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中文摘要

虛擬實境的應用程式時常需要追蹤使用者的資料以提供沉浸式的體

驗，而這些資料中，使用者的軌跡為最基本的追蹤資料。然而，許多

研究指出，這些軌跡會使使用者暴露在危險之中，比如說，洩漏他們

的身分。因為現有的資料集沒有包含隱私敏感資料來研究虛擬實境的

隱私議題我們首先蒐集了一個六自由度的虛擬實境資料集以研究這些

議題。我們接著使用此資料集做了相關的研究，研究的結果激發了我

們的隱私保護機制的設計。雖然已經有許多現有的虛擬實境隱私保護

機制，但這些機制不是沒有保護使用者軌跡，就是沒有考慮軌跡的時

間相關性。因此，我們設計了「干擾器」，在考慮時域與空間域的情

況下，即時的加噪音在軌跡上。除此之外，我們還提出了「補償器」

以補償因為加了噪音的軌跡而位移的場景，進而提高視覺品質。我們

的實驗結果顯示了我們解決方案的優點: (i)與最先進的方法相比，我
們的干擾器減少了最多0.4的重新識別率， (ii)在相同的隱私設置下，
我們的干擾器比最先進的方法進步了 2.5 dB的 PSNR， 0.1的 SSIM，
以及 10的 VMAF， (iii)我們的補償器進一步將視覺品質提高最多6.83
dB(PSNR)、0.45(SSIM)和34.57(VMAF)。
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Abstract

Virtual Reality (VR) applications usually require users’ tracking data to
provide an immersive experience. Among the tracking data, trajectory is the
most basic in VR. However, several prior works have shown that the trajec-
tories may threaten the users, for example, by revealing their identities. To
study the privacy issues in VR, we first collected a 6DoF VR dataset since
existing datasets lack the privacy-sensitive data types to do so. We then con-
ducted prior tests with our dataset, which inspired the design of our privacy-
preserving approach. Though there are some existing privacy-preserving ap-
proaches to protect VR users from privacy threats, these approaches neither
consider VR users’ trajectories nor perturb the trajectory considering the tem-
poral correlation of the trajectory. Hence, we designed our disturber, perturb-
ing the trajectory in both temporal and spatial domains on-the-fly. Moreover,
we propose a compensator for the shifted scene after perturbation to improve
the degraded visual quality. Our evaluation results show the merits of our so-
lution: (i) our disturber alone reduces at most 0.4 re-identification rate com-
pared to the state-of-the-art approach, (ii) our disturber alone outperforms the
state-of-the-art approach by 2.5 dB in PSNR, 0.1 in SSIM, and 10 in VMAF
under the same privacy settings, and (iii) our compensator further improves
the visual quality by at most 6.83 dB in PSNR, 0.45 in SSIM, and 34.57 in
VMAF.
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Chapter 1

Introduction

Increasingly more Head Mounted Displays (HMDs) have been released by key manufac-

turers, like HTC, Pico, Meta, and Apple, which enable novel Virtual Reality (VR) usage

scenarios [107, 112], such as healthcare [48, 90], training [48, 57], sports, tourism [11],

and entertainment. In these scenarios, each user uses an HMD and two hand-held con-

trollers [5, 145] to interact with VR applications as shown in Fig. 1.1. Both HMDs and

controllers come with sensors like accelerometers and gyroscopes, which produce time-

series sensor readings on locations (x, y, and z as Cartesian coordinates) and orientations

(i, j, k, and l as quaternions). We collectively refer to the locations and orientations of an

HMD and two controllers at a moment as a pose, and a time-series of poses as a trajectory.

Because of the immersive experience offered by HMD-enabled VR applications, their

great market potential has been well recognized. For instance, the global VR market is

projected to attract 171 million VR users by 2023 [62] and to reaches 20.9 billion USD

by 2025 [42]. To draw and retain more VR users, Machine Learning (ML) algorithms

have been adopted by many VR applications to improve their visual quality. For example,

HMD viewports [141] have been predicted by various neural networks [31, 32, 54] for

more optimized tiled streaming of 360◦ videos or 3D virtual worlds. Like other data-

driven optimization approaches [63], detailed sensor data are collected from VR users’

HMDs and the controllers for higher prediction accuracy and visual quality of streamed

content [50]. Doing so, however, could lead to privacy threats [41, 134], including but

not limited to VR users’ identity [88], height/fitness [93], and typed text [113], which are

often overlooked because trajectories are collected in the background. Moreover, because

of the large amount of various data types that VR can collect and the unclear policies

for VR companies to deal with users’ data, the potential privacy threats for VR users are

unlimited [41].

To study these privacy threats in VR, we first turn to existing datasets collected from

VR applications. Most of the VR datasets are collected with the users consuming 360◦

1



Figure 1.1: A VR user interacts with a VR application via the HMD and two hand-held

controllers.
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(a) (b)

(c)

Figure 1.2: Unique privacy-sensitive data that our dataset provides: (a) physical RGB

video, (b) physical depth video, (c) answer to the demographic questionnaire.
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Figure 1.3: The concept of the privacy-threats mitigation for VR applications.

videos [1, 19, 36, 44, 50, 51, 73, 122, 138–140]. However, here, we focus on the behaviors

of the VR users exploring 3D virtual worlds. There are quite a few VR datasets collected

with 3D virtual worlds [20, 26, 52, 146]. We found that all existing public 3D-virtual-

world VR datasets were collected for enhancing the quality of users’ experience instead

of studying the users’ privacy. To investigate VR users’ privacy comprehensively, some of

the privacy-sensitive data types as shown in Fig. 1.2, such as the users’ actual appearances

while experiencing VR as shown in Fig. 1.2(a) and Fig. 1.2(b), and some demographic

data of the users as shown in Fig. 1.2(c), should be included in the dataset either for being

the ground-truth data or for more intensive privacy study. Though there are two datasets

collected for studying privacy issues, which were collected with 360◦ videos [88], and

a 3D virtual world [93], these datasets were collected only for the authors’ research and

were kept private. Moreover, some of these datasets [20, 93] focus on the scenarios in

which users are completing some missions, for example, playing games. However, we

want to study the privacy issues when users are just exploring 3D virtual worlds naturally

without doing any task. Therefore, we designed a collecting procedure and set up the

collecting testbed, recruiting 31 people to provide a public 6DoF (6 Degrees of Freedom)

VR dataset of 3D virtual worlds. Besides those basic VR sensor data, including VR users’

trajectories and eye gaze data, the dataset also contains the privacy-sensitive data of the

VR users. The dataset is not only collected to study the privacy threats in VR, but also

to investigate other potential privacy issues in VR, such as evaluating the efficiency of a

privacy-preserving approach to protect VR users from privacy threats.

With the dataset, we can study how attackers can threaten VR users, and figure out

the approaches to defeat those privacy threats. Fig. 1.3 illustrates a possible attacker that

analyzes the trajectory from HMD sensors to threaten the privacy of a VR user, who is

immersed in VR applications. If the raw trajectory is directly streamed to other entities

without perturbation as shown by the dashed line in Fig. 1.3, user privacy may be threat-

ened. Privacy threats can happen not only when the trajectories are being streamed, but

also any entities that are not the users themselves. The encryption [125] cannot solve

the problem since the raw trajectories are disclosed after decryption. A sample threat is

the re-identification attack [88], referring to recognizing the identity of a VR user using

their trajectory alone. One way to mitigate privacy threats is to systematically add noise

4



to trajectories (or other extracted features) to get perturbed trajectories, which are less

vulnerable to privacy threats. Here, by “systematically”, we refer to random noise from

some mathematical frameworks that ensure a VR user’s privacy among a set of VR users,

known as a population. One popular framework is differential privacy [21], which offers

a control knob ϵ for trading off individuals’ privacy and the population’s statistics. In

general, higher ϵ values lead to more accurate statistics at the expense of revealing more

privacy of individuals. Differential privacy has been adopted in some VR applications

to answer questions like: (i) What is the average gaze fixation time when reading a text-

book [116]? and (ii) What are the objects gazed at by under-performing students [71]?

Following a similar approach, and building upon it, we introduce a disturber that adds

noise, or perturbations to individual VR users’ trajectories to mitigate privacy threats as

shown in Fig. 1.3. By properly adjusting ϵ, VR users could trade off the amount of re-

vealed privacy and the achieved visual quality of VR applications. Even if an attacker

gathers perturbed trajectories from the population, they will still have a hard time launch-

ing attacks guaranteed by the differential privacy framework.

In this thesis, we first collected a 6DoF VR dataset in 3D virtual worlds for our pro-

posed privacy-preserving approach. Next, we set out to develop a disturber for trajectories

of VR users to mitigate privacy threats. A straightforward way to design a disturber is to

generate a fixed offset for each element of a VR user’s trajectory, and add the same offsets

to the whole trajectory [93]. Such an approach, however, ignores the temporal correlation

among the poses of each trajectory. To cope with that, our disturber adopts the recently-

proposed approach [144] to sequentially add different offsets drawn from a probability

distribution to individual poses over time. While doing so, intuitively, leads to stronger

protection against privacy threats, perturbed trajectories incur negative impacts on the vi-

sual quality of rendered scenes. More specifically, the rendered views are likely to be

shaky. Fig. 1.4 shows the rendered view of a pose at a moment in time. The rendered

view with a perturbed pose is askew, as shown in Fig. 1.4(b), compared to the rendered

view with the original pose, as shown in Fig. 1.4(a). While the perturbed rendered views

at different moments skew differently, the VR users may encounter severe cybersickness.

To deal with this issue, we introduce a compensator that implements an efficient image

warping algorithm [76, 120] to transform every rendered image from its perturbed pose

back to that from its original pose. As shown in Fig. 1.4(d), by doing so, we turn the shaky

rendered views caused by perturbed trajectories back to normal, compensated views.

1.1 Contributions

This thesis makes the following contributions:
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(a) (b)

(c) (d)

Figure 1.4: The rendered scenes: (a) original view with 110◦ FoV, (b) perturbed view with

110◦ FoV, (c) original view with 104◦ FoV, and (d) compensated view with 104◦ FoV.

• We collected and released one of the very first 3D-virtual-world 6DoF VR datasets

for VR developers and researchers to investigate privacy issues in VR. The scripts

that we use to log the sensor data are also included. Prior datasets either collected

with 360◦ videos [1, 19, 36, 44, 51, 73, 122, 138–140], which is 3DoF, or lacked

privacy-sensitive data of the subjects to complete such investigation more inten-

sively and comprehensively [20, 26, 52, 146].

• We developed a disturber to add perturbations to time-series of poses on-the-fly to

mitigate privacy threats. Prior works either ignored the temporal correlation [69,93]

or added perturbations offline [15, 17, 71, 116].

• We created a compensator to warp rendered views to eliminate the shakiness caused

by perturbations introduced by the disturber. Doing so allows us to avoid visual

quality degradation due to perturbations.

• We realized an ML algorithm for the re-identification problem [88] to exemplify

privacy threats, and evaluate the effectiveness of our solution. We conducted exten-

sive evaluations with our public VR dataset [137] captured from 3D virtual worlds

to derive the privacy-quality tradeoff for our disturber with and w/o the compensa-

tion.

Our evaluation results demonstrate the merits of our solution: (i) our disturber alone

reduces at most 0.4 re-identification rate compared to the state-of-the-art approach [93]
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under the same ϵ values, (ii) our disturber alone outperforms the state-of-the-art approach

by 2.5 dB in PSNR, 0.1 in SSIM, and 10 in VMAF under the same privacy settings, and

(iii) our compensator further improves the visual quality by at most 6.83 dB in PSNR,

0.45 in SSIM, and 34.57 in VMAF.

1.2 Organizations

We first introduce the limitations of the existing 6DoF VR dataset and privacy-preserving

approaches for VR applications, and the challenges to protect VR users’ trajectories in

Chapter 1. Chapter 2 gives some background knowledge of the VR network system, the

differential privacy framework, the AutoRegressive model, which we use to model VR

users’ trajectories, and the Linear Minimum Mean Square Error estimator that we used to

estimate the VR users’ trajectories. We next survey the existing 6DoF VR datasets and the

perturbations related to VR data in Chapter 3. We present the collecting procedure, the

content of our 6DoF VR dataset, and some sample usages of our dataset, which inspired

the idea of our proposed privacy-threat mitigation methodology in Chapter 4. In Chapter 5

we introduce the privacy threats with the described networked VR system, list the existing

privacy threats in the literature, and discuss the pros and cons of the placement of the

perturbation along the networked VR system. We then elaborate on each component, the

operations of the components with the defined notations, and the implementation of our

proposed perturbations and compensation approaches respectively in Chapter 6. Then we

evaluate the efficiency of our disturber with a state-of-the-art privacy-preserving approach

using our 6DoF VR dataset in Chapter 7. Last, we summarize the whole thesis and list

the future works in Chapter 8.
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Chapter 2

Background

In this chapter, we introduce some pieces of background knowledge that support this

thesis, i.e., the Networked VR Systems, Differential Privacy, AutoRegressive Model, and

Linear Minimum Mean Squared Error.

2.1 Networked VR Systems

Platform Apps.

Daemon

Sensor

Readings

Sensor

Readings

VR User

View

Network

Messages

Network Messages

Other

Users

HMD
OS

Figure 2.1: A general networked VR system.

Fig. 2.1 shows a networked VR system [50, 93], generally including five entities:

1. HMD OS. The operating system on the HMD that a VR user is equipped with.

It tracks the user’s sensor data to enable VR services. Usually, the user is also

equipped with two hand controllers, and the controllers are also tracked for the VR

services.

2. Platform. The VR platform, such as SteamVR [115] and VIVEPORT [49], acts as

the bridge between VR users and VR service providers. It provides APIs for VR

applications to access the tracking data to support their service to the users. On the

other hand, it provides a comprehensive VR service to the user, such as providing

lots of VR applications for the users to install and access.
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3. Application. VR applications provide VR services to users. A VR application can

be a VR game like Beat Saber [38], or a VR healthcare system like RelieVRx [6],

which can be developed with a game engine, such as Unity [129]. Usually, VR

applications are installed on users’ PCs. Users can access the applications by con-

necting to the PC. VR applications use the API provided by the VR platform to

access users’ tracking data and other needed information to support their services

to the users.

4. Daemon. In cases where the VR application involves online interaction with other

players, the ser daemon on an external server is utilized to connect all the users for

exchanging data. Examples of providers of such servers include Eclipse [25] and

Fozzy [35].

5. Other Users. Other users of a VR application. Similarly, the users also have their

own HMD, VR platform, and installed VR application.

In the networked VR system, one or multiple VR users are connected to one or multi-

ple servers via the Internet. Every VR user interacts with a virtual world in 6DoF through

an HMD and two controllers. The HMD/controller sensor readings are sent into a VR

platform which host various VR applications. Generally, developers of VR platforms

closely work with providers of servers. Various messages are exchanged among VR plat-

forms used by individual VR users. Both the sensor readings and network messages carry

VR users’ trajectories to enable immersive experiences for VR users.

2.2 Differential Privacy

Differential privacy is a privacy framework that utilizes mathematics to quantify the

amount of privacy that a privacy mechanism provides. Here, the privacy mechanism is

a randomized algorithm that provides privacy protection for data. There are numerous

famous companies that leverage differential privacy to protect their users. For example,

Apple and Google use differential privacy to collect their user data from their browsers,

Safari and Chrome, respectively, for various use cases such as the preferences of media

playback [28, 123]. Differential privacy was first invented to quantify the privacy amount

for statistical datasets [133], which guarantees that the answer to a query, which means

any analyses or statistics for the dataset, does not mainly depend on any entry in the

dataset. In other words, whether an entry is in the dataset or not does not affect the result

of the query too much. For example, there is a dataset D containing the height of ten

people. The dataset is kept private, while the average height of the ten people is public.

In this case, the query is “what’s the average height of D”. Now, one of the ten people’s
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height is removed from the dataset and leads to another dataset D′, which is also private.

If an attacker now queries for the average height of D′, then the height of the removed

person is disclosed. Fortunately, if the average height is protected by a privacy mech-

anism before being released, the removed data can be kept confidential as well. There

are various kinds of differential privacy [133], such as ϵ-Differential Privacy [21], (ϵ, δ)-

Differential privacy [22] and geo-indistinguishability differential privacy [4]. Among

them, ϵ-Differential Privacy is one of the most popular types of differential privacy. It

uses a parameter ϵ to represent the privacy budget, which determines the most amount of

privacy leakage. A larger value of ϵ means more privacy budget and leads to less privacy

protection. More specifically, let M be a random algorithm to protect the dataset D, and

D′ is the dataset that is one entry different from D. S is a subset of the output of the

query. We say that the privacy mechanism M is ϵ-differential privacy if it satisfies

P [M(D) ∈ S] ≤ exp(ϵ) · P [M(D′) ∈ S]. (2.1)

Several privacy mechanisms are developed to achieve differential privacy, such as the

Laplace mechanism [22], the Gaussian mechanism [23], and the Exponential mecha-

nism [23]. The Laplace mechanism uses Laplace distribution to generate random per-

turbations, while the Gaussian mechanism generates random perturbations with Gaussian

distribution. The scale b of the distribution is determined by ∆f/ϵ, where ∆f is the l1

sensitivity of a query, which is the amount of change in the query output when one en-

try is added or removed. The Exponential mechanism requires a utility function util(·)
to determine the quality of the perturbed data r′ based on its original data r, where r is

generated from

r′ ∼ exp(
ϵ · util(r, r′)
2 ·∆util

). (2.2)

2.3 AutoRegressive Model

The AutoRegressive (AR) model [142] is a random process; it is a classic linear model that

leverages mathematics and statistics to model the time series data [72, 75]. In AR, the

current data are derived from the previous data. We can model the AR model with order

p, which is denoted as AR(p), as:

Vt = Σp
i=1ϕiVt−i + Ut, (2.3)

where ϕ1, ϕ2, . . . , ϕp are the model parameters, and Ut is white noise. Therefore, the

First-order AR model, AR(1), is:

Vt = ϕ1Vt−1 + Ut. (2.4)
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Here, Ut is the white noise with zero mean and variance σ2
U , where Ut

iid∼ N (0, σU
2),

where N (·) denotes a normal distribution, and ϕ1 is the autocorrelation ρ of the model. If

|ϕ1| < 1, then the means of Vt, E(Vt),∀t are identical and equal to zero, and the variance

of Vt is

σv
2 =

σU
2

1− ϕ1
2 = ϕ2σv−1

2 + σU
2. (2.5)

The Gaussian AR process [135] is one of the commonly used First-order AR in various

domains:

Vt = α + ρVt−1 + Ut, t ≥ 1, (2.6)

where V0
iid∼ N (µ, σv

2), and ρ is the autocorrelation of {Vt}Tt=1. If {Vt}Tt=1 is a stationary

Markov process, then Vt ∼ N (µ, σv
2), and α = µ(1− ρ), where µ = 0.

2.4 Linear Minimum Mean Squared Error

We use Linear Minimum Mean Squared Error (LMMSE) to determine the estimated func-

tion. LMMSE is an estimate method that minimizes the Mean Square Error (MSE) of a

linear model. Let x ∈ X be an unknown random variable, y ∈ Y be a known variable,

and x̂(y) be an estimator of x given by y:

x̂ = x̂(y). (2.7)

The MSE of the estimated value x̂ is

MSE = E(x̂− x)2, (2.8)

and the Minimum Mean Square Error (MMSE) estimator is

MMSE = argmin
x̂(y)

E(x̂− x)2. (2.9)

If the estimated function is a linear model, where

x̂ = x̂(y) = ay + b, (2.10)

then the MMSE of the function, which is the LMMSE, is

MSE = E[(ay + b− x)2] (2.11)

with the following properties:

1. a = â = ρXY σXσY

σY
2

2. b = b̂ = E(X)− âE(Y )
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3. The LMMSE = (1− ρ2XY )σX
2

4. E[(X − âY − b̂)Y ] = 0

where ρXY is the correlation coefficient of X and Y , and σX and σY are the variance of

X and Y respectively. Then the formula for X̂ is

X̂(Y ) = ρXY
σX

σY

(y − E(Y )) + E(X). (2.12)
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Chapter 3

Related Work

In this chapter, we first introduce the existing VR datasets, including those collected with

both 360◦ videos and 3D virtual worlds. Next, we present existing privacy-preserving

approaches for eye gaze data that are collected from both non-VR and VR applications,

and the trajectory of VR users.

3.1 6DoF VR Dataset

Datasets of 360◦ video. 360◦ video streaming is one of the early VR applications [50],

and there are quite a few datasets [1, 19, 36, 44, 51, 73, 122, 138–140] for diverse research

purposes. Datasets [19, 73, 138, 139] are mainly used for designing and evaluating view-

port/gaze prediction algorithms, where the head and/or eye movement of users are col-

lected. For example, Lo et al. [73] recorded HMD’s 6DoF data and used HMD’s yaw,

pitch, and roll to render saliency maps [14, 96] and motion maps [58] of users, and Xu et

al. [139] recorded the eye and head movements of 31 HMD users when watching 360◦

videos to evaluate gaze prediction algorithms. There are datasets [1, 51] that contain eye

movement [68] only, which are used for classifying eye movement [81, 91, 109]. For

example, Agtzidis et al. [1] recorded and classified low-level eye movement into four cat-

egories: fixation, saccade, smooth pursuit, and noise, and Hu et al. [51] considered four

high-level movements: free viewing, visual search, saliency, and track items. To under-

stand the relationship between simulator sickness [60] and user head rotations, Fremerey

et al. [36] collected a 360◦ video streaming dataset of head orientations and simulator

sickness levels. Besides, several datasets [44, 122, 140] were gathered to analyze the cor-

relation among biometrics, head/eye movement, and user emotion. We note that some

360◦ video datasets [36, 44] do record users’ head positions. However, as users can only

move in 3DoF when watching 360◦ videos, changing the head positions incurs no effect

on the rendered views, and the displacements of positions in these datasets have been
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found to be small. However, these datasets do not include personal attributes (e.g., age,

gender, and height), and thus cannot be used to evaluate privacy-preserving approaches

for personal attributes.

Undisclosed dataset of 360◦ video related to privacy. Miller et al. [88] collected a

dataset which includes the 6DoF trajectories from HMDs and two hand-held controllers

of VR users viewing five different 360◦ videos. They then used the dataset to evaluate

the feasibility of identifying the users’ identities with three different machine learning

algorithms, i.e., the k-Nearest-Neighbors (kNN), the Random Forest, and the Gradient

Boosting Machine (GBM). The result shows that the identification rate can achieve 95%

with that large amount of users. Although the dataset consists of data from 511 users,

it has not been released and does not provide privacy-sensitive data about the subjects.

Besides, all datasets of 360◦ video are not collected in the 3D virtual world with 6DoF

interactions. Therefore, they cannot be used to investigate the privacy issue when intro-

ducing other types of user data, such as actual appearance.

Datasets of 3D virtual worlds. There are some datasets [20, 26, 52, 146] that record

HMD user behavior when they were exploring 3D virtual worlds. Datasets [26,52] include

trajectories of head movement, key-strokes of the two hand controllers, gaze, and scenes

viewed by users. The former evaluated gaze prediction algorithms with their dataset and

found that non-eye sensor data lead to more accurate gaze prediction, and the latter an-

alyzed the correlation between the user gaze and head position. Dong et al. [20] col-

lected users’ trajectories of head movement and heart rate data while they were playing

different kinds of VR games, i.e., Aircar [40], Beat Saber [38], Moss [102], Arizona

Sunshine [121], and SUPERHOT [124]. The subjects were asked to fill out a simulator

sickness questionnaire for studying the impact of each VR game on the cybersickness in

VR. Datasets [146] provide the trajectories of 3D eye movement when users explore a

virtual museum. The dataset was used to train a gaze prediction model. However, these

datasets did not include the actual appearance of users, which may cause more severe pri-

vacy leakage or personal attributes, and thus cannot be used as a comprehensive dataset

to investigate privacy issues.

Undisclosed dataset of 3D virtual worlds related to privacy. Nair et al. [92] de-

signed an innocent-looking VR game and recruited 30 users to play the game. During the

game, the users were requested to complete multiple tasks to escape the rooms, such as

pressing a button, speaking out the word written on the wall, and mimicking the poses

drawn on the wall. While the users were playing the game, some data, such as the 6DoF

trajectories of users’ HMDs and controllers and their voices were secretly collected. They

then accurately inferred over 25 personal data attributes of the 30 users from these col-

lected data, The inferred data include biometrics data such as height and fitness, envi-
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ronment such as room size and geolocation, device specifications, acuity, which are the

grades of the Montreal Cognitive Assessment (MoCA) [55] test, and demographic data

such as language and gender. The inferred results show that attackers can successfully

harvest VR users’ data in VR applications to threaten VR users’ privacy. Although they

collected multiple personal data attributes as ground-truth values, the dataset has not been

released.

Consequently, we conclude that there is no public VR dataset of 3D virtual worlds

that can be used for comprehensive investigations of privacy issues.

3.2 Privacy-Preserving Methodologies

Perturbations for eye gaze data collected from 2D content. To preserve viewers’ pri-

vacy, perturbations have been added to eye gaze traces collected when users watch con-

tent on 2D monitors [37, 69, 71]. For example, Fuhl et al. [37] leveraged reinforcement

learning [7] to add noise to the scanpath images generated from eye gaze traces. An

autoencoder [143] is used to generate the scanpath images with lower resolution, which

is seen as a method of adding perturbations to the images. The lower-resolution image

is then fed into a classification agent to predict the privacy level of the perturbation by

using different benign and malicious applications, such as document-type classification

and gender inference. A manipulation agent then evaluates the predicted privacy level,

scores the prediction, and manipulates the autoencoder based on the score. Liu et al. [71]

added perturbations to aggregated saliency maps with Gaussian and Laplace differential

privacy, and derived the privacy-utility tradeoff with the mean square error and the cross-

correlation before/after adding perturbations. These two works focused on aggregated

statistics, such as scanpath images and saliency maps, in an offline fashion. In contrast,

Li et al. [69] introduced a perturbation system for eye gazes on-the-fly using the variant

of differential privacy, i.e., the geo-indistinguishability [4] and w-event differential pri-

vacy [59]. The system can be integrated into different kinds of eye-tracking applications.

Different from these papers on 2D monitors, our work focuses on trajectories from VR

users’ HMDs.

Perturbations for eye gaze data collected from VR. Although perturbations have

also been added to eye gaze traces collected from HMDs, most prior studies [15, 17,

116] focused on extracted eye features [68], such as fixations, saccades, and blinks. For

example, Steil et al. [116] collected an eye gaze dataset containing 52 eye movement

features of 20 subjects. They then added noise to the extracted features using exponential

differential privacy. They then derived a privacy-utility tradeoff using the document-type

classification problem, which estimates the document type gazed by an HMD user. David-
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John et al. [17] adopted plausible deniability [12] and presented k-anonymity, which was

adapted from k-same-select [43], to design a privacy-preserving approach for eye gaze

features, with mathematical definitions but limited utility degradation, and also in the

document type classification problem. Bozkir et al. [15] considered temporal correlation

in eye gaze traces by extending the Fourier perturbation algorithm [103], and then added

noise to the extracted features. Very few works directly added perturbations to eye gaze

traces from HMD users. To the best of our knowledge, there is only a prior paper [18]

that perturbed eye gaze traces, and derived privacy-utility tradeoffs using applications like

gaze prediction algorithm and saliency map generation. Different from these works that

considered eye gazes only, our paper considers trajectories from VR users’ HMDs.

Perturbation for VR trajectory data. Adding perturbations to non-eye-gaze data

from VR users has only been recently explored. For example, Wei et al. [136] added

noisy tiles around the tiles within a VR user’s viewport when streaming a 360◦ video to

them. They then empirically derived the tradeoff between viewport prediction accuracy

and viewing experience. With the defined degree of privacy function, they found that the

noisy tiles may degrade an algorithm but improve the overall user QoE. Such an approach,

however, is tightly coupled with VR applications, i.e., 360◦ tiled video streaming. Nair et

al. [93] is probably the closest work to ours. They added perturbations to HMD trajecto-

ries using Laplace differential privacy. Particularly, they first drew random perturbations

from a probability distribution for features, such as height and fitness, which are inferred

from the user’s VR pose, They then converted perturbed features back to perturbed trajec-

tories. Different from their work, our paper takes the temporal correlation among poses

in each trajectory into account when adding perturbations directly to trajectories.
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Chapter 4

VR Dataset

We elaborate on the collection testbed, the collecting procedures, and the data cleanup

manner in this chapter. We then use the dataset to study the VR privacy threats and the

potential privacy-preserving approaches for VR trajectory, which inspire the development

of our privacy-threat mitigation system.

4.1 Collection Testbed

This section describes the hardware and software used to collect our dataset.

Hardware. Fig. 4.1 illustrates our collection testbed. We first introduce the employed

hardware pieces.

• VR PC. It is a PC with an Intel i9-9920X CPU, 64 GB RAM, and an NVIDIA

GeForce RTX 3080 Ti GPU. We installed Windows 10 on this PC to render HMD

views and collect data.

• HMD and controllers. We chose HTC VIVE Pro Eye and its corresponding con-

trollers, mainly for its built-in eye tracker. The HMD is connected to the VR PC

with DP 1.2 and USB-C 3.0 cables. A converter box combines the two cables into

a single cable to the HMD.

• VIVE Beacons. The HMD localization is realized with the help of two VIVE

beacons from HTC.

• RGBD PC. It is another PC with an Intel i7-10875H CPU and 32 GB RAM for

RGBD video recording from the RGBD camera.

• RGBD Camera. Some VR applications require users’ actual appearance to recon-

struct the virtual scenes they are in [16]. For instance, in teleconferences, we may

want to talk with avatars similar to the remote participants’ actual looks. Therefore,

we use an Intel RealSense D435 camera to capture HMD users’ actual appearance

in RGB and depth videos while exploring 3D virtual worlds. The camera is con-
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Figure 4.1: The setup of our testbed.

nected to the RGBD PC with a USB-C 3.0 cable.

These hardware pieces are placed in a hallway of our EECS building. Within a 4

× 4 m2 space, we configure virtual barriers at the center, the dimensions of which are

shown as the dashed box in Fig. 4.1. Users are warned when approaching the barriers

for safety. Two beacons are placed at opposite corners just outside the barriers. We use

Network Time Protocol (NTP) to align the clocks of different PCs, These clocks provide

synchronized timestamps of collected samples. To use our dataset, one can align samples

captured by different sensors using the timestamps in the granularity of milliseconds.

Software. Next, we present the key software applications and libraries adopted by our

collection testbed.

• Rendering engine. We use Unity [129] version 2021.3 as our rendering engine. We

create a Unity VR project and import different scene assets from the Unity Asset

Store [130] to create multiple virtual worlds. We configure the rendering settings

through Unity GUI, such as the frame rate and camera parameters.

• World creation Toolkit. XR Interaction Toolkit [132] is a package for creating

virtual worlds. We employ version 2.2.0, which provides a game object called XR
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Origin representing the HMD user in a virtual world. XR Origin is composed of (i)

a camera representing the HMD user and (ii) two game objects representing the left

and right controllers. We place an XR Origin at a suitable location in each scene.

• Scripting language. We use the Unity scripting API [131] to sense and record

HMD user movements.

• Eye tracker. We adopt Tobii XR API [126] for accessing the eye gaze data, which

include: (i) eye origins in 3D coordinates, (ii) eye orientations in normalized vec-

tors, and (iii) convergence distances.

• Camera interface. We use a python wrapper [105] of Intel RealSense SDK 2.0

[104] to acquire physical RGBD videos of the subjects from the RGBD camera.

Building upon the above software, we developed a suite of tools as follows:

• Sensor logger. It consists of two modules for HMDs and eye trackers, respec-

tively. The HMD module is written as Unity scripts to record: (i) the locations

and orientations of the HMD with GetComponent(· · ·), (ii) the locations and

orientations of the controllers with GameObject.Find(· · ·), and (iii) the key

strokes of the controllers with TryGetFeatureValue(· · ·). The eye-tracking

module adopts Tobii XR API’s GetEyeTrackingData(· · ·) to track the user

gaze. All the sensor data from the HMD, controllers and eye trackers, except the

object locations and orientations, are timestamped and stored in Comma-Separated

Values (CSV) files. The object locations and orientations are saved in JavaScript

Object Notation (JSON) files.

• RGBD recorder. We implement a Python-based RGBD recorder on top of the

RGBS camera interface. We invoke config.enablestream() to enable the

streams for both RGB and depth cameras. We initialize the recording pipeline

by calling pipeline.start(config). We set the depth sensor with sev-

eral options including gain, enable auto exposure, laser power, and

visual present. After that, a while loop starts for recording the RGB and

depth frames into mp4 files with OpenCV [99]. The raw depth values are also

saved as npy files.

• Data visualizer. We implement a visualizer to convert sensor data into videos to

inspect sensor data and remove outliers. The visualizer only supports CSV files.

In particular, we use pandas to read these data files and matplotlib to plot

the sensor data into images. Last, we adopt ffmpeg to concatenate a sequence of

images into videos.

The tools are included in our dataset.

Considered Scenes. We consider VR applications where HMD users freely explore

VR worlds without performing assigned tasks. We built four scenes with diverse charac-
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Figure 4.2: The considered scenes: (a) city, (b) nature, (c) office, and (d) gallery.

teristics: two outdoor ones, which are city [39] and nature [111]; and two indoor ones,

which are office [117] and gallery [65]. We chose these scenes since they differ in the

types of views and the space size. For the two outdoor scenes, the city has a larger space

than nature; for the two indoor scenes, the gallery has a larger space than the office. See

Fig. 4.2 for sample rendered HMD views. In each scene, we added 2–5 objects, such as

cars, cookies, and statues, for users to interact with. Such interactions may lead to un-

noticed privacy leakage. For instance, left-handed subjects may interact with the objects

using their left hands more often. We only collected the dataset with four scenes due to

the time limitation. It requires about 20 minutes for each subject to finish the collection

with the four scenes, which does not include the time for adapting the unstable hardware.

The total collection for all 31 subjects lasts a week to accommodate every subject’s time.

However, it is acceptable to consider new scenes in the collection. To add a new scene,

import the scene to your Unity project, create an XR Origin game object, and add the

provided tracking scripts, i.e., TrackingObj.cs and Tracking.cs, as components of your

XR Origin.

4.2 Dataset Collection

In this section, we introduce our dataset.

Procedure. We recruit a set of subjects for collecting the dataset. Each subject
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Table 4.1: Our Demographic Questionnaire.

Age □ 15-20

□ 21-25

□ 26-30

□ 31+

Gender □ Male

□ Female

Height (m) □ 1.50-1.55

□ 1.56-1.60

□ 1.61-1.65

□ 1.66-1.70

□ 1.71-1.75

□ 1.76-1.80

□ 1.81+

Correlated Eyesights Left:

Right:

Handedness □ Left

□ Right

first signs the informed consent and fills out the demographic questionnaire and the back-

ground of the subjects’ VR experience. The content of the two questionnaires is listed in

Table 4.1 and Table 4.2 respectively. Our research assistants helped the subject set up the

HMD and controllers. The subject then calibrated the HMD eye tracker before the scenes

were rendered. We rendered the four considered scenes sequentially for the subject to

explore. Each scene lasted for two minutes. We skipped 2.5 seconds at the beginning

and end when recording the sensor data to prevent missing data samples due to high and

fluctuating system workload. Between any two scenes, the subject filled in an experi-

ence questionnaire to provide feedback on the immersive level of the virtual world. The

questions of the experience questionnaire are listed in Table 4.3. The subject answered

each question verbally with help from the research assistants. We gave each subject a 30-

second break before the next scene started to avoid fatigue. Typically, it took a subject 20

minutes to complete their data collection. The subjects were allowed to skip any question

or quit the data collection session at any time. Among 31 subjects, none of them opted

for those two options.

For each subject, we collected the following data.

• HMD locations and orientations. The 3D world coordinates and quaternions of
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Table 4.2: Our VR Background Questionnaire.

How many times have you used □ 0

VR before? □ 2-5

□ 6-10

□ 11+

How often did you experience □ 1 (Never)

motion sickness when using VR? □ 2 (After 1 minute)

□ 3 (After 3 minutes)

□ 4 (After 5 minutes)

□ 5 (Always)

the HMD in the VR world over time are recorded.

• Controller locations and orientations. The controller coordinates, and quater-

nions are saved

• Controller key strokes. We record the keys pressed by subjects to interact with the

added, interactable objects during their exploration. More specifically, we record

the (i)grip button states and (ii) fingertip 2D coordinates on the touchpad of HTC

VIVE controllers.

• Eye gaze. It is composed of (i) eye origin in 3D coordinates, (ii) eye orientations in

3D vectors, and (iii) convergence distance in meters.

• Object locations and orientations. The 3D world coordinates and quaternions of

each interactable object in the virtual world.

• Physical RGBD videos. The RGBD videos of subjects’ appearance and movement.

Both the RGB and depth channels are encoded by H.264 into mp4 files. We also

save the raw depth values in npy files.

• Questionnaire. We collect demographic and VR background questionnaires once

for each subject and an experience questionnaire after the subject explores a scene.

We configure the data logger and other software modules to collect data samples at

the following rates: (i) HMD, controller, and object locations and orientations, as well

as controller key strokes at 50 Hz, and (ii) RGBD videos at 30 Hz. Note that the views

in HMD can be rendered offline by the Unity engine using the collected locations and

orientations of the HMDs, controllers, and objects. The resulting virtual world RGBD

videos may be useful when investigating the privacy concerns of VR applications.

Data Cleanup. During our data collection, we noticed that the eye gaze data from

Tobii XR API [126] may be invalid due to some situations, for example, when the subject

is not looking at the screen [127].
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Table 4.3: Our Experience Questionnaire.

How is the overall quality? □ 1 (Very bad)

□ 2

□ 3

□ 4

□ 5 (Great)

How is the visual quality? □ 1 (Very bad)

□ 2

□ 3

□ 4

□ 5 (Great)

Do the objects move as you expect? □ 1 (Very bad)

□ 2

□ 3

□ 4

□ 5 (Extremely)

How is the immersive level? □ 1 (Very bad)

□ 2

□ 3

□ 4

□ 5 (Great)

Would you continue exploring the scene □ Yes

under the current system quality □ No

and immersive level?

After collecting sensor data from 31 subjects, we ran a sanity check and found that 7

subjects suffered from 10+% loss on gaze samples in at least one scene. Therefore, we

excluded these 7 subjects from our dataset, which then contained 24 subjects.

Although we configured the testbed to save HMD, controller, and object samples right

after each frame of the HMD view is rendered in Unity, the VR PC cannot always keep

up with the target frame rate of 50 Hz. Fig. 4.3 gives the distributions of individual

subjects’ average Unity frame rates in different scenes. This figure reveals that City has

a lower frame rate (about 40 Hz) than other scenes. A closer look indicates that City is

almost 20 times larger than the three other scenes regarding volume. Therefore, rendering

City incurs higher computational complexity and lower unity frame rate. Because of the

non-trivial workload, we found the timestamps of sensors (other than the RGBD camera)
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Figure 4.3: The distribution of average frame rates in Unity.

Table 4.4: Fractions of Removed Outliers

Mean Std.
HMD 1.2% 3.2%

Left Ctrl. 3.5% 5.1%

Right Ctrl. 3.0% 3.5%

Gaze 5.1% 4.0%

occasionally suffer from jitters. We, therefore, slightly augment the timestamps to equally

space sampling falling in the same duration of 1 second.

Theoretically, the sampling rates of sensors connected to the VR PC should align with

the unity frame rate. However, we inspected the collected sensor data and found that the

gaze data may be invalid in some situations. Moreover, we found that the sampling rates

of HMD, controller, and object are the same as the frame rate of Unity, and our dataset

may only miss some gaze samples. In particular, we miss 1.65% gaze samples on average,

with a standard deviation of 1.62% across all 96 subject-scene pairs.

Like other measurement studies, our collected sensor data may suffer from noise that

needs cleaning. For example, when a subject moves to some blind spots of VIVE beacons,

the locations and orientations of the HMD and controllers could be incorrect. We first

visualize the collected sensor data to find outliers, then propose the following heuristics

to detect and remove outliers.

• HMD. Samples falling outside of the 4× 4m2 barrier box are removed.
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Figure 4.4: The sampling rates of individual sensors in the cleaned-up dataset. The error

bar of RGBD is too short to be visible.

• Controller. Samples with a distance longer than 1.1 m from the HMD are removed.

We get 1.1 m by measuring the distance of the tallest subject, 1.86 m.

• Gaze. Samples with a distance longer than 0.1 m from the HMD are removed. We

get 0.1 m from the physical size of our HMD.

Table. 4.4 gives the fractions of removed outliers across 24 subjects. The cleaned-up

sensor data are put together into our dataset.

Basic Statistics. We notice that samples from different sensors are not synchronized

in our dataset. Fig. 4.4 summarizes the average sampling rates of different sensors across

24 subjects, where error bars indicate 95% confidence intervals. While the detailed demo-

graphic data of our subjects are given in the dataset, we give high-level statistics below.

• Gender. 75.0% of subjects are male.

• Age. All subjects are of 20–30 years old.

• Height. Most subjects’ height is between 1.70–1.75 m.

• Handedness. 91.7% of subjects are right-handed.

• VR experience. Half of the subjects have no VR experience.

• Simulator sickness. 9 subjects experienced simulator sickness.

Directory Structure. Fig. 4.5 shows the structure of our dataset. We briefly

introduce the top-level directories in the following.

• Questionnaires. They include the demographic and experience questionnaires as

two pdf files. The VR background questionnaire is merged with the demographic
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Questionnaires
demographic.pdf
experience.pdf
answers

demographic.csv
City exp.csv
Nature exp.csv
Office exp.csv
Gallery exp.csv

Tools
SensorLoggers

Tracking.cs
TrackingObj.cs

realsense.py
visualize.py
README.md

City
Trajectory

city $U.csv
city $U.json

PhysicalRGBD
city $U.mp4
city depth $U.mp4
city $U.txt

Nature
. . .

Office
. . .

Gallery
. . .

README.md
change.log

Figure 4.5: Directory structure.

1: user id, answers to the demographic questions and VR background questions
2: 0, 20-25, Male, 1.71-1.75, 0.1, 0.1, Right, 0, 1 (Never)

3: 1, 20-25, Male, 1.71-1.75, 1, 1, Right, 2-5, 1 (Never)

4: 2, 20-25, Male, 1.66-1.70, 1.2, 1.2, Right, 2-5, 1 (Never)

5: 3, 20-25, Male, 1.66-1.70, 0.9, 0.9, Right, 10, 4 (After 5 minutes)

6: 4, 20-25, Male, 1.71-1.75, 1, 1, Right, 0, 1 (Never)

7: . . .

Figure 4.6: Sample lines of the demographic and VR background answer file.

one as one pdf file. The inputs from all subjects are saved in CSV files. The

demographic inputs of all subjects are saved in the demographic.csv file, and the

structure of the file is shown in Fig. 4.6. The experience inputs of all subjects

exploring each scene are stored in the $scene experience.csv file, where $scene

represents the scene name. Fig. 4.7 shows the sample lines of the City experience

answer.

• Tools. Two scripts, TrackingObj.cs and Tracking.cs, are provided for capturing

the sensor data with and without interactable objects. To use these two scripts,

import the scripts into your Unity project, and add the scripts as components of your

XR Origin. We also give realsense.py to capture the RGBD videos. In addition,

data visualizer.py is the script to visualize the sensor data.

• City (and other scenes). The sensor data from City (and other scenes) are stored

in this folder. The trajectory from HMDs, controllers, objects, and eye trackers
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1: user id, answers to the experience questions
2: 0, 3, 3, 3, 3, y

3: 1, 2, 3, 3, 2, n

4: 2, 4, 4, 4, 4, y

5: 3, 4, 5, 3, 4, y

6: 4, 3, 3, 2, 4, y

7: . . .

Figure 4.7: Sample lines of the City scene’s experience answer file.

1: Unity time, head pose, left/right ctrl. pose and key strokes, eye pose and conv., ntp time, user id
2: 0.08000000, -724.80690000, 26.66229000, -1040.00900000, . . . , 1673440396.17647076, 3

3: 0.09999999, -724.80690000, 26.66229000, -1040.00900000, . . . , 1673440396.23529434, 3

4: 0.12000000, -724.81010000, 26.66180000, -1040.01400000, . . . , 1673440396.29411793, 3

5: 0.14000000, -724.81510000, 26.66104000, -1040.02100000, . . . , 1673440396.35294151, 3

6: 0.16000000, -724.82840000, 26.65618000, -1040.04300000, . . . , 1673440396.41176510, 3

7: . . .

Figure 4.8: Sample lines of a City scene’s log file.

are stored in the city $U.csv and city $U.json files in the Trajectory folder, where

$U represents the subject id. Fig. 4.8 shows the sample lines of a log file. Note

that we do not remove the outliers in the JSON files due to the continuity of the

frames while rendering the HMD view. Under physical RGBD, the physical RGB

and depth videos are saved as city $U.mp4 and city depth $U.mp4, respectively.

Fig. 4.9 shows the frames of a sample RGB video and a sample Depth video. The

timestamps of RGBD frames are saved in city $U t.txt.

We include a README.md in several folders to guide researchers, engineers, and hob-

byists to use our dataset.

(a) (b)

Figure 4.9: Sample frames of physical RGBD videos: (a) RGB frame (b) Depth frame.
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4.3 Privacy Threats Investigations

In this section, we illustrate some privacy threats with our dataset, which can inspire the

design of privacy-persevering approaches.

Infer personal attributes: We use height and handedness as a toy example. To infer

the subjects’ height, we first calculate the distance from the XR origin and the sensed

HMD locations y coordinate to present the subjects’ height in Unity. The distance is the

height of the subject in meters since a unit in Unity equals one meter in the real world. We

then calculate these distances from each scene for each subject and average the distances

to get the average height of each subject. The average height of each subject is added by

0.1 meters to adjust the distance from the eyes to the top of their head. Next, we compare

the inferred height of each subject (denoted as h) to the ground truth (represented as

[ha, hb]). The inference is considered correct if h ∈ [ha − 0.05, hb + 0.05]. Note that

the added value for the range is for the error caused by the subjects’ movements, such

as jumping up and squatting down. The accuracy of inference is 75%, which can be

improved in the future. For handedness, we calculate the pressed times of grip buttons

on both the left and right controllers respectively for each subject. If the pressed times

on the left controller are more than that on the right controller, we infer that subject is

left-handed; otherwise, the subject is inferred to be right-handed. The inferred results

are also compared to the actual demographic data, and the inference accuracy is 58.33%.

The inference accuracy for both cases is not so good; therefore the heuristic inference

algorithms can be improved in the future.
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Figure 4.10: Comparison of feature importance from the different sensors.

Identify users: A more severe issue is that users may be identified with sensor data

of HMD. As in [88], we classified the trajectory, i.e., the HMD and two controllers’ lo-

cations and orientations, in our dataset to demonstrate the user identification issue. There

are various classification algorithms, such as Random Forest (RF), k-Nearest-Neighbors

(kNN), Gradient Boosting Machine (GBM), and Support Vector Machine (SVM). Among
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Figure 4.11: Comparison of feature importance from the different HMD data.
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Figure 4.12: The identification rate of the RF and SVM with different levels of noise.

these classifiers, we chose the RF and SVM in our experiment. A subject exploring a

scene is referred to as a task. The samples with outliers are skipped in this experiment.

We extract the features, i.e., the mean, standard deviation, median, maximum, and min-

imum values for the samples within each second. Then, there are at most 115 sets of

features for each task. We use the Scikit Learn [67] library to train RF and SVM classi-

fiers. For each task, the ratio of training and testing sets is 80:20. The results are averaged

over ten times of training and testing. The average identification rate of RF can achieve

96.41%. We then use the feature importance metric to analyze the dominance of the fea-

tures in user identification. Feature importance evaluates the significance of each feature

to the final identification; the sum of the feature importance scores is one. Fig. 4.10 shows

the feature importance score of each sensor. We gathered all the feature importance scores

of the features derived from HMD, left and right controllers, respectively, and found that

the sensor data of HMD is the most important. Similarly, we found that among the sensor

data of HMD, the y coordinate of the HMD location is the most important as shown in

Fig. 4.11, which is consistent with Miller et al. [88].
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Adding noise to preserve privacy: Adding noise to the raw data can preserve privacy.

Similar to adding Gaussian noise to eye gaze data [18], we use adding it to the trajectory

to demonstrate the impact of noisy data on user identification.

Gaussian noise is added to each dimension of each sample, i.e., each value v of each

dimension in each sample will become {v + N(0, σ)}. When adding noise, the utility

loses. We use the percentage of samples in each second added by noise to represent

the noise level. In the experiment, we set noise levels as 0%, 20%, 40%, 60%, 80%,

90%, 95%, 97.5%, and 100%. We trained and tested the classifier ten times for each

noise level and calculated the mean accuracy. The mean and standard deviation σ of the

Gaussian noises were set to zero and ten. Fig. 4.12 shows the mean identification rate

under each noise level for the RF and SVM classification algorithms. We can see that

the identification rate fluctuates when the noise level is lower than 70%, but degrades

drastically after that. When the noise level reaches 100%, it is hard to identify the HMD

users by their sensed data.

These prior tests show that the privacy of a VR user can be threatened by revealing

their trajectory. Therefore, it is essential to design a privacy-threat mitigation approach to

protect VR users’ trajectories. Adding extra noise (perturbation) to users’ trajectories is

one of the promising ways to achieve that.
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Chapter 5

Privacy Threats

In this chapter, we first introduce the threat model of our system, and list existing privacy

threats in VR. Next, we discuss the possible placements of our proposed disturber with

the pros and cons and how we can implement it for each placement.

5.1 Threat Model

As mentioned in Sec. 2.1, each entity in the networked VR system closely works together

with each other carrying VR users’ trajectories to provide VR services. Therefore, each

of the entities can be a potential malicious attacker that intercepts VR users’ trajectories.

For example, attackers may plug in malicious firmware to a try-out HMD in a video game

store to secretly steal the trajectories from the customers. Once the attackers get the VR

users’ trajectories, they can analyze the trajectories to reveal users’ privacy and threaten

the users.

In the literature, several possible privacy threats have been recognized in VR appli-

cations [88, 92, 113, 134], For instance, Wang et al. [134] reported that metaverses often

dictate their users to provide personal data, such as gaze movement, facial expression,

gait, and voice, which could negatively affect HMD users’ safety in both the virtual and

physical worlds. In addition, Nair et al. [93] showed that VR gamers may be unaware of

the leakage of their personal data, such as height and fitness, once their in-game behaviors

are analyzed. Similarly, Miller et al. [88] demonstrated that the identity of HMD users

can be recognized if their HMD and controller trajectories are inspected, which is called

a re-identification attack. Slocum et al. [113] also showed that what the user is typing

can be inferred from head motions alone. Besides, gaze data are also privacy-sensitive.

Most of the HMDs are equipped with an eye-tracker nowadays to enable some VR ap-

plications, such as streaming optimization [74], foveated rendering [10, 33, 83, 84, 100],

redirect walking [66, 119], etc. Gaze data can reveal users’ preferences [27], psycholog-
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ical states [87], and diseases [45] and even recognize them [24, 46, 87]. Steil et al. [116]

conducted an online survey on the privacy issue of gaze data and found that people have

privacy concerns about their gaze data and are only willing to share their gaze data under

certain restrictions.

5.2 The Placement of the Disturber

To mitigate such privacy threats, our proposed disturber can be deployed in HMDs, VR

platforms, or VR applications. Deploying disturbers on the HMDs/controllers provides

the strongest protection while supporting all VR platforms and applications. However,

implementing disturbers in hardware incurs high engineering complexity. One possible

solution is to adopt ALVR [3] to connect their HMD to their PC through Wi-Fi and to

implement the disturber inside the ALVR client. In contrast, disturbers can be imple-

mented in software and deployed in VR platforms. For example, a wrapper function can

be added to a Unity [129] plugin running on SteamVR [115]. By instrumenting the wrap-

per function to intercept and perturb HMD/controller trajectories, it could work with any

VR applications on that platform. Last, implementing disturbers in VR applications re-

quires the least engineering effort and could incorporate application-specific optimization.

However, duplicated efforts are needed across multiple VR applications. In summary, our

disturber can be implemented in HMDs, VR platforms, and VR applications. Moreover,

our compensator can be implemented next to the rendering engines, like Unity in either

VR platforms or applications. In this thesis, we implemented the disturber in the VR

application to get the evaluation results as soon as possible. The performances of the dis-

turber algorithm are the same in these different placement settings. The placements only

relate to the entities that can get the ground-truth poses.
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Chapter 6

Privacy Threats Mitigation

In this chapter, we first give the whole picture of our system, and list all the components

and the data flow. Next, we specify our disturber and compensator, elaborating on how

they work. Finally, the software pieces we use to implement the system are presented.

6.1 Overview

Compensator Disturber
Poses

Perturbed
Poses

Perturbed
Views

Comp.
Views

Apps.

Poses
HMD

Focal Length
Depth Range
Principle Point

Camera
Settings

Figure 6.1: Our privacy-preserving system architecture.

Fig. 6.1 shows the overview of our privacy-preserving system, which contains four

key components:

• HMD. The HMD that a VR user accesses to 3D virtual worlds.

• Disturber. Our disturber for protecting user trajectory, which adds perturbations to

the trajectory before transferring it to other components.

• Applications (Apps). The VR applications that provide VR services for the user.

In this thesis, we adopt a VR application that provides 3D virtual worlds for VR

users to explore, and renders the scene views with the user’s poses.

• Compensator. Compensator warps the noisy views and transforms them into com-

pensated views as similar to the original views as possible.

The VR user’s poses are tracked and fed into our disturber for perturbation. The disturber

changes the poses into perturbed poses and transfers them to the VR application. After

the perturbation, the application uses the perturbed poses to generate the perturbed views
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for the VR user. The application only renders the views by using the input poses in our

case, however, for the VR applications in reality, there may be other actions depending

on the application. The perturbed views are then sent to the compensator for the scene

compensation. The compensator takes the perturbed views, perturbed and original poses,

and the camera setting, such as the focal length, depth range, and principle point, to

transform the perturbed views into the compensated views. The compensated views are

then sent back to the VR user. Note that both the disturber and the compensator need to

be implemented at the place that users trust, and hence can access the original poses.

6.2 Trajectory Disturber

Statistics
Predictor

Probability
Distribution

Ground-Truth Weight

Perturbed
Poses

Distribution Parameters

Statistics
Estimated

Poses

Poses

+

Prior
Perturbed Poses

Pose
Adjustor

Pose
Estimator

Figure 6.2: Our proposed trajectory disturber.

Design objectives. The purpose of the disturber is to perturb a VR user’s trajectory

in both the temporal and spatial domains on-the-fly. Doing this in the differential privacy

framework is inherently challenging because the disturber has no knowledge of the re-

quired statistics from the whole trajectory, as some poses happen in the future. Therefore,

we need to predict the statistics of the whole trajectory based on prior poses. Another

challenge is to find a good tradeoff between the incurred perturbations and the degraded

visual quality. Hence, we introduce two system parameters as control knobs for VR users

to exercise the tradeoff.

Overview. Fig. 6.2 gives the design of our disturber, which sequentially takes poses

as input and generates a series of perturbed poses. Two system parameters: distribution

parameters and ground-truth weight are used to control the distribution and severity of

random perturbations. More specifically, the disturber is composed of four components:

(i) probability distribution, (ii) statistics predictor, (iii) pose estimator, and (iv) pose ad-

juster. Here, the probability distribution generates random noise that is added to poses as

perturbations. Different probability distributions have been adopted in the differential pri-

vacy framework, including Laplace, Gaussian, and Binomial [21]. Each probability dis-

tribution takes one or multiple distribution parameters like variance. We use the Laplace
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distribution throughout this paper if not otherwise specified. In addition, the statistics

predictor predicts the statistics, such as mean and autocorrelation, of the whole trajectory

based on prior perturbed poses. These statistics are dictated by the differential privacy

framework and are used as input by the pose estimator, which estimates the current pose

using prior perturbed poses. The estimated pose is inevitably inaccurate compared to the

actual one. The pose adjuster takes a system parameter called ground-truth weight and

fuses the ground-truth and estimates poses. Last, random noise is added to the adjusted

pose for the perturbed pose. Among these four components, the probability distribution

introduces perturbations in the spatial domain, while the pose estimator does that in the

temporal domain.

Notations We next present the operations perturbed with the disturber while devel-

oping notations. Each pose or perturbed pose at a moment is a 21-dimension vector

containing the locations and orientations of an HMD and two controllers. Each dimen-

sion is perturbed independently, and we omit some mathematical detail for brevity in the

following. We denote the (input) pose and (output) perturbed pose at time t as Vt and

Pt, respectively. The poses and perturbed poses over a time duration with T samples

are denoted as {Vt}Tt=1 and {Pt}Tt=1. We consider three statistics of the whole trajectory:

mean µ, variance σ2, and autocorrelation ρ. At time t, these statistics are predicted by

the statistics predictor given the Laplace distribution parameter var and prior perturbed

poses, {P1, P2, . . . , Pt−1}. These statistics are fed into the pose estimator for an estimated

pose V̂t. V̂t and Vt are passed to the pose adjuster to be fused into an adjusted pose A(V̂t)

with the ground-truth-weight w. A(V̂t) incorporates the temporal-domain perturbations.

At time t, a random noise nt ∼ L(0, var) is used to generate the spatial-domain perturba-

tions, where L(0, var) is a zero-mean Laplace random variable. Last, we sum A(V̂t) and

nt up to get Pt.

Procedure. We assume that each dimension of a VR trajectory defined on the same

probability space, for example, the location x, y, and z are three dimensions defined on

the same probability space, is a random variable from a Gaussian distribution. The VR

trajectory with all the dimensions together is a stationary sequence, which is a random

sequence whose joint probability distribution is invariant over time. Therefore, the tra-

jectory can be modeled using the classic linear model, which leverages mathematics and

statistics to model the time series data. Many linear models have been proposed, such as

the AutoRegressive (AR), Moving Average (MA), and AutoRegressive Moving Average

(ARMA) models [72,75]. Among them, we choose to model each trajectory as a Gaussian

AR process [135], that is,

Vt = α + ρVt−1 + Ut, t ≥ 1. (6.1)

V0
iid∼ N (µ, σv

2), ρ is the autocorrelation of {Vt}Tt=1, and Ut is a white noise. If {Vt}Tt=1 is a
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stationary Markov process, then Vt ∼ N (µ, σv
2), and α = µ(1−ρ), where µ = 0. We use

Linear Minimum Mean Squared Error (LMMSE) to determine the model parameters α and

ρ for the estimated function. As mentioned in Chapter 2, the LMMSE of a linear function

is (1− ρ2XY )σX
2. Therefore, considering the Gaussian AR, the LMMSE estimation of V̂t

given Vt−1 is:

V̂t = µ(1− ρ) + ρVt−1. (6.2)

If we use the prior perturbed pose Pt−1 = A(V̂t−1) + nt to estimate the current pose

following Zhang et al. [144], then

V̂t = µ(1− ρ
σ2

σ2 + var
) + ρ

σ2

σ2 + var
Pt−1. (6.3)

where Pt−1 is the preceding (input) pose, var is the distribution parameter, and µ, σ, ρ are

statistics of the whole trajectory. Unfortunately, µ, σ, and ρ cannot be computed at time

t, and we let µ̂t−1, σ̂t−1, and ρ̂t−1 be the predicted statistics. Among them, µ̂t−1 and σ̂t−1

can be calculated using {P1, P2, . . . , Pt−1} and ρ̂t−1 can be computed following Huitema

and McKean [53]. Applying the predicted statistics to Eq. (6.3), we have:

V̂t = µ̂t−1(1− ρ̂t−1

σ̂2
t−1

σ̂2
t−1 + var

) + ρ̂t−1

σ̂2
t−1

σ̂2
t−1 + var

Pt−1. (6.4)

We also follow Zhang et al. [144] to compute adjusted pose A(V̂t) as the following

weighted sum:

A(V̂t) = (1− w)V̂t + wVt. (6.5)

Note that by keeping w secret, we create additional burdens to attackers. With the output

of the probability distribution, nt ∼ L(0, var), we write the perturbed pose as:

Pt = A(V̂t) + nt = (1− w)V̂t + wVt + nt, (6.6)

This concludes our disturber design, which satisfies the two design objectives.

6.3 Perturbed View Compensation

Design objectives. The purpose of the view compensator is to warp each RGB-D image

rendered by a VR application with the perturbed pose Pt to an RGB image viewed at the

(original) pose Vt. There exist two design objectives for the compensator: (i) high visual

quality and (ii) short execution time. Fortunately, image warping [76], a.k.a. view synthe-

sis [8, 9, 34, 56, 64, 85, 86] is a fairly mature technique. Adding to that, the perturbations

imposed on trajectories are rather small and controllable (via var and w in our proposed

disturber). Hence, our job is to find a fast enough synthesizer achieving reasonable visual

quality.
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Figure 6.3: Our proposed view compensator.
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Figure 6.4: Sample view compensation to avoid shaky views due to perturbations.

Design choices. View synthesizers warp pixels from one or multiple input RGB-D im-

ages to a VR user’s HMD viewport based on the D (depth) channel. There are quite a few

Depth Image-Based Rendering (DIBR)-based view synthesizers [34], such as View Syn-

thesis Reference Software (VSRS) [114], Versatile View Synthesizer (VVS) [56], Refer-

ence View Synthesizer (RVS) [64], and View Weighting Synthesizer (VWS) [108]. There

are also neural-network-based view synthesizers [8, 9, 85, 86]. Between these two types

of synthesizers, neural-network-based ones typically run much slower, taking seconds, if

not minutes, to synthesize a viewport. Following Fachada et al. [30] and Sun et al. [120],

we built our compensator on RVS [64] for a good tradeoff between visual quality and

execution time, while other synthesizers can be easily dropped in if needed. We note that

our compensator only uses one input RGB-D image, while most synthesizers can take

multiple input images, for potentially better visual quality.

Overview. Fig. 6.3 gives the high-level workflow of our compensator. It takes the

following inputs: (i) perturbed RGB-D image from the rendering engine, (ii) (original)

pose, (iii) perturbed pose, and (iv) camera settings. The key camera settings are the two

Field-of-Views (FoVs) of the perturbed and compensated viewports. Fig. 6.4 reveals the
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relation between these two viewports. To maintain the quality of compensated viewport,

the perturbed FoV must be larger than compensated FoV, so that most pixels in the com-

pensated viewport fall in the perturbed viewport. In our compensator, we employ the

same resolution of input and output RGB(-D) images, denoted as W × H . We let θp
and θc be the vertical FoVs of perturbed and compensated viewports, respectively. Their

horizontal FoVs are calculated by the vertical FoVs with a constant aspect ratio W
H

. Our

compensator produces compensated RGB images for VR users’ HMDs.

Procedure. The compensator consists of four components: view synthesizer, view

blender, inpainter, and error concealer. The view synthesizer warps input RGB-D images

utilizing the computed disparity. The view blender blends wrapped pixels from multiple

input RGB-D images based on per-pixel quality levels. It then determines the final pixel

value for the synthesized RGB image. The next two components handle the exceptions.

In particular, the inpainter fills in the blank pixels that are disoccluded in the input RGB-

D images by interpolating with the surrounding pixels. Last, the error concealer deals

with missing output RGB images by replaying the preceding successfully-compensated

RGB image. Missing output RGB images could happen when the compensated viewport

falls outside of the perturbed viewport, possibly caused by large perturbations. Another

possibility is that input RGB-D images from rendering engines contain incomplete depth

values in complex 3D scenes.

6.4 Implementations

Disturber. We implemented the disturber in Python. For coordinate transformations be-

tween quaternions and Euler angles, we use scipy [110]. For the random noise generation,

we adopt numpy [97]. We create the perturbed trajectories with Python in advance for ex-

periments. We also port our code to a Unity [129] project with version 2021.3.11f1. In that

project, we install Math.NET Numerics [78] from the NuGetForUnity [80] package for

probability distributions. Math.NET Numerics provides a namespace called MathNet.

Numerics.Distributions [79], which contains many methods for computations

related to different kinds of distributions, such as Laplace and Normal. We use the

Normal type to implement the Gaussian noise sampler, and the Laplace type to imple-

ment the Laplace noise sampler. Porting the disturber to a Unity project makes it possible

to execute it in real-time and is compatible with most VR applications since many of them

are implemented with Unity.

Compensator. We also implemented the compensator using MPEG-I’s RVS reference

software [29], which is written in C++. We employ Unity [129] to render RGB-D images

from perturbed poses, and FFmpeg [128] to convert the image format from PNG to YUV
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for RVS. Like other MPEG reference software, RVS is highly configurable, and thus we

develop Python scripts to generate configuration files for RVS to specify camera settings,

such as their locations, orientation, focal length, the paths of the input perturbed RGBD

images and the output compensated images, the original pose, etc.
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Chapter 7

Evaluations

In this chapter, we conduct experiments to evaluate our proposed privacy-threat mitigation

method. Two analyses are instrumented: the re-identification attack is used to evaluate

the privacy-protecting level, and the visual quality assessment is for evaluating the quality

of the rendered views after perturbation. A small-scale user study is designed to realize

the true impact of the perturbation and the compensation to users. We then discuss the

results of the experiments.

7.1 Re-identification Attack

We implemented a Random Forest (RF) based re-identification classifier to evaluate the

protection provided by different mitigation solutions. We select 75 features from prior-

arts on identification and authentication in VR applications [2, 70, 77, 88, 89, 98, 101],

which include: (i) velocity and angular velocity of each HMD and its controllers, (ii) the

minimum, average, and maximum distances between each HMD and its controller, (iii)

the minimal, mean, and maximal locations/orientation of each HMD and its controllers,

among others. We consider trajectories with longer than 2000 poses in our experiments

(about 1/24 of trajectories were removed) and apply a 50-pose sliding window (equivalent

to 1 s, as the dataset was collected at 50 Hz). By doing so, each trajectory can be turned

into 1956 feature vectors, which are divided into 5 folds for cross-validation. Through

some pilot tests, we found the best number of estimators to be 150 and the maximum depth

to be 15. We use these two hyperparameters throughout the experiments and result in the

average re-identification (re-id) rate across the 5 experiments. We run all experiments on

a workstation with an Intel i9-9920X CPU, 64 GB RAM, and an NVIDIA GeForce RTX

3080 Ti GPU. We report the average performance results with 95% confidence intervals

whenever possible.
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7.2 Visual Quality Assessment

We employ a 6DoF VR dataset [137] that collects 24 VR users’ trajectories in four 3D

virtual scenes to drive our experiments. We compare two of our proposed solutions:

Disturber Only (DO) and Disturber with Compensator (DC), against the state-of-the-art

MetaGuard (MG) [93]. Notice that MetaGuard adds perturbations to multiple personal at-

tributes (rather than trajectories directly), such as user height and gender, and then projects

the perturbed attributes back to perturbed locations (rather than trajectories). They use

Bounded Laplace Mechanism [23] to sample the random perturbations. Bounded Laplace

Mechanism limits the amount of the sampled perturbation to bound the original data

within a reasonable scope after adding the perturbation. For fair comparisons, we also

add perturbations to locations only if not otherwise specified. In MetaGuard, we con-

sider attributes that are most relevant to VR user locations, i.e., height, room, squat depth,

wingspan, and arm length, and apply ϵ ∈ {0.000001, 1, 5, 10, 20, 30, 50} to these features.

For our solution, we first determined the amount of the perturbation for each trajectory

by the percentage n% of the perturbation in the whole trajectory. Since the dataset was

collected in a 4 × 4 area when a user stands in the middle of the area, the maximum

movements for each dimension (x, y, and z) are 2. Therefore, the var of the sampling

probability distribution is 2 × n%. We further transform the var to ϵ with ϵ = δf/var,

where δf is the sensitivity of the trajectory in each dimension. The δf here is 4 since the

dataset is collected in a 4× 4 area, and then the maximum difference for two poses in the

same dimension is 4. We select n ∈ {1, 2, 4, 6, 10, 30, 60} based on a prior test to roughly

align the resulting visual quality with MetaGuard. After transforming, we have ϵ ∈ {3.33,

6.67, 20, 33.33, 50, 100, 200}. Our solutions take a few additional parameters: (i) weight

w ∈ {0.1, 0.3}, (ii) perturbed FoV θp ∈ {115◦, 125◦ }, and (iii) compensated FoV θc =

104◦, where bold font indicates default values.

We consider three popular visual quality metrics: Peak Signal-to-Noise Ratio (PSNR)

[47], Structural Similarity (SSIM) [47], and Video Multimethod Assessment Fusion

(VMAF) [94], by comparing the quality of VR users’ HMD viewports from DO, DC, and

MG against the ground-truth viewports without perturbations. Computing visual quality

for all VR users is time-consuming. Hence, we randomly select six sample users with

diverse moving distances from each of the four scenes: City, Gallery, Nature, and Office.

The selected users’ ids are as follows:

• City: {0, 3, 4, 6, 17, 18}
• Gallery: {3, 7, 8, 9, 17, 22}
• Nature: {1, 3, 6, 7, 9, 17}
• Office: {6, 9, 11, 13, 20, 21}
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7.3 User Study Design

Figure 7.1: The sample viewport pair of the Office scene.

Last, we conduct a small-scale user study to qualify the effectiveness of our compen-

sator on visual quality and dizziness with eight subjects. We chose two 3D scenes, Nature

and Office for the outdoor and indoor environments. We chose the values of ϵ by aligning

the re-id rates of MG and DO since we are curious about the user experience under the

same privacy protection level for the two algorithms. We select ϵ ∈ {0.000001, 5, 10} for

MG, and ϵ ∈ {33.33, 50, 100} for DO. We use a MacBook Pro laptop equipped with a

13.3-inch (diagonal) LED-backlit Retina display with IPS technology, 2560 native reso-

lution at 227 pixels per inch, and which supports millions of colors. We play the ground-

truth viewport along with impaired viewports, which came from either MG, DO or DC, as

shown in Fig. reffig:userStudyVP. The placement of the two viewports is random. After

watching each pair of viewports, we ask each subject the following questions about their

user experience:

• Which viewport is worse in terms of overall quality?

• How would you rate the worst viewport’s user experience in visual quality? Be-

tween 1 (Unacceptable) and 5 (as good as the better one).

• How is the dizziness when you watch the worst viewport? 1 (none) to 5 (severe).

We filter out outlier scores by checking the answers to the first questions: about 15% of

them were dropped. We report the scores in Sec. 7.4.

7.4 Results

Our disturber leads to lower re-identification rates. Fig. 7.2 shows the re-id rates of

DO and MG under different ϵ values. The re-id rate without any privacy-threat mitigation
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Figure 7.2: Re-identification rate under different ϵ for DO and MG.

is 0.83, shown as the horizontal dashed line in the figure. Compared to the state-of-the-art

MG, our DO reduces the re-id rate by up to 0.4. Such improvement may be attributed

to the fact that the re-identification classifier considers temporal correlation in trajecto-

ries, which is not protected by MG. We conclude that perturbing the trajectories in the

temporal domain preserves more user privacy. Moreover, when ϵ approaches 0, the re-

id rate of DO also approaches 0.1; in contrast, the re-id rate of MG is still above 0.45.

This is because MG leverages the Bounded Laplace Mechanism to sample the random

perturbation, and the amount of the perturbation is limited to preserve the visual quality.

Our system does not need to limit the perturbation amount to preserve the visual quality

with our compensator. Therefore, we conclude that our disturber can protect users’ pri-

vacy more efficiently. Additionally, the uneven curve of MG results may be because the

perturbations are first sampled for the attributes rather than for the trajectory.

Our compensator mitigates the degradation of visual quality due to perturbation.
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Figure 7.3: Visual quality with and without compensation.

Fig. 7.3 compares the overall visual quality from DO and DC across all four 3D scenes

under different ϵ values. We observe that our compensator improves the visual quality by

6.8 dB at most and 5.9 dB on average, and the SSIM and VMAF boosts are up to 0.4

and 32, respectively, under the same value of ϵ. Hence, we conclude that our compen-

sator successfully improves the degraded visual quality while providing strong privacy

protection.

Our solution provides strong protection while delivering good visual quality.
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Figure 7.4: Privacy-quality tradeoff achieved by different privacy-threat mitigation ap-

proaches, with visual quality in: (a) PSNR, (b) SSIM, and (c) VMAF.

We plot the privacy-quality tradeoff in Fig. 7.4, which maps the privacy level to the

visual quality. According to Fig. 7.4, DO achieves better visual quality than MG when

the re-id rate is between 0.10 and 0.73. Even though MG delivers better visual quality

when the re-id rate is > 0.73, MG fails to mitigate the threats at such a high rate. In fact,

DO lowers the re-id rate by almost half compared to MG under the same visual quality.

We also observe that with compensation, DC achieves strong privacy protection while

achieving very good visual quality. Compared to DO, DC improves by up to 6.83 dB in

PSNR, 0.45 in SSIM, and 34.57 in VMAF at the same re-id rate. The tradeoff curves

reported here validate the excellent privacy-quality tradeoff of our solutions.

Implications of diverse characteristics of 3D scenes.
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Figure 7.5: Visual quality comparison of the four scenes under different ϵ with DO: (a)

PSNR, (b) SSIM, and (c) VMAF.

Fig. 7.5 shows the visual quality of the four scenes under different values of ϵ. Among

the four scenes, the visual quality of City outperforms the others at all time. This may be

caused by the size of City (128×50×128 m3) being considerably larger than the others.

Moreover, City is a vast scene with wide roads and a large sky, for which the adjacent

pixels are less different from each other, as shown in Fig. 7.6(a). Therefore, the perturbed
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(a)

(b)

Figure 7.6: Rendered city building: (a) with and (b) without compensation.

image may not be influenced too much when the poses are changed, which results in

relatively better visual quality than the other scenes. However, the quality of all the scenes

is improved when DC is applied except for City. Fig. 7.7 shows the quality comparison

of DO and DC under different values of ϵ for the Gallery scene, the visual quality after

compensation is improved by at least 5 dB in PSNR, 0.5 in SSIM, and 20 in VMAF. The

improvement increases steadily with larger ϵ. The same trend of visual quality can be

found in Fig. 7.8 for the Nature scene, and Fig. 7.9 for the Office scene. In contrast,

Fig. 7.10 shows the quality comparison of DO and DC under different values of ϵ for the

City scene. As shown in the figure, applying DC to City lowers the visual quality. More

specifically, the performance of DC is slightly enhanced from ϵ = 3.33 to ϵ = 50, and gets

worse when the value of ϵ is larger than 50; however, the visual quality of DC is lower

than that of DO at all time. Fig. 7.11, Fig. 7.12, and Fig. 7.13 show the quality of each

scene with ϵ value equal to 3.33, 50, and 100, respectively, with and w/o compensation.

The visual quality of DC is close to DO, and even lower than DO for the City scene, while

the visual quality enhanced steadily with DC for the other scenes. This is because there
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Figure 7.7: Visual quality comparison of the Gallery scene under different ϵ with DO : (a)

PSNR, (b) SSIM, and (c) VMAF.

are many buildings with a sky background for the City scene. RVS uses the texture of

adjacent pixels for inpainting when there is disocclude. Most of the disoccluded sky areas

in City are inpainted with buildings after DC is applied, as shown in Fig. 7.6 with the red

box, which degrades the visual quality of the City scene with DC.

Implications of different parameters. Fig. 7.14 shows the re-id rate of different

Table 7.1: Average Re-Id Rate with Std

Weight w 0.1 0.3 0.5 0.7
Re-id Rate 0.419 (±0.259) 0.483 (±0.253) 0.493 (±0.249) 0.495 (±0.244)

w under different ϵ. The re-id rates of w = 0.1 are much lower than those of the other

w. Though the re-id rates of {0.3, 0.5, 0.7} weight setting are almost the same in the

figure, we can observe slight differences between them according to Table 7.1. Table 7.1

compares the re-id rate of {0.1, 0.3, 0.5, 0.7} weight setting. According to the table, the

re-id rate is reduced when w is decreased, and is reduced by 0.06 on average between w

equals 0.1 and 0.3. Therefore, lower w can lead to a lower re-id rate and protect more

privacy. On the other hand, Fig. 7.15 shows the visual quality of different weight settings
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Figure 7.8: Visual quality comparison of the Nature scene under different ϵ with DO: (a)

PSNR, (b) SSIM, and (c) VMAF.

under different ϵ. The lower w leads to lower visual quality, but the decrease is less than 2

dB in PSNR, 0.1 in SSIM, and 5 in VMAF. We also tune the θp to see if larger perturbed

FoV can improve the compensation. However, according to Table 7.2, larger θp does not

lead to better performance of compensation. This may be caused by the way RVS handles

the inpainting that we discussed above. Moreover, in a smaller scene like Office, larger

rendered FoV may only include more pixels far from the compensated viewport, which is

ineffectual for compensation.

Our compensator successfully improves user experience. Fig. 7.17 shows that

overall, after applying for compensation, the subjects’ visual quality and dizziness scores

are both improved. In each of the subfigures, at most one subject reports a worse score

Table 7.2: Average Visual Quality with Std

Metric θp = 115◦ 125◦

PSNR (dB) 25.62 (±4.57) 25.39 (±4.20)

SSIM 0.87 (±0.12) 0.86 (±0.12)

VMAF 45.86 (±21.43) 41.08 (±19.51)
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Figure 7.9: Visual quality comparison of the Office scene under different ϵ with DO: (a)

PSNR, (b) SSIM, and (c) VMAF.

with DC, compared to DO. In summary, the mean opinion score of visual quality is in-

creased by 0.6 (out of 5) on average. However, the user experience of DC is worse com-

pared to MG. Though DC smooths the shaky perturbed views, the compensated views

may contain some distortion due to the inpainting, which degrades users’ experience.

This can be improved by a better inpainting method in the future. Note that the shaky

views are caused by the random perturbation sampled from the probability distribution.

Without the additive random perturbation, DO can provide smoother views than MG, but

less privacy protection.

Adding perturbations to the users’ locations only is more efficient than adding
perturbations on both locations and orientations. We also conducted a small experi-

ment of adding perturbation on both locations and orientations of users’ trajectories with

ϵ = {100, 66.67, 50, 40}. Fig. 7.18 shows the re-id rate with and w/o adding perturba-

tions to the orientations. The re-id rate is reduced at most 0.125 with the perturbations on

orientations under the same ϵ. However, the visual quality degrades drastically as shown

in Fig. 7.19. Though the visual quality can be enhanced with the compensation, adding

perturbations to the locations only is suggested since it offers strong enough privacy pro-
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Figure 7.10: Visual quality comparison of the City scene under different ϵ with DO: (a)

PSNR, (b) SSIM, and (c) VMAF.

tection while maintaining good visual quality.
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Figure 7.11: Visual quality comparison among the four considered scenes with ϵ = 3.33

using DO: (a) PSNR, (b) SSIM, and (c) VMAF.
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Figure 7.12: Visual quality comparison among the four considered scenes with ϵ = 50

using DO: (a) PSNR, (b) SSIM, and (c) VMAF.
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Figure 7.13: Visual quality comparison among the four considered scenes with ϵ = 100

using DO: (a) PSNR, (b) SSIM, and (c) VMAF.

Figure 7.14: Re-identification rate of different w under different ϵ with DO.
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Figure 7.15: Visual quality of our disturber with different w under different ϵ using DO:

(a) PSNR, (b) SSIM, and (c) VMAF.
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Figure 7.16: Privacy-quality tradeoff achieved by our disturber with different w: (a)

PSNR, (b) SSIM, and (c) VMAF.
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Figure 7.17: User experience scores (a), (c) from Nature and (b), (d) from Office, where

(a), (b) give visual quality scores and (c), (d) give dizziness scores.

Figure 7.18: Re-identification rate with and w/o adding perturbations to the orientations

under different ϵ.
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Figure 7.19: Visual quality of our disturber with and w/o adding perturbations to the

orientations under different ϵ: (a) PSNR, (b) SSIM, and (c) VMAF.
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Chapter 8

Conclusion and Future Work

In this chapter, we first conclude our work and then list the future work to improve our

privacy-threat mitigation system.

8.1 Concluding Remarks

In this thesis, we design a collecting procedure to collect a 6DoF VR dataset for 3D vir-

tual worlds to investigate the privacy issues in VR. The dataset includes the basic sensor

data in VR, i.e., HMD locations and orientations, controller locations and orientations,

key strokes of the controllers, objects locations and orientations, and the privacy-sensitive

data, i.e., physical RGBD videos and the personal attributes of the subjects, which prior

datasets do not contain and hence fail to do such investigation comprehensively and in-

tensively. With the dataset, we test the feasibility of some proposed privacy threats for

VR trajectory. We show that with the dataset, the VR users’ height and handedness can be

inferred with some trivial heuristic algorithms, and the users’ identities can be identified

with their VR trajectories, which refers to the re-identification attack. We then add Gaus-

sian perturbations to the trajectories and found that the perturbations can shield the users

from the re-id attack. These prior tests inspire the development of our proposed privacy-

threat mitigation approach. We then propose a privacy-threat mitigation system to protect

VR users with HMDs and controllers. We achieve that in two steps. First, we develop

a disturber to add perturbations in both temporal and spatial domains to the time-series

poses on-the-fly. The temporal perturbations are added by estimating the current pose

based on the previous pose, and the spatial perturbations are sampled from a probability

distribution to add on. Next, we build a compensator to warp rendered viewports of per-

turbed poses to eliminate the shakiness caused by the perturbations. Extensive objective

and subjective experiments demonstrate the merits of our disturber and compensator: they

achieve an excellent tradeoff between privacy and visual quality. In particular, our evalu-
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ation results demonstrate that our disturber alone reduces at most 0.4 re-identification rate

compared to the state-of-the-art approach [93] while improving the visual quality by 2.5

dB in PSNR, 0.1 in SSIM, and 10 in VMAF.

8.2 Future Work

This work can be extended in multiple directions:

• Make the privacy threat more comprehensive. We assume that attackers know

the user identity of part of a trajectory that is collected from the target 3D virtual

world in the thesis, which is not realistic. Here, a wanted 3D virtual world means

the 3D virtual world from which the trajectories that the attackers want to get the

users’ identities are collected. In reality, attackers may have the whole user iden-

tities of the trajectories collected from a group of people exploring one 3D virtual

world, and want to get the identities of the trajectories of the same people exploring

other target 3D virtual worlds. For example, an attacker has user identities of the

trajectories of ten people exploring the City scene, and wants to identify the same

ten people from their trajectories exploring the Gallery scene. However, this is chal-

lenging due to the different movement and behavior patterns in different kinds of

3D virtual worlds. For example, users may likely move faster in a broader 3D vir-

tual world than a narrow one. These patterns should be investigated and considered

when training the re-id model, more specifically, the features that represent these

patterns should be extracted from the trajectory. On the other hand, other privacy

threats can also be used to evaluate the privacy protection level. For example, one

of the threats is to analyze the words or sentences that VR users are typing by using

their HMD poses alone [113]. This is one of the most crucial threats since this may

reveal users’ passwords for VR applications or other privacy-sensitive information

that is included in their sentences. Moreover, since there are various types of pri-

vacy threats while there are still many potential privacy threats that have not been

discovered, it is essential to comprehensively and generally categorize the privacy

threats in VR. Based on the categories, we can normalize the proposed privacy-

threat mitigation approach to protect VR users from the categorized privacy threats

but not only one certain privacy threat, i.e., re-id attack.

• Extend the privacy-threat mitigation methods for other data types. In this

thesis, we only consider perturbing the locations and orientations of trajectories,

though the performance of including the orientations is not that good. Other VR

sensor data should also be included and protected. The sensor data that are sequen-

tial time-series, such as the eye gaze data, can utilize our system with the current
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version. In the future, our proposed privacy-threat mitigation system can be ex-

tended to protect other data, such as the images of the users’ facial appearances or

their whole body while using VR. These kinds of images are sensed by facial track-

ers or external cameras for VR applications that need to reconstruct users’ avatars

with their real appearances, or detect the facial expressions and postures. The leak-

age of these images is much more serious since both the appearance of users and

their living environments are discovered by attackers. To protect the image data, the

approaches for de-identification of still images can be utilized [106]. For example,

trivial approaches like blurring and pixelation images, or advanced approaches like

k-Same [95] and k-Same-Select [43].

• Determine the optimal input parameters. There are two input parameters of our

disturber, i.e., w and epsilon. These two parameters together determine the re-id

rate and visual quality, and hence lead to the privacy-quality tradeoff we introduce

in Chapter 7. However, though users can abide by the tradeoff curve to tune the

parameters, the curve may not be precise enough since it is derived from several

sample experience settings. In the future, we can mathematically formulate the

tradeoff curve, and estimate the curve with optimization algorithms, and find the

optimal input parameters under certain privacy levels and quality levels.

• Create an end-to-end real-time privacy-threat mitigation system. In this thesis,

we generate the perturbed trajectories at first, then replay the trajectories in the VR

application to capture the perturbed images, and then compensate for the perturbed

images with the compensator. Though all of these steps are done on-the-fly, they

are not integrated as a pipeline. In reality, after a user generates his/her pose, the

pose should be perturbed, be used by the application to generate the perturbed view,

and the perturbed view is compensated and sent back to the user right away, which

means all the operations for one pose should be done together at once rather than

finishing one operation for the whole trajectory and then moving on to the other

operation. Therefore, the two main components illustrated in Chapter 6 should

be integrated as an end-to-end system. This can be done by implementing both

components in a Unity project, or implementing them as a Unity plug-in. One of

the challenges is that the input image format of the software we use to implement

the compensator, which is RVS, needs to be YUV; however, the YUV image is

too large and leads to an overlong running time for our system. Therefore, we

should solve the problem either by considering other synthesizing software or by

implementing the compensator ourselves. Moreover, the system should also serve

privacy protection in real time since the VR applications always run in real-time

with users’ instant actions. Our disturber requires less than 0.0027 seconds on
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average to perturb one pose, which is good for a real-time system. However, the

compensation requires 1.24 seconds on average to compensate for one perturbed

image, which is too long for a real-time system. The duration does not include the

running time of generating the required camera config files. Therefore, the main

challenge to make the system real-time is the running time of the compensation,

which can be further improved with other view synthesizers leveraging GPU [13]

in the future.

• Conduct a user study to model the privacy-QoE tradeoff. In this thesis, we

only consider the visual quality of the rendered views to derive the privacy-quality

tradeoff. However, the user experience is not only related to the visual quality,

but also other factors such as cybersickness. Therefore, the user QoE should be

considered. In the future, the user study can be extended into a large-scale one,

with more subjects involved and using a VR application rather than watching the

rendered 2D videos. With the result of the user study, we can model the user QoE

with our system, and hence derive the privacy-QoE tradeoff.

• Different approaches and algorithms for implementing the proposed privacy-
threat mitigation. In the thesis, we model the users’ VR trajectories with the

Gaussian AR model. However, other AR models, such as Binomial AR [82], can

be leveraged to model VR trajectories. Other approaches for modeling time-series

sequences can also be applied. Next, we implement pose estimation and the proba-

bility distribution in the disturber with LMMSE estimation and Laplace distribution.

However, other estimators for linear models, such as Maximum Likelihood Estima-

tor (MLE), can also be utilized [118]. Moreover, in Chapter 7, we attempted to add

perturbations to the orientations in users’ trajectories. However, it turned out that

the visual quality degrades substantially while the re-id rates are only reduced up

to 0.125. This may be because the estimation of the poses is not accurate enough.

The optimization algorithms, such as Stochastic Gradient Descent (SGD) [118] and

Adam [61], which are the most used optimization algorithms for machine learning

and deep learning, can also be utilized for more precise estimation. On the other

hand, other probability distributions, such as the Gaussian distribution and expo-

nential distribution, can also be utilized to sample the additive perturbations for

the VR trajectories. For the compensation, we use the Reference View Synthesizer

(RVS) in this thesis to warp the perturbed images. We can use other more powerful

synthesizers that leverage GPU to accelerate the computation. We simply apply the

preceding successfully compensated RGB image when encountering a compensa-

tion error. However, there are plenty of image error concealment methods that we

can utilize for better error handling. In this thesis, we implement the privacy-threat
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mitigation approach in VR applications. In the future, we can develop the proposed

approach on user HMD/controllers to achieve stronger privacy protection.
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