(Fraction)

Pipeline
Stage

Pre-Proc. Matching M. Est. Pred. Post-Proc. Total

Fast (F) -
QR PM PP

- 1.13/1.03/2.881.05/0.96/2.66 0.02/0.02/0.03 0.06/0.06/0.19

(93%/93%/92%) (2%/2%/1%) (6%/6%/6%)

Balance (B) -
NN CM CP

- 4.11/4.44/27.080.99/1.34/14.64 1.13/1.11/4.52 1.98/1.98/7.93

(24%/30%/54%) (27%/25%/17%) (48%/45%/29%)

Quality (Q)
Downs.(l1, 1) AQR CM NP

- 10.67/11.71/55.090.04/0.01/0.15 1.94/2.17/18.81 0.01/0.01/0.03 8.69/9.49/36.10

(<1%/<1%/<1%) (18%/18%/34%) (<1%/<1%/<1%) (81%/81%/66%)

Quality+ (Q+)
Downs.(l2, 1) AQR CM NP Ups. + PSR

4.86/5.27/21.920.11/0.11/0.36 1.77/1.89/9.53 0.01/0.01/0.03 2.80/3.07/11.48 0.17/0.18/0.52

(2%/2%/2%) (36%/36%/43%) (<1%/<1%/<1%) (58%/58%/52%) (4%/3%/2%)

be adopted. Moreover, it was reported that GPGPU-based surface reconstruction, such as

PSR, could improve the running time by at least two orders of magnitude [57]. Table 5.4

also gives the fraction of running times consumed by individual stages, shedding some

light on the strategies for optimizing individual pipelines. For instance, in our proposed

pipeline Q, NP accounts for up to 81% of the running time. Fortunately, as points are

calculated independently in NP, it is not hard to parallelize NP for shorter running time.

5.4 User Study

This section starts with a discussion on the design of our user study, which evaluates our

pipeline in comparison to 3DFC and learning-based approaches [2, 55]. Following this,

we present the outcomes and delve into a discussion, quantifying insights gathered from

user feedback.

5.4.1 Design

We carried out a user study with 15 subjects (4 female) with a mean age of 23.83 years old.

We tested each subject for visual acuity and color blindness. None of them were removed

as a result. We rendered two 2D videos of 200 dynamic point cloud frames, in which

corrupted frames were concealed by a pair of: (i) one of our proposed representative

pipelines and (ii) one of the baseline algorithms. The rendered 2D videos were displayed

side-by-side in a random order on a 23” monitor at 1920X1080 and 60 fps following the

BT.500-13 standard [21].

We considered two tests with different baseline algorithms: (i) 3DFC and (ii) state-
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of-the-art learning-based interpolation algorithms [2,55]12. More precisely, for the 3DFC

test, we consider a more challenging setup with five consecutive frame drops to evaluate

our proposed representative pipelines: {F, B, Q, Q+}. For the learning-based test, because

the baseline algorithms [2, 55] are rather slow and only work for single frame drops, we

only consider the promising pipeline Q with single frame drops.

For each video pair, instead of using a scaler of 1 - 5 as BT.500-13 standard [21]

suggest, we simplified the question to a binary choice by asking subjects to select the

better video in terms of three aspects:

• Spatial smoothness, which accounts for artifacts like cracks, irregular surfaces, and

blurred edges.

• Temporal smoothness, which covers varying fps and stalls.

• Preference, which represents the overall quality.

We report winning rates of individual questions, which are the fractions of votes on our

proposed representative pipelines.

For each subject, we first explained the definitions of the three subjective questions.

We then held a dry-run session with a training-only sequence to familiarize them with the

test procedure and user interface. The actual testing video pairs were then played to the

subject. We looped each pair of videos, and subjects took ∼20 seconds before providing

their answers. In total, it took each subject ∼18 minutes to complete his/her user study.

5.4.2 Results

Fig. 5.24 presents the sample winning rates: 3DFC test results from the best- and worst-

performing sequences in Figs. 5.24(a) and 5.24(b), respectively; average 3DFC results in

Fig. 5.24(c); and overall results against the state-of-the-art learning-based interpolation al-

gorithms in Fig. 5.24(d). Note that in the second test, we compare our proposed pipeline Q

against both state-of-the-art learning-based interpolation algorithms, but we did not ana-

lyze the results from these two interpolation algorithms separately. We made the following

observations. First, our representative pipelines resulted in better temporal smoothness.

Fig. 5.24(c) shows that compared to 3DFC, our Q, B, and F pipelines achieved average

winning rates of 91.43%, 75.24%, and 57.14%, respectively. Fig. 5.24(b) reveals that

even with the worst-performing sequence, Q and B still resulted in 50+% winning rates.

Fig. 5.24(d) demonstrates that our pipeline Q achieves a 97.14% average winning rate

over the two state-of-the-art learning-based interpolation algorithms [2, 55].

1We only consider the state-of-the-art algorithms with official implementations in the public domain to

avoid glitches in third-party realizations.
2Because Zeng et al. [55] only take point clouds with 1024 point as input, we divide each point cloud

frame into multiple sub point clouds with ≤ 1024 points before sending them into the neural network.
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Second, our representative pipelines lead to better spatial smoothness compared to

the state-of-the-art learning-based interpolation algorithms. Fig. 5.24(d) depicts that our

pipeline Q delivers a 100% average winning rate over the state-of-the-art learning-based

interpolation algorithms. Compared to 3DFC, Fig. 5.24(a) reveals that the B, Q, and Q+

pipelines achieve as high as 80% winning rate. However, Fig. 5.24(c) shows that, when

considering all seven sequences, none of our pipelines achieve 50+% average winning

rates. This is understandable as 3DFC never incurs spatial artifacts, even though it could

suffer from jerky playouts.

Third, our representative pipeline Q achieves better preference. Fig. 5.24(c) demon-

strates that only pipeline Q leads to a 64.76% average winning rate over 3DFC. We in-

terviewed the subjects and found that inferior spatial smoothness is more noticeable than

inferior temporal smoothness. Even if spatial artifacts, such as cracks, only appear in

a single point cloud frame, they are easily perceived and remembered by subjects. This

gives 3DFC an edge over our reference pipelines. For visual inspection, Fig. 5.25(a) gives

a sample concealed frame of the worst-performing Basketball sequence from our pipeline

Q under five consecutive frame drops. This figure shows noticeable artifacts such as the

squeezed basketball and displaced arms, explaining why subjects may prefer 3DFC over

our pipeline Q.

Last, our representative pipeline Q subjectively outperforms the state-of-the-art learning-

based interpolation algorithms. Fig. 5.25(b) shows a sample frame concealed from a

state-of-the-art learning-based interpolation algorithm under a single frame drop. Com-

pared to Fig. 5.25(a), it is not hard to see why subjects prefer our pipeline Q. In fact,

Fig. 5.24(d) confirms that our pipeline Q leads to a 100% winning rate over the state-of-

the-art learning-based interpolation algorithms. We take a closer look and quantify the

severity of cracks by counting the number of see-through pixels in 2D-rendered images.

A pixel of a rendered image is defined as see-through iff either it or its corresponding

pixel in the ground-truth image is in the background color (but not both). In addition,

pixels within 10 pixels to the avatar boundary are not considered as see-through pixels.

Table 5.5 compares the mean (maximum) see-through pixels. Across the seven sequences,

we found that Akhtar et al. [2] and Zeng et al. [55] suffer from on average 1.83–12.00 and

1.68–18.00 times of see-through pixels than our Q pipeline, respectively. Such huge gaps

explain why the state-of-the-art learning-based interpolation algorithms [2, 55] were not

preferred by subjects. In addition, Akhtar et al. [2] took 11.70–15.66 times running time

compared to Q, while Zeng et al. [55] took 102.22–182.20 times. Hence, the state-of-

the-art learning-based interpolation algorithm [2, 55] cannot solve our considered error

concealment problem.

In summary, our best-quality pipeline Q outperforms 3DFC in temporal smoothness
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Table 5.5: Number of Continuous See-through Pixels: Mean (Max)

Algorithm
Sequence

Queen Loot Red&Blk Soldier LongDress Basketball Dancer

Proposed Pipeline Q 1 (167) 15 (576) 53 (793) 4 (335) 38 (937) 161 (2123) 85 (1495)

Akhtar et al. [2] 12 (1204) 119 (3708) 97 (1301) 43 (2317) 190 (2703) 548 (3870) 326 (3165)

Zeng et al. [55] 18 (764) 55 (1118) 89 (1417) 56 (1010) 79 (1086) 1325 (29097) 286 (5321)

(91.43% average winning rate) and preference (64.76%); it also outperforms the state-of-

the-art learning-based interpolation algorithms [2, 55] in temporal smoothness (97.14%),

spatial smoothness (100%), and preference (100%), as well as running time (< 1/11.70 =

8.55%).
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Figure 5.1: Overall quality of concealed frames from individual sequences with 5% packet

loss rate: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f)

VMAF.

41



Que Loo Red Sol Lon Bas Dan
0

10

20

30

40

50

60

70

G
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(a)

Que Loo Red Sol Lon Bas Dan
0

5

10

15

20

25

30

35

40

C
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(b)

Que Loo Red Sol Lon Bas Dan
0

2.5

5

7.5

10

12.5

15

17.5

H
a
u

s
d

o
r
ff

 D
is

t.
 (

K
)

NL
3DFC

F
B

Q
Q+

(c)

Que Loo Red Sol Lon Bas Dan
0

5

10

15

20

25

30

35
P

S
N

R
 (

d
B

)
NL
3DFC

F
B

Q
Q+

(d)

Que Loo Red Sol Lon Bas Dan
0.0

0.2

0.4

0.6

0.8

S
S
IM

NL
3DFC

F
B

Q
Q+

(e)

Que Loo Red Sol Lon Bas Dan
0

20

40

60

80

V
M
A
F

NL
3DFC

F
B

Q
Q+

(f)

Figure 5.2: Overall quality of concealed frames from individual sequences with 7.5%

packet loss rate: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF.
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Figure 5.3: Overall quality of concealed frames from individual sequences with 10%

packet loss rate: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF.

43



Que Loo Red Sol Lon Bas Dan
0

10

20

30

40

50

60

70

G
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(a)

Que Loo Red Sol Lon Bas Dan
0

5

10

15

20

25

30

35

40

C
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(b)

Que Loo Red Sol Lon Bas Dan
0

2.5

5

7.5

10

12.5

15

17.5

H
a
u

s
d

o
r
ff

 D
is

t.
 (

K
)

NL
3DFC

F
B

Q
Q+

(c)

Que Loo Red Sol Lon Bas Dan
0

5

10

15

20

25

30

35
P

S
N

R
 (

d
B

)
NL
3DFC

F
B

Q
Q+

(d)

Que Loo Red Sol Lon Bas Dan
0.0

0.2

0.4

0.6

0.8

S
S
IM

NL
3DFC

F
B

Q
Q+

(e)

Que Loo Red Sol Lon Bas Dan
0

20

40

60

80

V
M
A
F

NL
3DFC

F
B

Q
Q+

(f)

Figure 5.4: Overall quality of concealed frames from individual sequences with 12.5%

packet loss rate: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF.
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Figure 5.5: Overall quality of concealed frames from individual sequences with 15%

packet loss rate: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF.
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Figure 5.6: Overall quality of concealed frames from individual sequences with a single

frame drop: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f)

VMAF.

46



Que Loo Red Sol Lon Bas Dac
0

10

20

30

40

50

60

70

G
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(a)

Que Loo Red Sol Lon Bas Dac
0

5

10

15

20

25

30

35

40

C
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(b)

Que Loo Red Sol Lon Bas Dac
0

2

4

6

8

10

12

H
a
u

s
d

o
r
ff

 D
is

t.
 (

K
)

NL
3DFC

F
B

Q
Q+

(c)

Que Loo Red Sol Lon Bas Dac
0

5

10

15

20

25

30

35
P

S
N

R
 (

d
B

)
NL
3DFC

F
B

Q
Q+

(d)

Que Loo Red Sol Lon Bas Dac
0.0

0.2

0.4

0.6

0.8

S
S
IM

NL
3DFC

F
B

Q
Q+

(e)

Que Loo Red Sol Lon Bas Dac
0

20

40

60

80

V
M
A
F

NL
3DFC

F
B

Q
Q+

(f)

Figure 5.7: Overall quality of concealed frames from individual sequences with a two

frames drop: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and

(f) VMAF.

47



Que Loo Red Sol Lon Bas Dac
0

10

20

30

40

50

60

70

G
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(a)

Que Loo Red Sol Lon Bas Dac
0

5

10

15

20

25

30

35

40

C
P

S
N

R
 (

d
B

)

NL
3DFC

F
B

Q
Q+

(b)

Que Loo Red Sol Lon Bas Dac
0

2.5

5

7.5

10

12.5

15

17.5

20

H
a
u

s
d

o
r
ff

 D
is

t.
 (

K
)

NL
3DFC

F
B

Q
Q+

(c)

Que Loo Red Sol Lon Bas Dac
0

5

10

15

20

25

30

35
P

S
N

R
 (

d
B

)
NL
3DFC

F
B

Q
Q+

(d)

Que Loo Red Sol Lon Bas Dac
0.0

0.2

0.4

0.6

0.8

S
S
IM

NL
3DFC

F
B

Q
Q+

(e)

Que Loo Red Sol Lon Bas Dac
0

20

40

60

80

V
M
A
F

NL
3DFC

F
B

Q
Q+

(f)

Figure 5.8: Overall quality of concealed frames from individual sequences with a three

frames drop: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and

(f) VMAF.
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Figure 5.9: Overall quality of concealed frames from individual sequences with a four

frames drop: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and

(f) VMAF.
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Figure 5.10: Overall quality of concealed frames from individual sequences with a five

frames drop: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and

(f) VMAF.
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Figure 5.11: Overall quality improvement over 3DFC for different packet loss: (a) GP-

SNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f) VMAF. Sample

results from Queen are shown.
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Figure 5.12: Overall quality improvement over 3DFC for different packet loss: (a) GP-

SNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f) VMAF. Sample

results from Loot are shown.
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Figure 5.13: Overall quality improvement over 3DFC for different packet loss: (a) GP-

SNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f) VMAF. Sample

results from Red&Blk are shown.
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Figure 5.14: Overall quality improvement over 3DFC for different packet loss: (a) GP-

SNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f) VMAF. Sample

results from Longdress are shown.
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Figure 5.15: Overall quality improvement over 3DFC for different packet loss: (a) GP-

SNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f) VMAF. Sample

results from Basketball are shown.
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Figure 5.16: Overall quality improvement over 3DFC for different packet loss: (a) GP-

SNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and (f) VMAF. Sample

results from Dancer are shown.
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Figure 5.17: Overall quality improvement over 3DFC for different numbers of consecu-

tive frame drops: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF. Sample results from Queen are shown.
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Figure 5.18: Overall quality improvement over 3DFC for different numbers of consecu-

tive frame drops: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF. Sample results from Loot are shown.
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Figure 5.19: Overall quality improvement over 3DFC for different numbers of consecu-

tive frame drops: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF. Sample results from Red&Blk are shown.
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Figure 5.20: Overall quality improvement over 3DFC for different numbers of consecu-

tive frame drops: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF. Sample results from Longdress are shown.

60



1 2 3 4 5
Consecutive Drops

0

1

2

3

4

5

G
P

S
N

R
 I

m
p

ro
. 
(d

B
)

F B Q Q+

(a)

1 2 3 4 5
Consecutive Drops

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
P

S
N

R
 I

m
p

ro
. 
(d

B
)

F B Q Q+

(b)

1 2 3 4 5
Consecutive Drops

0

2

4

6

8

10

H
a
u

s
d

o
rf

f 
D

is
t.

 I
m

p
ro

. 
(K

) F B Q Q+

(c)

1 2 3 4 5
Consecutive Drops

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
S

S
IM

 I
m

p
r
o
.

F B Q Q+

(d)

1 2 3 4 5
Consecutive Drops

0.0

0.5

1.0

1.5

2.0

2.5

P
S

N
R

 I
m

p
ro

. 
(d

B
)

F B Q Q+

(e)

1 2 3 4 5
Consecutive Drops

0

2

4

6

8

V
M

A
F

 I
m

p
r
o
.

F B Q Q+

(f)

Figure 5.21: Overall quality improvement over 3DFC for different numbers of consecu-

tive frame drops: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF. Sample results from Basketball are shown.
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Figure 5.22: Overall quality improvement over 3DFC for different numbers of consecu-

tive frame drops: (a) GPSNR, (b) CPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,

and (f) VMAF. Sample results from Dancer are shown.
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(a) (b)

Figure 5.23: Sample 3D point cloud frame: (a) before PSR and (b) after PSR, when the

normal estimation is bad.
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Figure 5.24: Winning rates of three subjective questions: (a)–(c) from the 3DFC test and

(d) from the learning-based test. Sample results from (a) best-performing Red&Blk and

(b) worst-performing Basketball. Average results across all sequences, compared to (c)

3DFC and (d) state-of-the-art learning-based interpolation algorithms.
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(a) (b)

Figure 5.25: Sample error concealed 3D point cloud frames using: (a) our proposed

representative pipeline with five consecutive frame drops and (b) Akhtar et al. [2] with a

single frame drop.
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Chapter 6

Concluding Remarks

This chapter starts by summarizing both the objective and subjective findings, and intro-

duces a table that outlines a recommended pipeline under various conditions. It concludes

with an exploration of potential future research directions that could be pursued by up-

coming scholars.

6.1 Conclusion

In this thesis, we proposed the very first pipeline framework for concealing lost or late

frames in dynamic 3D point cloud streaming. Our multi-stage framework is general, as a

stage can be skipped, and every stage can be realized by alternative algorithms. We pro-

posed, developed, implemented, and evaluated multiple algorithms for individual stages.

Based on the per-stage evaluation results, we proposed four representative pipelines for di-

verse streaming scenarios. Extensive objective experiments and subjective tests revealed

the merits of our proposed representative pipelines. In particular, we: (i) improved at

most 5.32 dB in GPSNR, 2.22 dB PSNR, and 11.67 in VMAF compared to 3DFC, (ii)

achieved better temporal smoothness than 3DFC, and (iii) achieved a 100% winning rate

on preference over the state-of-the-art learning-based interpolation algorithms.

Table 6.1: Recommended Error Concealment Pipelines

Requirement
Motion Variance

Minor Medium Significant

High Quality Q Q 3DFC

Low Overhead F Q+ 3DFC

Our proposed reference pipelines have different pros and cons. Table 6.1 gives our

recommendations. We classify the usage scenarios into two dimensions: requirement

and motion variance between the anchor and current frames. When high quality is the
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main requirement, we recommend our pipeline Q for the best-possible quality as long

as motion variance is minor or medium. When low overhead is the main requirement,

we recommend our efficient pipeline F under minor motion variance, and more compre-

hensive Q+ under medium motion variance. Last, with significant motion variance, our

representative pipelines may cause occasional spatial artifacts, which could degrade the

objective and subjective visual quality. Hence, we suggest using 3DFC for now, but be-

lieve there is room for innovation for such very challenging scenarios. Indeed, researchers

are more than welcome to experiment with existing or to-be-developed algorithms using

our framework.

6.2 Future Works

This thesis can be extended into the following directions, including but not limited to:

• Adaptively selecting which error concealment pipeline to apply. In our study, we

noticed that point cloud sequences exhibit varying degrees of motion magnitude;

thus, dropping an identical number of frames across different sequences can result

in varying extents of motion. Currently, our experimental approach employs the

same pipeline methods across all sequences without considering the variability in

frame drops and motion magnitudes. To enhance efficiency and improve visual

quality, our framework could benefit from a more adaptable strategy, selectively

applying different pipeline techniques tailored to the unique attributes of each se-

quence and the specific frames dropped.

• Better method to deal with large motion frames. During our objective experiments,

we noticed a trend where an increase in consecutive frame drops leads to a dimin-

ished enhancement in quality from our proposed pipeline. Similarly, in subjective

evaluations, we observed that our approach might induce noticeable distortions, par-

ticularly a squeezing effect on the avatar’s surface, when the motion between two

frames is excessively large. These findings highlight areas for potential refinement

within our pipeline framework to better accommodate large motions.

• Running Time Optimization. Our implementation and assessment of the proposed

methods were conducted on a single thread, without employing parallelization or

optimization techniques. Nonetheless, it is clear that the algorithms for various

stages can be executed in parallel, as the computations for each point are indepen-

dent. Leveraging Single Instruction Multiple Data and General-Purpose Graphics

Processing Unit technologies could significantly reduce execution times. With the

application of effective optimization methods for runtime, we are confident that our

pipeline could attain real-time processing capabilities.
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