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A Smart Home with Heterogeneous 

Sensors
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Applications for Food Intake Activity 

Recognition

 Diet Control

◼ Automatic monitoring

◼ Fasting management

 Telecare

◼ Meal recording & reminder

◼ Medication monitoring

 Smarthome

◼ Eating behavior prediction

◼ Food management
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The Privacy Issue of Sensor Data
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Goals

 We want to detect:

◼ “When” the person is eating/drinking

◼ “How” the person is eating/drinking
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Challenges

 Sensors

◼ The sparsity of the mmWave point clouds

◼ The sensitivity of the mmWave radar

 Datasets

◼ No public dataset that focuses on human food intake 

activity

◼ No mmWave radar dataset with multiple sensors data
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Fine-Grained Activity Recognition

 Bioelectric sensors

◼ Electromyography (EMG) 

sensors [1]

◼ Electroencephalography 

(EEG) sensors [2]

 Inertial sensors

◼ Smartwatches [3]

◼ Smartphones [3, 4]
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[1] A.Moin et al. 2021. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition

[2] A. Salehzadeh et al. 2020. Human activity recognition using deep electroencephalography learning.

[3] G. Weiss et al. 2019 Smartphone and smartwatch-based biometrics using activities of daily living

[4] N. Ahmed et al. 2020. Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model.

[5] L. Guo et al. 2019. Wiar: A public dataset for wifi-based activity recognition

[6] S. Bhalla et al. 2021. Imu2doppler: Cross-modal domain adaptation for doppler-based activity recognition using IMU data

Wearable Sensors

 Vision-based sensors

◼ RGB camera

◼ Depth camera

◼ IR camera

 Radio Frequency (RF) 

sensors

◼ WiFi [5]

◼ mmWave radar [6]

In-situ Sensors

They require subjects to 

remember carrying with them

We use 3D mmWave radar to 

achieve higher accuracy 

while preserving privacy



 RGB-based 

◼ G-RMI [1]

◼ DeepCut: Multi Person 

Pose Estimation [2]

 mmWave-based 

approaches

◼ mmPose-NLP [3]

◼ MARS [4]
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[1] G. Papandreou et al. 2017. Towards accurate multi-person pose estimation in the wild

[2] L. Pishchulin et al. 2016. Deepcut: Joint subset partition and labeling for multi person pose estimation

[3] A. Sengupta and S. Cao. 2022. mmpose-nlp: A natural language processing approach to precise skeletal pose estimation using mmwave radars.

[4] S. An and U. Ogras. 2021. Mars: mmwave-based assistive rehabilitation system for smart healthcare.

[5] A. Shahroudy et al. 2016. Ntu rgb+ d: A large scale dataset for 3D human activity analysis.

[6] W. Kay et al. 2017. The kinetics human action video dataset.

Skeletal Pose Estimation

 Activities with Rich-Media 

Sensors

◼ RGB-based dataset 

contains plenty of activities

 NTU-RGBD [5]

 Kinetics [6]

◼ IMU/RF sensors contain 

only coarse-grained 

activities

 Food-Intake Activities 

with wearable Sensors

◼ IMUs, microphones [7]

◼ custom-built wearable 

acoustic sensor [8]

Food Intake Activity Datasets

There is no public dataset for 

Food-Intake Activities with 

mmWave radars
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Overview
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FIA: End-to-End Voxelization Pipeline
 The voxelization method is used to make mmWave radar 

point cloud trainable

 We proposed bounding box and trilinear interpolation 

method to improve the performance of the classifier for 

fine-grained actions 

 A neural network classifier is proposed to recognize the 

activity
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FIA: Trilinear Interpolations
 Original voxelization process:

 An element representing a cube in the bounding box

 If a point in a cube, the element that represents the cube +1

 Our new method:
 An element representing a vertex of a cube

 If there is a point in a cube, 8 vertices of the cube will get a weight 

value, and the sum of the weight is 1

 Difference:
 We can know the difference when the points is moving in the cube

 More points is 

nonzero, which 

having more 

information for the 

classifier
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FIA: Neural Network Structure

16



DPR: Introduction

 Voxelization has two main disadvantage

 The resolution affects the accuracy

 Huge memory consumption

 DPR’s main idea

 Directly using point cloud data

 Taking velocity, and intensity into consideration

 End-to-end activity classifier 
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DPR: Model Structures

 Maximum 64 points per frame ➝ Zero-padding

 5 channels of input: X, Y, Z, velocity, intensity

 Multiple frames as temporal features➝ LSTM layers
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DPR: Adjusting CNN Layers
 Our proposed DPR uses more advanced and 

widely adopted network models

 AlexNet

 GoogLeNet

 ResNet

19[1] K. He et al. 2015. Deep Residual Learning for Image Recognition



SPE: Introduction

 Same structure with DPR

 SPE: single frame skeleton estimator

 SPE+: skeleton estimator based on multiple 

frames’ data

20



GCN: Introduction

 Graph convolution network classifier is one of the 

best solution for skeleton data

 GCN classifier Implemented

 ST-GCN

 2S-AGCN

21[1] Source: Paperwithcode; https://paperswithcode.com/task/skeleton-based-action-recognition

ST-GCN 2S-AGCN



GCN: Graph Convolution Networks

22[1] Understanding Graph Convolutional Networks for Node Classification; https://towardsdatascience.com/understanding-graph-convolutional-networks-for-

node-classification-a2bfdb7aba7b



GCN: Graph Construction
 Merge several frame’s skeleton to a graph 

 Spatial edges (Black)：

Spacial joints at the 

same time

 Temporal edges (Blue):

Same joints at the 

different time
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GCN: Graph Convolution

 The convolution area is 

fixed: all of the vertexes 

with a distance of 1

 Partition strategy:

 Subset 1 (red): convolution 

center

 Subset 2 (blue): inner 

subset

 Subset 3 (green): outer 

subset
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GCN: Graph Feature Extraction
 ST-GCN:

 A matrix is the linking matrix 

including self-edge

 M matrix is a trainable matrix

 2S-AGCN:

 B matrix is similar to M matrix

 C matrix is a normalized matrix, recording the similarity 

of vertexes
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GCN: Model Structures
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Motivation

 Human activity recognition problems

◼ Coarse-grained activities [1, 2]

◼ Fine-grained activities[3]

◼ Food intake activities[4]

 There is no fine-grained food intake activity recognition 

dataset with privacy-preserving sensors such as 

mmWave radar

 We generate the very first Food Intake Activity dataset 

with different privacy sensitivity sensors.
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[1] Y. Huang et al. 2022. Activity Recognition Based on Millimeter-Wave Radar by Fusing Point Cloud and Range–Doppler Information.

[2] A. Logacjov et al. 2021. HARTH: A Human Activity Recognition Dataset for Machine Learning

[3] D. Anguita et al. 2013. A Public Domain Dataset for Human Activity Recognition Using Smartphones

[4] Y. Wu et al. 2022. AI-Assisted Food Intake Activity Recognition Using 3D mmWave Radars



Dataset Collection
 Environment Setup

◼ The subject is 1.5 meters from the 

sensors

◼ A wall is about 2.5 meters from 

the sensors

◼ The table is 75 cm high

 Hardware Setup

◼ Intel Realsense D435i RGB-D 

camera

◼ TI IWR1443BOOST mmWave

radar

 Software Setup

◼ OS: Ubuntu 20.04

◼ Pyrealsense 2 (librealsense) [1]

◼ TI mmWave ROS Package [2]

29

[1] Intel® RealSense™ SDK 2.0. https://github.com/IntelRealSense/librealsense

[2] Leo Zhang. 2019. Github-radar-lab/ti_mmwave_rospkg. https://github.com/radar- lab/ti_mmwave_rospkg



Sensors

30



Dataset

 12 classes of activities collected from 24 subjects

◼ 6 food intake related

◼ 6 other activities

 2 different sensor’s data, providing 

4 types of data

 2 different settings for mmWave

radar (w/ and w/o clutter removal)

 A subject performs an activity 

for 30 times

 An activity sample is 4-seconds long

 In total, 19.2 hours of data is 

collected, with 5760 files, formed 

our dataset
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Food Intake Others

(a01) drinking tea with a 

cup

(a07) Idle

(a02) drinking tea with a 

bottle

(a08) picking up a call

(a03) drinking tea with a 

straw

(a09) cleaning one’s mouth 

with tissue

(a04) eating burger with 

both hands

(a10) writing

(a05) eating fruits with a 

fork

(a11) reading

(a06) eating noodles with 

chopsticks

(a12) scrolling one’s 

smartphone



Dataset Sample Demo

 4 different data of the 

sample

◼ RGB video

◼ Depth map

◼ Depth video

◼ mmWave radar point cloud
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Skeleton Generation

 Mediapipe Pose Model was utilized to 

synthesize human skeleton data

 Only 13 of 33 points are chosen to be our skeleton 

dataset
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Global Model Setup

 80-20% random train-test split

 Data from each subject will appear in both the 

training and testing sets

 Simulate the scenario in the subjects have 

provided their data in advance
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FIA – Experiment Setup

 Variants of FIA algorithms
 FIA-D
 FIA-B
 FIA-V

 Preprocess parameters
 temporal aggregation frames: 

k ∈ {1, 3, 5, 7, 9}
 bounding box size: (bX, bY, bZ) ∈

{(2, 3, 3), (2, 3, 2), (2, 3, 1)}
 resolution: r ∈ {10, 15, 20}

 Dataset
 “When” dataset: 3 labels
 “How” dataset: 12 labels

 Baseline: RadHAR

36

Food Intake Others

drink with a cup no activity

drink with a bottle using smartphone

drink with straw Phone call

eat with both hands 

(burger)

hand clap

eat with spoon hand waving

eat with chopsticks clean with tissue



FIA Detects Food Intake Activities With 

Good Performance
 FIA outperforms the SOTA voxelization solution in all varients

37

Algorithm When Dataset How Dataset

RadHAR 76.43% 12.17%

FIA-D 90.79% 68.81%

FIA-B 93.56% 72.77%

FIA-V 96.73% 91.49%

 FIA shows high accuracy in both when & how dataset

Accuracy Drinking Eating Others

Drinking 95.35% 2.13% 1.16%

Eating 2.71% 93.60% 0.46%

Others 1.94% 4.27% 98.38%

20.30% / 88.32%



DPR - Experiment Setup
 Parameters

 Output size (L): {39, 256, 576}

 Number of LSTM layers (N) : {1, 2, 3}

 Number of hidden LSTM states (H): {64, 128, 256}

 dropout rate (D): {0.1, 0.3, 0.5}

 Bidirectional LSTM (B) : {true, false}

 Frames per sample (F): 40 (4 seconds)

 Dataset: “How” dataset (12 labels)

 Variants of DPR algorithm
 AlexNet

 GoogLeNet

 ResNet

 Baseline: FIA
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DPR Saves Memory But Also Improve 

The Accuracy 
 FIA achieves a classification accuracy of 95.56%, while DPR achieves 

99.66%

 FIA utilizes 9817 MiB of GPU memory, while DPR only uses 2131 MiB, 

resulting in a 78.29% reduction

 Resnet algorithms achieved the best accuracy

39



SPE – Experiment Setup

 Baseline

 mmPose-NLP (NLP)

 MARS

 Variants

 AlexNet

 GoogLeNet

 Resnet-18, 34, 50

 Temporal aggregation frames of SPE+: {3, 5, 7, 9, 

11}

40



SPE with ResNet-34 Is the Best 

Performance Variant

41

50%↑ Improvement



GCN – Experiment Setup
 GCN algorithms

 ST-GCN

 2S-AGCN

 Input skeletons

 MARS

 SPE

 SPE+

 Mediapipe (MP)

 Baseline: FIA, DPR
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GCN Beats The End-to-End Solutions

 The quality of estimated skeleton affects the performance

 SPE achieved accuracies of 95.79% and 98.57% in the 

respective models, while SPE+ achieved 95.48% and 

98.68% in ST-GCN & 2S-AGCN algorithms

43

98.68%

7.36%



Evaluation Summary

 FIA outperformed the SOTA RadHAR classifier, 

reached over 90% for both datasets

 DPR saves the memory but also has better 

performance than FIA

 SPE/SPE+ is the SOTA mmWave skeleton 

estimator

 SPE’s skeleton with GCN achieves the best 

performance, 99% accuracy in “how” dataset
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Leave-One-Out Model Setup

 23 – 1 train/test split in our case

 Data from each subject will ONLY appear in the 

training OR testing sets

 Simulate the scenario in the subject is a new user 

of the system

 Cross-validation is performed
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SPE+ is The Best Algorithm in Leave-

One-Out Setup

 SPE/SPE+ has the best performance with the 9 frames 

temporal aggregation setup

 SPE+ has the best performance of 11.14 cm, while NLP, 

MARS, and SPE get 15.11, 12.29 , and 11.38 cm

47

4.97cm



DPR Reaches Good Performances in 

Leave-One-Out Setup

 DPR achieves an accuracy of 72.74%

 Performance varied by subject

48

87.72% 42.19%



GCN Classifiers Suffered From Long 

Error Distance of Estimated Skeleton  
 Quality of the estimated skeletons affects the performance 

critically

 GCN has the potential to outperform DPR if the skeleton 

quality was improved

49

82.15%

57.87%

72.42%

23.55%



Evaluation Summary

 SPE/SPE+ is the SOTA mmWave skeleton 

estimator

 DPR has the best performance in leave-one-out 

setup, with 72.42% accuracy

 GCN’s performance is highly affected by the 

quality of the skeletons
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Conclusions

 4 algorithms and a dataset is proposed to 

recognize food intake activities with mmWave

radar point cloud

 SPE/SPE+ reaches the SOTA performance in 

fine-grained skeleton estimation

 SPE+ & 2s-AGCN classifier reaches 99% 

accuracy in global setup 

 DPR achieved 72.46% accuracy in leave-one-

out setup
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Future Work

53

 Refinement of the 

skeleton models

 Transfer learning as 

personalization model

The Leave-one-out Setup Issue

 Driver Monitoring System 

(DMS)

 Gesture Recognition

Other activity recognition problems

[1] ODSC. Active Learning: Your Model’s New Personal Trainer

[2] Q.Chen. MIMOGR:MIMO millimeter wave radar multi-feature dataset for gesture recognition.



Q&A
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Thank you for listening!

Thanks for the help of Prof. Hsu, Prof. Shervin Shirmohammadi, 

Hsin-che Chiang, Yuanjie Chen, and all lab mates.
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