
國立清華大學電機資訊學院資訊系統與應用研究所

碩士論文
Institute of Information Systems and Applications

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

用於聯網自動駕駛汽車的動態光達點雲錯誤隱藏

Error Concealment of Dynamic LiDAR Point Clouds for
Connected and Autonomous Vehicles

石桂華

Guihua Shi

學號：110065466
Student ID:110065466

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 112年 6月
June, 2023

國
立
清
華
大
學

資
訊
系
統
與
應
用
研
究
所

碩
士
論
文

用
於
聯
網
自
動
駕
駛
汽
車
的
動
態
光
達
點
雲
錯
誤
隱

藏

石
桂
華

111

Acknowledgments

Time flies, and my two-year master’s life is coming to an end. Looking
back on the past few years of studying, I deeply feel my growth under the care
of teachers, classmates, relatives, and friends. Here, I would like to thank all
the people during my time at university and master’s study. First, I would like
to thank my college friends for adapting me to life. Then I would like to thank
all the people in the lab, who have accompanied me through these significant
two years. Thanks to Chih-Chun Wu and Sheng-Ming Tang for adding a lot of
fun to my research life in the past two years, discussing research issues, eating
good food, and chatting together. Special thanks to Chih-Chun Wu, who took
the trouble to help me with the paper-related matters during the submission
period. Finally, I would like to thank Prof. Hsu, who has always helped me
point out the direction and pointed out my mistakes. In terms of writing,
he helped me to revise it meticulously and attached a lot of advice. Thanks
to National Tsinghua University, thanks to the lab, thanks to classmates, and
thanks to professors, you are an indispensable part of my life over the past few
years. In addition, I would like to thank my parents and girlfriend. I am sorry
that I did not go home during COVID-19, but you will not complain. You
have always trusted me and supported me, which allows me to do research
with peace of mind.

i

致謝

時光飛逝，兩年碩士生活已接近尾聲。回想起唸書這幾年的點點

滴滴，我深深感受到自己在老師、同學和親友們關愛下的成長。在

此，我要感謝我在大學和研究所期間認識的所有人。首先，我要感謝

我的大學朋友們，謝謝你們帶我融入生活。然後我要感謝實驗室中所

有的人，你們陪伴我度過了這非常具有意義的兩年。謝謝吳仕群和唐

盛銘，在這兩年中給我的研究生活增添了許多色彩，一起討論研究問

題，一起吃好料，一起閒聊。特別感謝吳仕群，在投稿期間不厭其煩

地幫我處理論文的相關事宜。最後，我要感謝徐正炘教授，您一直幫

我指出錯誤和指明方向，在寫作方面更是細緻的幫我檢查並附上滿滿

的建議。感謝清華大學、感謝實驗室、感謝同學們、感謝教授，你們

是我這幾年生活不可或缺的一部分。另外，我要感謝我的家人和女朋

友，很抱歉在疫情期間都沒有回家，但你們不會抱怨，一直都很信任

我、支持我，這讓我可以安心地做研究。

ii

Abstract

Connected and Autonomous Vehicles (CAVs) often come with sensors,
such as LiDARs, to improve road safety. Although dynamic LiDAR point
clouds could be streamed over wireless networks from CAVs to edge servers
for computationally-intensive classification tasks, the problem of incomplete
point cloud frames caused by unreliable wireless networks has yet to be in-
vestigated in the literature. In this thesis, we propose the very first LiDAR Er-
ror Concealment (LEC) algorithm, to conceal incomplete point cloud frames
due to lost or late packets for minimizing the Chamfer distance between the
concealed and original point cloud frames. Driven by machine learning tech-
niques, our LEC algorithm adaptively performs Temporal Prediction (TP),
Spatial Interpolation (SI), or Temporal Interpolation (TI) to conceal incom-
plete point cloud frames by comparing the incomplete ratios of adjacent point
cloud frames. We evaluate the performance of our LEC algorithms with a
comprehensive co-simulator built upon the popular CARLA and NS-3 and
the KITTI Odometry dataset. Our simulation results reveal that the proposed
LEC algorithm outperforms the TP, SI, and TI algorithms by up to 82.68%
and 30.17% in Chamfer and Hausdorff distances, and terminates in 360–570
ms in a C-V2X network. Moreover, our LEC algorithm also outperforms
other algorithms by up to 87.43% and 66.58% in Chamfer and Hausdorff
distances in a DSRC network.

iii

中文摘要

聯網自動駕駛汽車 (CAV)通常配備各種感測器（RGB相機、光達、
毫米波雷達等），以提升駕駛安全性。儘管動態光達點雲可以透過無

線網路從 CAV流式傳輸至邊緣伺服器以執行復雜運算的分類任務，但
文獻中尚未討論由不可靠的無線網路引起的點雲幀不完整的問題。在

本文中，我們首創了一個光達的錯誤隱藏 (LEC)算法，以修復由於丟
失或延遲封包導致的不完整點雲幀，以最小化點雲幀與原始點雲幀之

間的倒角距離。利用機器學習技術，我們的 LEC算法透過比較相鄰點
雲幀的不完整比率自動地執行時間預測 (TP)、空間插值 (SI)或時間插
值 (TI)等策略來修復不完整的點雲幀。我們使用由我們實作的協同模
擬器以及 KITTI 里程計資料集來評估我們的 LEC 算法的效能。我們
的模擬結果表明，所提出的 LEC算法在倒角和豪斯多夫距離方面優於
TP、SI和 TI算法高達 82.68%和 30.17%，並且在 C-V2X網路中執行
時間始終介於360–570 ms。此外，我們的 LEC算法在 DSRC網路中的
倒角和豪斯多夫距離方面也優於其他算法高達 87.43%和 66.58%。

iv

Contents

Acknowledgments i

致謝 ii

Abstract iii

中文摘要 iv

1 Introduction 1
1.1 Contributions . 4
1.2 Limitations . 5
1.3 Organization . 5

2 Background 6
2.1 Connected and Autonomous Vehicles (CAVs) 6
2.2 Driving Automation Datasets . 7
2.3 Machine Learning for Scene Understanding 7
2.4 Error Concealment . 8

3 Related Work 10
3.1 Cooperative Perception . 10
3.2 Point Cloud Caching . 11
3.3 Point Cloud Completion . 11
3.4 Point Cloud Interpolation . 11

4 LiDAR Point Clouds Streaming 13
4.1 Properties of LiDAR Point Clouds . 13
4.2 Measurements of LiDARs . 14
4.3 System Overview . 15
4.4 Network Protocols . 17
4.5 Problem Statement . 17

5 Error Concealment of LiDAR Point Clouds 19
5.1 Overview . 19
5.2 Temporal Prediction: TP . 19
5.3 Spatial Interpolation: SI . 20
5.4 Temporal Interpolation: TI . 21
5.5 Threshold-based LiDAR Error Concealment Algorithm: TLEC 21
5.6 LiDAR Error Concealment Algorithm: LEC 23

v

6 Evaluations 25
6.1 Implementations . 25
6.2 Experiment Setup . 27
6.3 Results . 29

7 Conclusion and Future Work 54
7.1 Concluding Remarks . 54
7.2 Future Work . 55

Bibliography 57

vi

List of Figures

1.1 The results of object detection with different packet loss rates: (a) 0%, (b)

25%, and (c) 33%. Each bounding box represents a detected vehicle. . . . 2

1.2 Sampled usage scenarios of our system. 4

2.1 Sample point clouds from: (a) the KITTI Dataset, (b) the CARLA simulator. 8

4.1 3D representations of (a) dense point clouds and (b) LiDAR point clouds. 14

4.2 Sampled measurements of a typical LiDAR. 14

4.3 The considered point cloud streaming system. 16

4.4 A sample point cloud streaming session. 17

4.5 The input/output of our error concealment algorithm. 17

5.1 Simulation results from our early LEC algorithm in a C-V2X network.

Sample performance results with 3 vehicles from difference threshold val-

ues: (a) Chamfer distance, (b) Hausdorff distance, (c) running time. . . . 23

5.2 The overview of our LEC algorithm. 24

6.1 The sequence diagram of our co-simulator. 26

6.2 The town10 map of CARLA. 28

6.3 The urban map used in our simulations. 29

6.4 Network status in a C-V2X network: (a) packet loss rate, (b) latency, and

(c) throughput. 30

6.5 Network status in a DSRC network (a) packet loss rate, (b) latency, and

(c) throughput. 31

6.6 Simulation results from our LEC algorithm in a C-V2X network: (a)

Chamfer distance, (b) Hausdorff distance, (c) running time, (d) average

IoU, and (e) detection accuracy. 35

6.7 Sample performance results from 3 vehicles in a C-V2X network: Cham-

fer distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 36

6.8 Sample performance results from 3 vehicles in a C-V2X network: Haus-

dorff distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 37

vii

6.9 Sample performance results from 3 vehicles in a C-V2X network: Run-

ning time of (a) TP, (b) SI, (c) TI, and (d) LEC. 38

6.10 Sample performance results from 1 vehicle in a C-V2X network: Chamfer

distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 39

6.11 Sample performance results from 1 vehicle in a C-V2X network: Haus-

dorff distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 40

6.12 Sample performance results from 1 vehicle in a C-V2X network: Running

time of (a) TP, (b) SI, (c) TI, and (d) LEC. 41

6.13 Sample performance results from 5 vehicles in a C-V2X network: Cham-

fer distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 42

6.14 Sample performance results from 5 vehicles in a C-V2X network: Haus-

dorff distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 43

6.15 Sample performance results from 5 vehicles in a C-V2X network: Run-

ning time of (a) TP, (b) SI, (c) TI, and (d) LEC. 44

6.16 Sample performance results from 7 vehicles in a C-V2X network: Cham-

fer distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 45

6.17 Sample performance results from 7 vehicles in a C-V2X network: Haus-

dorff distance of (a) TP, (b) SI, (c) TI, and (d) LEC. 46

6.18 Sample performance results from 7 vehicles in a C-V2X network: Run-

ning time of (a) TP, (b) SI, (c) TI, and (d) LEC. 47

6.19 Simulation results from different numbers of vehicles in a C-V2X net-

work. Chamfer distance from: (a) TP, (b) SI, and (c) TI. 48

6.20 Simulation results from different numbers of vehicles in a C-V2X net-

work. Hausdorff distance from: (a) TP, (b) SI, and (c) TI. 49

6.21 Simulation results from different numbers of vehicles in a C-V2X net-

work. Running time from: (a) TP, (b) SI, and (c) TI. 50

6.22 Simulation results from different numbers of vehicles in a C-V2X net-

work. Average IoU from: (a) TP, (b) SI, and (c) TI. 51

6.23 Simulation results from different numbers of vehicles in a C-V2X net-

work. Detection accuracy from: (a) TP, (b) SI, and (c) TI. 52

6.24 Simulation results from our LEC algorithm in a C-V2X network: (a)

Chamfer distance, (b) Hausdorff distance, (c) running time, (d) average

IoU, and (e) detection accuracy. 53

viii

List of Tables

5.1 Symbols Used in This Thesis . 20

6.1 Parameters of C-V2X and DSRC Networks. 29

6.2 Overall Results in LEC Training . 32

6.3 Performance Comparison in: (Top) DSRC, (Bottom) C-V2X Networks . . 34

ix

x

Chapter 1

Introduction

Connected and Autonomous Vehicles (CAVs) leverage Machine Learning (ML) algo-

rithms for various classification tasks, such as object detection [16, 60], semantic seg-

mentation [16, 60], shape classification [70, 83], lane detection [42, 62], and object track-

ing [56, 59] to improve road safety. These ML algorithms analyze data from sensors

to understand scenes, to enable different degrees of driving automations, and avoid ac-

cidents due to driver fatigue [29, 77]. While various data representations can be used

as inputs to these classification tasks, it is found that emerging 3D representations carry

richer information than traditional 2D representations, leading to higher classification ac-

curacy [1, 24]. Among 3D representations high-precision 3D point clouds can be natively

produced by LiDARs (Light Detection and Ranging), and are more suitable CAVs. Each

LiDAR point cloud is represented by a set of reflection points, where each point p consists

of coordinates p.x, p.y, and p.z and intensity p.i measured by a rotating laser beam.

Although modern vehicles often come with LiDARs, they do not have to work alone

when it comes to scene understanding. Instead, wireless networks are often used to facil-

itate data exchanges among vehicles for cooperative perception [18, 36] to avoid misclas-

sification due to vision occlusions. Oftentimes, LiDAR point clouds are streamed from

multiple vehicles over wireless networks, such as DSRC (Dedicated Short Range Com-

munications) [40] and NR C-V2X (New Radio Cellular Vehicle-to-Everything) [15], to

a more resourceful edge server for analysis. Such vehicular networks, however, support

a limited total bandwidth ≤ 80 Mbps, which may be insufficient for vehicles to stream

LiDAR point clouds to the edge server.

In traditional network communication, retransmission [52] and redundancy [6] are

usually used to cope with lost or late packets. However, retransmission and redundancy

are not ideal solutions in LiDAR point cloud streaming for the following reasons: (i)

CAVs need real-time scene understanding, and retransmission incurs higher latency, while

(ii) transmitting point clouds already consume non-trivial bandwidth, and redundancy

1

(a) (b)

(c)

Figure 1.1: The results of object detection with different packet loss rates: (a) 0%, (b)
25%, and (c) 33%. Each bounding box represents a detected vehicle.

takes up even more bandwidth, which may lead to network congestion and cause safety

concerns.

To partially cope with this issue, researchers have proposed to: (i) exchange high-level

features [7, 12, 20, 49] extracted from 3D points or (ii) selectively transmit points [82]

or features [21, 37, 65, 66] at reduced temporal or spatial resolutions. These studies as-

sumed that wireless networks among vehicles are reliable for data streaming, which is

unrealistic, as wireless networks are vulnerable to fading, shadowing, and interference,

which often results in bursty packet loss. To understand the negative impacts of packet

loss, we conducted a small-scale simulation of an intersection with eight vehicles using

the CARLA (Car Learning to Act) [25] simulator. We placed a LiDAR on a vehicle at the

center, which streams dynamic point clouds to an edge server over a DSRC network. The

edge server runs an object detection algorithm [60] on the received point clouds. Fig. 1.1

shows the detected vehicles under different packet loss rates emulated by the Gilbert-

Elliot model, which reveals that only 71.43% and 42.85% of vehicles are detected when

one-fourth and one-third of packets are lost. To maintain high accuracy of scene under-

2

standing, affected point clouds must be concealed before being sent to corresponding ML

algorithms.

In this thesis, we study the error concealment problem of dynamic LiDAR point clouds

streamed from a CAV to a nearby roadside edge server. We do not advocate sharing high-

privacy sensor data (such as RGB images, etc.), because this will cause the risk of privacy

leakage. Given that a wide spectrum of classification tasks may need to be performed at

edge servers to enable driving automations, we opt to exchange 3D point clouds from Li-

DAR, rather than extracted features that only work for pre-determined classification tasks.

Therefore, our problem is more general, compared to projects exchanging high-level fea-

tures [7, 12, 20, 49], as diverse and on-demand classification tasks can be performed on

edge servers. Furthermore, selective point cloud [82] or feature [21, 37, 65, 66] exchanges

are orthogonal to our work. To the best of our knowledge, the considered research problem

has never been studied in the literature.

Typical rotating LiDARs horizontally divide each 360° point cloud frame into multiple

equal-size sectors. Each sector is then encapsulated in one or multiple packets before

being streamed. During dynamic point cloud streaming, packet loss results in lost1 sectors

and incomplete frames. Concealing incomplete frames is no easy task for several reasons:

(i) vehicles are moving, which complicates the transformation between relative and world

coordinates, (ii) some incomplete point cloud frames may contain too many lost sectors,

making spatial interpolation less effective, if possible at all, and (iii) point cloud frames

meant to be the inputs to temporal interpolation could contain too many lost sectors,

degrading the performance of such interpolation. Because of these challenges, existing
solutions on caching [34, 58], completion [71, 78], and interpolation [10, 47, 84] cannot
directly solve our error concealment problem. In particular, caching solutions [34,
58] did not consider moving LiDARs and always returned previously received point
cloud frames as-is. Completion solutions [71, 78] focused on upsampling sparse point
clouds, rather than fixing points in lost sectors. Moreover, the completion solutions
employ some semantic labels that are not available in our considered problem. Last,
interpolation solutions [10, 47, 84] assumed that the previous and next frames are
complete, which may not always be the case.

To solve the above three challenges, we design, implement, and evaluate a LiDAR

Error Concealment (LEC) algorithm by fusing three error concealment approaches: (i)

temporal prediction, which takes the previous frame as input to conceal the current frame,

(ii) spatial interpolation, which takes the received sectors of the current frame as input to

conceal the lost sectors in the same frame, and (iii) temporal interpolation, which takes

1Since the classification tasks are real-time, late sectors are of no use and are considered lost throughout
this thesis.

3

the previous and next frames as inputs to conceal the current frame. Out of LiDAR, our

system is compatible with other sensors, which are also commonly used in CAVs [11, 80].

For example, Mmwave (Millimeter-wave) radar can generate a 2D point cloud in a short

distance, and the RGBD camera can capture the surrounding depth information to build a

3D environment map. Our error concealment algorithm can be quickly adapted to other

sensors.

Edge Server

Point
Cloud

Classification
Results

Wireless

Internet
Wired

Figure 1.2: Sampled usage scenarios of our system.

We explain our system using the simple scenario shown in Fig. 1.2, consisting of two

vehicles on the road, both of which are equipped with LiDAR to generate dynamic point

clouds. We install an edge server on the side of the road to receive the point clouds sent by

CAVs based on wireless networks. CAVs will upload the point cloud to the nearby edge

server, and one edge server will receive from multiple vehicles at the same time. The edge

server will store the point cloud locally from each packet and upload the point clouds

to the internet for persistent storage when the network load is low, which is beneficial

for traffic accident investigation and traffic analysis. In addition, the edge server will

perform classification tasks on the received point clouds to generate classification results

and broadcast them to nearby CAVs.

1.1 Contributions

Our LEC algorithm adaptively employs Temporal Prediction (TP), Spatial Interpolation

(SI), or Temporal Interpolation (TI) approaches to minimize Chamfer distance. We make

the following contributions:

• We study the error concealment problem of dynamic LiDAR point cloud streaming,

which to the best of our knowledge has never been investigated.

4

• We propose a LiDAR Error Concealment (LEC) algorithm to adaptively select the

most promising error concealment approach using an ML model.

• We evaluate our error concealment algorithm using both a pre-recorded real dataset

and an autonomous-driving and networking co-simulator. Our simulation results

reveal the merits of our proposed algorithm, which reduces the Chamfer distance

by up to 82.68%, and achieves a small optimal gap of 0.75% on object detection

accuracy.

1.2 Limitations

As the very first work on error concealing dynamic LiDAR point clouds, this thesis makes

the following assumptions:

• The localization of CAVs is reliable, backed up by recent research on localization

technologies [22, 38], which achieve traffic lane-level accuracy.

• The system clocks on CAVs and edge servers are synchronized. Various time syn-

chronization protocols, such as NTP (Network Time Protocol) [50], PTP (Precision

Time Protocol) [23], and TSP (Time Stamp Protocol) [2] can be used.

1.3 Organization

In this thesis, we first introduce the motivation of our work in Chapter 1. Chapter 2 sum-

marizes the background knowledge of our work, including Connected and Autonomous

Vehicles (CAVs), driving automation datasets, machine learning for scene understanding,

and error concealment. Then, we present related work on streaming LiDAR point cloud

error concealment in Chapter 3. Chapter 4 proposes a streaming system for dynamic

LiDAR point clouds and formulates the research problem. In Chapter 5, we describe

alternative algorithms and our TLEC and LEC algorithms. Finally, we introduce our co-

simulator and evaluation setup to demonstrate the superiority of our LEC algorithm in

Chapter 6. Chapter 7 concludes the thesis.

5

Chapter 2

Background

This chapter provides background knowledge of the thesis work.

2.1 Connected and Autonomous Vehicles (CAVs)

In recent years, driving automation has become one of the inventions of the new age. The

Society of Automotive Engineers (SAE) proposed 5 levels for autonomous driving vehi-

cles [61]: (i) L1: the vehicle performs a single operation on the control system, and the

driver is still responsible for the rest of the driving actions, (ii) L2: the vehicle performs

multiple operations on the control system, but the driver still needs to be responsible for

the rest of the driving actions, (iii) L3: the vehicle completes most of the driving opera-

tions, but the driver needs to keep observing to take over the vehicle, (iv) L4: the vehicle

can achieve fully automatic driving in specific scenarios, and the driver does not need to

attend, (v) L5: the vehicle can complete fully automatic driving in all scenarios.

At present, the most popular autonomous driving vehicle Tesla still at the level of L3

and cannot achieve fully autonomous driving, Tesla is still at still depends on its sensors,

and due to cost limitations, the field of view is often very limited. Some traffic acci-

dents caused by autonomous driving have caused controversy [8, 17]. When the sensor

is blocked, it may not work properly. In addition, some sensors cannot see objects that

are too far away, objects further away become blurred, and extreme weather can degrade

sensor performance. To clear these limitations, some researchers have proposed cooper-

ative perception [18, 36], which uses wireless networks to share perception messages to

expand the field that can effectively avoid accidents and traffic congestion. Researchers

propose different types of perception messages, which can be defined into three levels:

(i) sensor level [13, 19, 41]: sharing the sensor data and analyzing the received data with

self-sensor data, which has the highest amount of information and the highest network

bandwidth required, (ii) feature level [12, 49]: share features of sensor data with medium

6

required network bandwidth, but the amount of information will be compressed, and ob-

ject level [20, 66]: an advanced data type that only shares the final result of the analysis,

but may share incorrect results due to vision occlusions, and the receiver cannot perform

secondary analysis, which is heavily dependent on the sender’s analysis capabilities.

2.2 Driving Automation Datasets

Datasets are very important in machine learning and computer vision. Datasets can be

used to train and evaluate models to demonstrate the superiority of their algorithms.

For driving automation, researchers have proposed some datasets as benchmarks, such

as Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) [30],

Semantic3D [33], etc.

KITTI provides several datasets for optical flow, visual odometry, 3D object detec-

tion, and tracking. These data are collected on actual roads, including urban, rural,

and highways. For each acquisition vehicle, use (i) 2 × PointGray Flea2 grayscale

cameras (FL2-14S3M-C), (ii) 2 × PointGray Flea2 color cameras (FL2-14S3C-C), (iii)

4 × Edmund Optics lenses, (iv) 1 × Velodyne HDL-64E rotating 3D laser scanner,

and (v) 1 × OXTS RT3003 inertial and GPS navigation system to collect gray images,

RGB images, 3d point clouds, and localization information. Annotators label 3D point

cloud objects as Car, Van, Truck, Pedestrian, Person Sitting, Cyclist,

Tram, Misc, and Dontcare. If the object cannot be identified due to occlusion or dis-

tance, it will be marked as Dontcare. KITTI also provides a semantic segmentation

dataset as Semantic-KITTI [9], which provides continuous point cloud frames, and each

point is labeled into 28 types such as Car, Truck, Motorcycle, Pedestrian, and

Bicyclist, etc. It is worth noting that each object has a unique identification code,

even if the object appears in different frames.

Although many large-scale benchmark datasets are available, they are pre-recorded

datasets that are not conducive to real-time analysis and complex scenarios. To fix this

limitation, researchers have developed several automated driving simulators based on vir-

tualization technology [5, 48, 54, 75, 76] to generate scalable datasets in real-time.

2.3 Machine Learning for Scene Understanding

Machine learning is widely used in scene understanding. It can help driving automation

systems to understand better and infer scenes, thus supporting the development of object

detection, semantic segmentation, shape classification, lane detection, object tracking,

and other technology. Object detection focuses on finding all objects of interest in an

7

(a) (b)

Figure 2.1: Sample point clouds from: (a) the KITTI Dataset, (b) the CARLA simulator.

image, which requires not only determining the location of the object but also accurately

identifying the type of object. In 3d point cloud object detection, the detected objects

are marked by a 3d bounding box, and the points in the box are considered to belong to

this object. Intersection over Union (IoU) is commonly used to determine the accuracy of

object detection algorithms. It defines the overlap rate of two boxes, i.e. the ground truth

box and the predicted box. When the IoU is greater than the threshold, the object is con-

sidered to be successfully detected. Object detection provides coarse object-level results.

To obtain finer perceptual results, semantic segmentation is used to classify each point

in the point cloud into different semantic categories, such as buildings, roads, vehicles,

pedestrians, etc.

Several deep learning techniques are often used for scene understanding, such as

CNN, RCNN, FastRCNN, and FasterRCNN. In general, all of these techniques can extract

features from the original images for classification tasks, but all have some limitations.

CNN is widely used for image classification and detection, but may not perform well for

objects in irregular regions. To address this limitation, RCNN first partitions the image

into multiple RoI (Regions of Interest) and normalizes them to meet the requirements of

CNN, and then performs feature extraction for each region. However, the image is seg-

mented into multiple regions for feature extraction, which means more running time. Fast

RCNN only needs to perform feature extraction once to get all the RoI features, but it

still requires more runtime based on selective search. Faster RCNN uses RPN (Region

proposal network) to select RoI, which greatly reduces the runtime.

2.4 Error Concealment

Error concealment [3, 4, 35] was designed to reduce visual and auditory data degradation

caused by lost or corrupted data. It is widely used in video meetings, streaming me-

dia, mobile communication, and broadcasting to provide a better user experience. When

8

data is not received in its entirety due to channel errors, packet loss, or being late, error

concealment can be used to recover as much of the original data as possible. In video

transmission, data is usually transmitted as packets. When packets cannot be received,

these four methods are usually used: (i) duplication: filling the lost packets with adja-

cent packets, applicable to packets with similar content, (ii) interpolation: estimating lost

packets based on the received packets by interpolation algorithms, such as linear, poly-

nomial, and spline interpolation, etc. (iii) motion compensation: estimating the motion

vectors of objects in the video, using adjacent frames and motion vectors to generate lost

frames, and (iv) reconstruction: using the received frames to extract features to build a

model, which requires more sophisticated algorithms.

9

Chapter 3

Related Work

Although the considered error concealment problem has never been studied in the lit-

erature, prior works on point cloud caching, completion, and interpolation inspired the

development of our temporal prediction, spatial interpolation, and temporal interpolation

approaches. In this chapter, We survey prior works on point cloud caching, completion,

and interpolation, which inspired the development of our error concealment algorithm.

3.1 Cooperative Perception

Chen et al. [13] proposed a V2V cooperative perception system that transmits point clouds

to improve the accuracy of object detection. Sample point clouds reduce the amount of

network transmission, and fuse point clouds from two vehicles are used for object de-

tection to avoid omissions. Zhang et al. [82] proposed a cooperative perception system

with edge servers. The edge server considers bandwidth to split multiple regions for ve-

hicle transmission, and vehicles upload non-overlapping and compressed point clouds for

global view object detection. Qiu et al. [57] broadcast the points of objects and their

motion vector, and the receiver will reconstruct and fuse objects. Use the 3D map gen-

erated based on crowdsourcing to confirm the relative position between vehicles, extract

the points of objects based on pixel features and use optical flow to extract the motion

vectors. Arnold et al. [7] proposed a cooperative system with multiple message types

that adaptively selects different message types based on the distance of points. A central

server is used to receive and fuse messages from edge servers to perform object detec-

tion and broadcast to nearby vehicles. The system does not consider communication loss.

ETSI (European Telecommunications Standard Institute) [64] proposes the first rules of

message generation, which define when the vehicle should send the message and what the

content should contain. In addition, some researchers [21, 65, 66] have improved these

rules.

10

3.2 Point Cloud Caching

Han et al. [34] proposed a point cloud caching mechanism based on Long Short-Term

Memory (LSTM) for 3D object detection. They used LSTM to accumulate features from

previous sectors at the same angle. The received LiDAR point clouds are enriched with

the accumulated features. Qu et al. [58] built a point cloud streaming system to reduce

the latency of LiDAR scans. They first pushed sectors into a buffer immediately after

being received and then invoked Iterative Closest Point (ICP) algorithms to generate a

new frame. By doing so, a point cloud frame can be generated before receiving all of

its sectors. Frossard et al. [28] proposed to generate voxels from LiDAR point clouds,

and applied a convolutional backbone network to process the relevant sectors. They read

and updated point clouds using scalable spatial memory, and a hash function for spatial

location matching. Chen et al. [14] employed wedge-shaped point cloud sectors and

polar coordinates for point cloud caching. More precisely, they used polar columns to

encode a point cloud sector and represent it in a wedge shape for lower time and space

complexity. They then extracted features from these wedge-shaped sectors. These point

cloud caching papers [14, 28, 34, 58] inspired us to develop the temporal prediction

concealment approach.

3.3 Point Cloud Completion

Wen et al. [71] proposed to fuse the features of known and missing points using the

skip-attention mechanism. In particular, sparse point clouds were analyzed using Point-

Net++ [55] for feature extraction, while the resulting features were used to complete a

point cloud frame without affecting the multi-resolution structure. Yu et al. [81] presented

a completion solution using set conversion. More specifically, they applied transformer

networks and the K-Nearest-Neighbor (KNN) [53] algorithm on geometric relations. They

next employed FoldingNet [79] for restoring sparse point clouds. Yan et al. [78] gave a

two-stage neural network, which generates complete point clouds from sparse frames.

Their solution was built upon hierarchical graph and refinement algorithms to generate

the point cloud in the sparse sectors. These point cloud completion papers [71, 78, 81]

inspired us to develop the spatial interpolation concealment approach.

3.4 Point Cloud Interpolation

Zhao et al. [85] presented a low-complexity frame interpolation framework based on range

images and optical flows. In particular, they first projected two frames into range images

11

and then performed optical flow extraction [43]. The extracted features were used for

intermediate frame prediction. Lu et al. [47] showed a framework based on 3D scene

flows. Particularly, they applied FlowNet3D [45] to get 3D scene flows and fuse two

consecutive frames into the intermediate one. Xu et al. [74] applied hierarchical warp-

ing to generate the intermediate frame using two adjacent frames. More precisely, they

adopted self-attention [69] to reconstruct spatial information for minimum chamfer dis-

tance. Zhao et al. [84] found that the existing point cloud interpolation studies heavily

relied on 2D optical and 3D scene flows, which are both resource hungry. To cope with

this issue, they: (i) projected two point cloud frames into a 2D depth image, (ii) performed

feature extraction and aggregation, and (iii) re-projected the features back to the interme-

diate frame. Xu et al. [73] developed a self-supervised interpolation neural network by

combining FlowNet3D [45] for computing 3D scene flows and KNN for extracting lo-

cal features to predict the intermediate frame. Zheng et al. [10] applied the techniques of

interpolating video frames for point cloud interpolation. In particular, they adopted spher-

ical projection to convert point clouds into 2D images and convolution to improve point

cloud feature extraction. These point cloud interpolation papers [10, 47, 73, 74, 84, 85]

inspired us to develop the temporal interpolation concealment approach.

12

Chapter 4

LiDAR Point Clouds Streaming

This chapter first introduces the characteristics of point clouds and the measurement prin-

ciples of LiDAR, which helps the reader to understand our error concealment algorithm.

Then, we introduce our dynamic LiDAR point cloud streaming system and formulate our

research problem.

4.1 Properties of LiDAR Point Clouds

Point clouds are a common representation in driving automation and have the following

characteristics:

• High dimensionality: A set of points in 3D space, and each point has three coor-

dinates, which are high-dimensional data.

• Unordered: The points are not in order, and modifying the order will not affect the

result.

• Interaction between points: Unlike another image, a single point is meaningless,

and the features need to consider its structure and context.

• Invariance under transformations: For points in the point cloud, their absolute

position does not matter, and the overall rotation, transformation, and scaling does

not modify the structure.

In addition, compared to dense point clouds [44], LiDAR point clouds tend to be sparser,

have lower framerates, and have fewer points (see Fig. 4.1).

13

(a) (b)

Figure 4.1: 3D representations of (a) dense point clouds and (b) LiDAR point clouds.

Figure 4.2: Sampled measurements of a typical LiDAR.

4.2 Measurements of LiDARs

We use o to denote the coordinates of a LiDAR center, which is (0, 0, 0) in relative coordi-

nates shown in Fig. 4.2. Let R be the range of LiDAR laser beams for measuring distance.

Whenever a laser beam is not bounced back, the LiDAR either: (i) records infinity or (ii)

skips that measurement, which should be properly interpreted by the ML classification

algorithms. Without loss of generality, we assume that those measurements are skipped.

LiDARs employ uniform sampling resolutions1: a distance is measured every Θh and Θv

degrees horizontally and vertically. Moreover, a LiDAR covers horizontal and vertical

ranges of Φh and Φv, usually 0◦ < Φh ≤ 360◦ and 0◦ < Φv ≤ 180◦. For better manage-

ability, the measured points are horizontally grouped into sectors with a fixed center angle

of Ψ. That is, a frame fi, where i ∈ Z+, contains sectors si,j , where j = 1, 2, . . . ,Φh/Ψ.

For simplicity, we assume divisions are without remainders. Here, each sector si,j has up

to (Ψ/Θh)(Φv/Θv) measured points. For each measured point p, we define its pitch p.β

1We consider such LiDARs for the sake of presentation, while our derivation can be readily generalized
to non-uniform sampled LiDARs.

14

and yaw p.γ as the angles along the horizontal and vertical axes, and distance p.r as the

distance to the reflection point. We can transform p.β, p.γ, and p.r into p.x, p.y, and p.z

by:

p.β = arctan(
z√

x2 + y2
); (4.1a)

p.γ = atan(
y

x
); (4.1b)

p.r = e(p, o); (4.1c)

p.x = p.r × cos(p.β)× cos(p.γ); (4.1d)

p.y = p.r × cos(p.β)× sin(p.γ); (4.1e)

p.z = p.r × sin(p.β). (4.1f)

4.3 System Overview

We consider a point cloud streaming system as shown in Fig. 4.3. CAVs are equipped

with LiDARs for capturing point clouds, as well as GPS (Global Positioning System) and

IMU (Inertial Measurement Unit) for localization. The LiDAR point clouds are sent to

a ground removal module to filter out irrelevant and redundant points. The remaining

points along with vehicle locations are encoded and sent to the edge server. At the edge

server, the point clouds are received and decoded before being pushed into the buffer. The

buffered point clouds are used for error concealment at a later time. We propose to include

an error concealment module to conceal the incomplete frames due to packet loss, which

to the best of our knowledge has never been done before. A merger module combines

point clouds from multiple vehicles for global views before sending them to a classifier

module. The classification results are saved in the storage, before being sent back to

CAVs whenever the network conditions are better. Note that the classification results can

be broadcast and shared by nearby CAVs, although the optimal strategy of broadcasting

is beyond the scope of this thesis. Upon receiving the classification results, CAVs pass

them to controller modules for driving automations.

In this thesis, we focus on designing, implementing, and evaluating the error conceal-

ment module for CAVs. Other modules in the system can be implemented using existing

solutions, e.g.,

• Ground removal: LiDAR scanning objects will generate many redundant ground

points, which are not conducive to the analysis and will occupy a large amount

of bandwidth. Algorithms like RANSAC (Random Sample Consensus) can be

used [27], which iteratively fits a model to sampled point clouds and then removes

the points with high fitting errors.

15

• Encoder and decoder: Multiple point cloud compression algorithms [72], such as

Draco [32], can be employed. Draco is Google’s open-source 3D graphics com-

pression library, which is widely used in the Chrome browser.

• Merger: Point clouds from a single vehicle often provide very limited views, and

merging point clouds from multiple vehicles can help eliminate visual blind spots.

Previous work [82] has demonstrated that merging point clouds from multiple ve-

hicles can improve object detection accuracy by about 40%. Various point cloud

merging algorithms, such as Zhang et al. [82] can be used.

• Classifier: Driving automation requires real-time classification tasks to identify ob-

jects, which can help vehicles predict the behavior of other traffic participants and

take appropriate measures to ensure safe driving. Various classification tasks can

be performed, such as object detection algorithms [60]. Notably, the classification

tasks in CAV are not limited to object detection but can be extended to more com-

plex classification tasks, such as semantic segmentation, lane detection, and object

tracking. The goal of these tasks is to help CAVs better understand their surround-

ings and make accurate decisions.

Figure 4.3: The considered point cloud streaming system.

In our evaluations, we adopted the abovementioned solutions. Our error concealment

modules can be added to other cooperative perception solutions as extensions to improve

system robustness and increase the maximum number of vehicles as the most advanced

cooperative perception solution [82] still only supports 6 vehicles for sensor data sharing.

16

4.4 Network Protocols

We define an application-layer protocol to facilitate communications between the CAVs

and edge servers. There are three key message types.

• Location Update (LU): reports the latest LiDAR center location from GPS and

IMU. LU messages are sent by a CAV when: (i) the location difference exceeds

△d or (ii) the last update message has an age beyond △t. Both △d and △t are

system parameters.

• Point Update (PU): contains the point clouds of a sector, which is sent once the

points in that sector are encoded.

• Classification Result (CR): contains the classification outcomes produced at the

edge server. Whenever the edge server performs a classification task, it broadcasts

CR messages to nearby CAVs

Sample message exchanges are given in Fig. 4.4. Notice that we focus on concealing

errors between a single vehicle and its edge server. Hence, in the rest of the thesis, we

mainly concentrate on the PU messages, which dominate the network traffic amount.

Figure 4.4: A sample point cloud
streaming session.

Figure 4.5: The input/output of our error
concealment algorithm.

4.5 Problem Statement

The sectors of LiDAR point clouds are streamed in order from CAVs to an edge server,

where points in sectors are fused for ML-based analytics to enable driving automation.

17

Each LiDAR mounted on a CAV generates a sequence of PU messages, where each mes-

sage carries all points within a sector. Here, every point p is represented in coordinates:

p.x, p.y, and p.z. Whenever the edge server detects an incomplete frame fi due to packet

loss, it performs error concealment using frames: fi−1, fi, and fi+1. Since the edge server

conceals lost packets sequentially, all the sectors si−1,j in the previous frame fi−1 are ei-

ther received or concealed, while some of the sector si+1,j of the next frame fi+1 may be

empty. We use frames as the unit of error concealment and conceal lost sectors sequen-

tially. The LiDAR speed is usually 10~20 HZ, which means that the interval between two

frames is only 50~100 ms. We let ni be the number of points in frame fi. The distortion

of a concealed frame f̂i can be written as the Chamfer distance [72] to the ground truth

frame fi, which is:

dC(f̂i, fi) =

∑
p∈f̂i

min
p′∈fi

∥p− p′∥22

n̂i

+

∑
p∈fi

min
p′∈f̂i

∥p− p′∥22

ni

. (4.2)

Note that, if an error concealment algorithm generates a huge number of points, its Cham-

fer distance may be biased. More importantly, doing so may confuse ML classification

algorithms. Hence, when a concealed sector has more than (Ψ/Θh)(Φv/Θv) points, we

uniformly downsample it. The objective of our error concealment problem is to find the

optimal f̂ ∗
i = argmin

f̂i

dC(f̂i, fi) to minimize the Chamfer distance.

18

Chapter 5

Error Concealment of LiDAR Point
Clouds

In this chapter, we first list all alternative algorithms and categorize them into Tempo-

ral Prediction (TP), Spatial Interpolation (SI), and Temporal Interpolation (TI). Next, we

propose the Threshold-based LiDAR Error Concealment (TLEC) and LiDAR Error Con-

cealment (LEC) algorithms to adaptively select the most promising algorithms among the

TP, SI, and TI alternatives.

5.1 Overview

Table 5.1 gives the symbols used throughout the thesis. Since ML classification tasks

for CAVs are real-time, our error concealment algorithm on fi must work under diverse

sector availability of the current and adjacent frames fi−1 and fi+1. As illustrated in

Fig. 4.5, the core idea of our algorithms is to adaptively apply one of the three concealment

approaches: (i) Temporal Prediction (TP), which only needs frame fi−1 and thus incurs

the least latency; (ii) Spatial Interpolation (SI), which only needs (incomplete) frame fi

and thus has the highest applicability; and (iii) Temporal Interpolation (TI), which takes

frames fi−1 and fi+1 as input for the richest information. We present alternative TP, SI,

and TI algorithms in the following.

5.2 Temporal Prediction: TP

Since the edge server conceals lost packets sequentially, all the sectors si−1,j in the previ-

ous frame fi−1 are either received or concealed. TP selectively copies points from sectors

of fi−1 to conceal the lost sectors of fi. Although the inter-frame time is only 50–100 ms,

the movement of a CAV must be taken into account. We consider the following alternative

19

Table 5.1: Symbols Used in This Thesis

Symbol Description
o Coordinates of a LiDAR center
R LiDAR maximum scan distance
Θh Measure resolution in horizontal
Θv Measure resolution in vertical
Φh Measure degrees in horizontal
Φv Measure degrees in vertical
fi A point cloud frame
si,j A sector in point cloud frame fi
Ψ Angle of each sector
p A point in point cloud frame
p.β Pitch angle of the point
p.γ Yaw angle of the point
p.r Distance of the point
p.m Motion vector between p′ to p′′

ni Number of points in frame fi
f̂i Concealed frame of fi
ŝi,j Concealed sector of si
Mi Transformation matrix from fi−1 to fi
M ′

i Transformation matrix from fi−1 to fi+1

M ′′
i Transformation matrix from fi−1 to fi

w1, w2, w3 Least square parameters
τi Packet loss rate in frame fi
Tp TLEC algorithm threshold
Tn TLEC algorithm threshold

algorithms:

• Copyover Prediction (CP): Directly copying the sectors of fi−1 does not require

powerful algorithms and computing resources, and is suitable for real-time applica-

tions. We let ŝi,j = si−1,j , for any lost sector si,j .

• Motion-compensated Prediction (MP): We consider the location/orientation differ-

ence between LiDARs in fi−1 and fi. Let Mi be the transformation matrix from

fi−1 to fi; we give ŝi,j = si−1,jMi, for any lost sector si,j .

5.3 Spatial Interpolation: SI

SI employs the points in the current frame to estimate the measured distance p.r for

every given pitch p.β and yaw p.γ. More specifically, we repeat the estimation for

(Ψ/Θh)(Φv/Θv) points in each sector, where p.β and p.γ are well defined by the LiDAR’s

specifications (see grids in Fig. 4.2). For p with p.r > R, we skip it in the concealed frame

f̂i. We consider the following alternative algorithms:

20

• Nearest Neighbor (NN): For point clouds, neighboring points often have the same

features. For each point p of lost sectors in frame fi, we find the closest point p∗

from all received sectors in fi. We let p.r = p∗.r.

• Least Square (LS): Least Square is a common linear valuation method that can be

used to find the unknown distance of lost sectors. We fit all received points in frame

fi to p.r = w1p.β + w2p.γ + w3, for parameters w1, w2, and w3. We then use this

equation to estimate p.r for all points in lost sectors of fi.

5.4 Temporal Interpolation: TI

TI analyzes frames fi−1 and fi+1 to locate every point p′ in fi−1 and p′′ in fi+1, and uses

every pair of p′ and p′′ to create a point in the lost sectors of fi. Using p′ and p′′, we then

calculate the motion vector p.m as p′′ − p′. Last, TI interpolates the concealed frame as

p̂ = p′ + p.m/2. To compute the motion vectors, we consider the following algorithms:

• Point Matching (PM): For each point p′ in fi−1, we find the closest point p′′ in frame

fi+1 in the Euclidean distance. Each pair of p′ and p′′ is used to estimate a point p̂

in the concealed frame fi.

• Iterative Closest Point (ICP): ICP is a well-known 3D point cloud registration algo-

rithm, which can be used to compute a transform matrix from fi−1 to fi+1, denoted

as M ′
i . Let M ′′

i be the transformation matrix that shifts/rotates half of the displace-

ment/angles of M ′
i . Any lost sector si,j can be concealed by ŝi,j = si−1,jM

′′
i

• Scene Flow (SF): FlowNet3d [45] is a popular scene flow algorithm to compute

motion vectors of individual points in fi−1 to fi+1. Upon the derived motion vectors,

points in concealed frame f̂i can be computed.

• Bidirectional Scene Flow (BSF): PointINet [47] computes scene flows in both di-

rections (from fi−1 to fi+1 and from fi+1 to fi−1), and fuses the two temporally

interpolated frames into f̂i.

5.5 Threshold-based LiDAR Error Concealment Algorithm:

TLEC

Intuitively, the selection of concealment approaches depends on the incomplete ratio τi-1,

τi, and τi+1 of frames fi−1, fi, and fi+1, which are the fractions of lost sectors. Both

TP and TI take fi−1 as their input, which may limit their performance if τi-1 is too high.

21

Similarly, TI may not perform well if τi+1 is too high, while SI may perform better if τi is

too low. Combining the above design rationales, we propose the Threshold-based LiDAR

Error Concealment (TLEC) algorithm in Algorithm 1. The TLEC algorithm works as

follows: when τi-1 is greater than or equal to a threshold Tp, we execute SI. Next, if

τi+1 is less than another threshold Tn, we execute TI. We execute TP, otherwise. Tp and

Tn are both system parameters. We vary thresholds Tp ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and

Tn ∈ {0.2, 0.3, 0.4, 0.5, 0.6} to find the best thresholds. To determine the best threshold

T ∗
p and T ∗

n in C-V2X networks we perform a grid search on 25 combinations in one of our

pilot simulations. We plot sample results from 3-vehicle simulations in Fig. 5.1, where

the markers annotate the selected threshold. These results show that our TLEC algorithm

leads to Chamfer and Hausdorff distances of 3.33 and 18.26 m, within a running time

of 789 ms. According to the simulation results from 1-, 3-, 5-, and 7-vehicle, the best

T ∗
p values are: 0.6, 0.8, 0.6, and 0.6; and the best T ∗

n values are: 0.5, 0.5, 0.4, and 0.6.

We recommend T ∗
p = 0.6 and T ∗

n = 0.5 following majority votes. Nonetheless, the

variance among T ∗
p and T ∗

n under different environments appears to be nontrivial. Hence,

we conclude that the TLEC algorithm does not generalize to various and dynamic settings.

In the rest of the thesis, we no longer consider the TLEC algorithm.

Algorithm 1 Threshold-based LiDAR Error Concealment (TLEC)
Input: Incomplete Ratios τi-1, τi, τi+1, and Point Cloud Frames fi−1, fi, fi+1.

1: if τi-1 ≥ Tp then //fi−1 is seriously damaged
2: Execute Spatial Interpolation (SI)
3: else if τi+1 < Tn then //fi+1 is in a reasonable shape
4: Execute Temporal Interpolation (TI)
5: else //fi+1 is seriously damaged
6: Execute Temporal Prediction (TP)

Algorithm 2 LiDAR Error Concealment (LEC)
Input: Incomplete Ratios τi-1, τi, τi+1, and Point Cloud Frames fi−1, fi, fi+1.

1: Let dm be the object of the decision model and Pi be the index of the promising error
concealment algorithm.

2: Pi = dm.predict(τi-1, τi, τi+1) ▷ Find the most promising concealment approach
3: if Pi == SPATIAL INTERPOLATION then
4: Execute Spatial Interpolation (SI)
5: else if Pi == TEMPORAL INTERPOLATION then
6: Execute Temporal Interpolation (TI)
7: else
8: Execute Temporal Prediction (TP)

22

(a) (b)

(c)

Figure 5.1: Simulation results from our early LEC algorithm in a C-V2X network. Sam-
ple performance results with 3 vehicles from difference threshold values: (a) Chamfer
distance, (b) Hausdorff distance, (c) running time.

5.6 LiDAR Error Concealment Algorithm: LEC

The TLEC algorithm relies on two manually-selected thresholds and cannot perform well

when nonlinear or high-dimensional decisions are needed. To address these limitations,

we propose using ML algorithms, such as Decision Tree (DT), Support Vector Machine

(SVM), and Random Forest (RF) to adaptively choose the most promising concealment

approach for minimum Chamfer distance. Among these ML algorithms, DT provides a

highly interpretable and widely adaptable model through simple decision rules and fea-

ture segmentation. SVM can deal with nonlinear problems and classification tasks with

strong robustness by finding the optimal hyperplane. By integrating the prediction results

of multiple decision trees, RF has good generalization ability and is suitable for high-

dimensional and large-scale data. As shown in Fig. 5.2, we use DT, SVM, or RF as the

decision model to select the most promising concealment approach by incomplete ratio.

23

We give the LEC algorithm in Algorithm 2 and report the performance of DT, SVM, and

RF under different hyperparameters in the next Chapter.

Figure 5.2: The overview of our LEC algorithm.

24

Chapter 6

Evaluations

In this chapter, we first present our co-simulator for evaluating all alternative algorithms

and the LEC algorithm. Then we introduce the evaluation metrics, baseline, real-life

dataset, and environment setup. Finally, we demonstrate the superiority of our LEC algo-

rithm on the NR C-V2X and DSRC networks.

6.1 Implementations

Due to the high cost and complexity of CAVs, it is more convenient for researchers to

use simulators for evaluation. Although there are many reliable modules [25, 46, 51, 68],

combining these simulators is not an easy task. We designed and implemented a co-

simulator to evaluate our error concealment algorithms. Different from other work [5, 48,

54, 75, 76], our co-simulator can provide: (i) real-time KITTI-compatible and Semantic3D-

compatible ground truth frames, (ii) V2V, V2X, I2V communication modes, (iii) multiple

network protocol, DSRC, and NR C-V2X, and (iv) online and offline simulation mode. In

addition, we can quickly configure vehicles, pedestrians, and sensors based on the YAML

configuration. We use CARLA and NS-3 as our autonomous driving and network simu-

lators, respectively. ZeroMQ (ZMQ) is used as middleware to facilitate communication

between CARLA and NS-3. CARLA is an open-source autonomous driving simulator

that allows us to add vehicles and pedestrians to various urban maps; we can add different

types of sensors and generate virtual sensor data. NS-3 is a packet-level network sim-

ulator; we patched NS-3 with Millicar [26] and WaveTest [40] modules for C-V2X and

DSRC networks. ZMQ is a powerful cross-process communication library that provides

a flexible socket interface to pass messages asynchronously between processes.

Our co-simulator operates in synchronous mode, and CARLA and NS-3 run at differ-

ent times, as illustrated in Fig. 6.1. First, we start CARLA and NS-3; they will establish a

connection through ZMQ. Let syncT ime be the acquisition unit time (default is 0.5 sec-

25

onds). When CARLA executes tick(), a new frame will be generated, and these frames

are saved in KITTI-format and semantics3D-format until sufficient collectionT ime is

reached. When syncT ime > collectionT ime, CARLA will stop generating and sends a

resume signal to NS-3. NS-3 starts network simulation to generate network results when

it receives the resume signal, and then sends them to CARLA. When CARLA receives

the resume signal, CARLA will resume running.

Figure 6.1: The sequence diagram of our co-simulator.

26

6.2 Experiment Setup

We have implemented the LEC and all alternative algorithms in Python. There exists

no algorithm tailored for concealing dynamic LiDAR point clouds for comparison. We

include an optimal (OPT) approach, which selects the smallest Chamfer distance among

all TP, SI, and TI algorithms, as a benchmark. Algo. 2 demonstrates the pseudo-code of

the OPT algorithm. OPT is not practical due to excessive computational complexity and

dependency on the ground truth frames. We evaluate the LEC algorithm in two ways:

(i) pre-recorded dynamic point cloud datasets, such as KITTI Odometry [30] and (ii) a

detailed co-simulator implemented by us following an existing architecture [63] using

CARLA [25] and NS-3 [51]. While pre-recorded datasets were captured in real life,

they do not provide object detection labels, contain a single LiDAR-equipped vehicle,

and cannot reflect interactions among nearby vehicles. Our co-simulator dynamically

produces KITTI-compatible datasets, which are labeled with 3D bounding boxes of two

relevant object classes: Car and DontCare. Based on the LiDAR’s specifications, we

relabel all bounding boxes that are: (i) 100+ m away, (ii) having ≤ 50 points, and (iii)

with ≤ 2 visible bounding-box vertices as DontCare. This is because such objects are

less critical/detectable.

Algorithm 3 Optimal (OPT)
Input: Point Cloud Frames fi−1, fi, and fi+1.
Output: Concealed frame f̂i.

Let f̌i be the ground truth frame of fi.
2: f̂ ′

i = TP (fi−1)
f̂ ′′

i = SI (fi)
4: f̂ ′′′

i = TI (fi−1, fi+1)
f̂ ∗
i = arg min

f̂i∈{f̂ ′
i,f̂

′′
i,

ˆf ′′′
i}
dC(f̂i, f̌i) ▷ Find the optimal concealed frame by Chamfer

distance
6: return f̂ ∗

i

We run simulations with alternative algorithms1 of the three concealment approaches:

TP, SI, and TI, as well as our LEC algorithm. We also give the OPT results in some figures

for benchmarking. We adopt the Town10 map (see Fig. 6.2) of CARLA and Velodyne

HDL-64E S2 LiDAR [31] with sectors of Ψ = 2◦. We deploy a C-V2X base station next

to the edge server, which has a transmission range of ~500 m; and a set of DSRC APs

separated by 20 m. We randomly select the initial positions of the CAVs with LiDARs, as

illustrated in Fig. 6.3. In addition, 100 vehicles without LiDARs are added to the map. All

vehicles move along the street and make random turns at the intersection. Each simulation

1The names of the alternative algorithms were given in Chapter 5.

27

lasts for 60 seconds at 10 Hz.

We consider the following performance metrics:

• Chamfer distance: Average deviation defined in Eq. (4.2).

• Hausdorff distance: Maximum deviation given by:

dH(f̂i, fi) = max

{
sup
p∈f̂i

inf
p′∈fi

∥∥p− p′
∥∥2
2
, sup
p∈fi

inf
p′∈f̂i

∥∥p− p′
∥∥2
2

}
.

• Running time: We measure the running time on an Intel Xeon-E5 2629 V4 CPU and an

NVIDIA GTX 1080Ti GPU. Only SF and BSF leverage the GPU.

• Intersection-over-Union (IoU): We use the pre-trained PointRCNN [60] to detect vehicles

in front of CAVs. A candidate vehicle having an IoU with ≥ 0.5 the ground-truth vehicle is

considered detected.

• Detection Accuracy: The fraction of detected vehicles.

We repeat each simulation 10 times and report the average results from a random vehicle.

We include 95% confidence intervals whenever possible.

Figure 6.2: The town10 map of CARLA.

28

Figure 6.3: The urban map used in our simulations.

6.3 Results

In this thesis, we implemented all of the network protocols (see Chapter 4.4). We focus

on the PU messages, which dominate the network traffic. Although we upload the com-

pressed point cloud, PU messages still occupy about 99.98% of the overall network load.

In the following experiments, we do not evaluate LU and CR messages, but this has little

impact on the overall results.

Table 6.1: Parameters of C-V2X and DSRC Networks.

Bandwidth Datarate Frequency Mode Transport Layer Physical Layer
C-V2X 100 MHz - 28 GHz unicast UDP 5G New Radio

DSRC 10 MHz 27 Mbps 5.9 GHz broadcast UDP IEEE 802.11p (Wave)

Network statuses of C-V2X and DSRC. We use the parameters of networks shown

in Table 6.1. The network statuses of C-V2X and DSRC are shown in Figs. 6.4 and 6.5,

respectively. Due to randomness such as driving directions and traffic lights, congestion,

etc., the results may be unbalanced. As shown in the figure, transmit point cloud may

cause 35.47%–65.13% of packet loss rate in the DSRC network. This is serious for clas-

sification tasks. In addition, the C-V2X network still has 33.77%–59.87% packet loss,

which cannot guarantee stable transmission. Due to the powerful 5G technology, C-V2X

has a latency of only 0.2–6.6 ms and greater throughput. On the other hand, DSRC is

based on AP for long-distance transmission, which still has a high latency. Due to cellu-

lar network limitations, C-V2X does not usually support broadcast modes, which are not

29

conducive to the spread of messages. DSRC supports ad-hoc network topology, where

vehicles and edge servers can broadcast messages to each other, which makes it more

suitable for data sharing and regional alerting. In our system, we recommend using C-V2X

to transmit LU and PU messages from CAVs to an edge server, and DSRC to transmit CR

messages from an edge server to nearby CAVs.

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

70

P
a
c
k
e
t

L
o
s
s
 R

a
te

 (
%

)

1v 3v 5v 7v

(a)

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

6

7

8

L
a
te

n
c
y
 (

m
s
)

1v 3v 5v 7v

(b)

0 10 20 30 40 50 60
Time (s)

0
10
20
30
40
50
60
70
80
90

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

1v 3v 5v 7v

(c)

Figure 6.4: Network status in a C-V2X network: (a) packet loss rate, (b) latency, and (c)
throughput.

30

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

P
a
c
k
e
t

L
o
s
s
 R

a
te

 (
%

)

1v 3v 5v 7v

(a)

0 10 20 30 40 50 60
Time (s)

0

100

200

300

400

500

600

L
a
te

n
c
y
 (

m
s
)

1v 3v 5v 7v

(b)

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

70

80

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

1v 3v 5v 7v

(c)

Figure 6.5: Network status in a DSRC network (a) packet loss rate, (b) latency, and (c)
throughput.

31

Table 6.2: Overall Results in LEC Training

DT SVM RF
Training Acc. (%) ↑ 83.12 80.52 84.09

Validation Acc. (%) ↑ 76.14 79.21 78.34

Training of the LEC algorithm. We first conduct experiments to find the hyperpa-

rameters of the DT, SVM, and RF models of LEC. We use our co-simulator to generate

10,000 consecutive frames and randomly simulate packet loss rates between 0%–100%

for each frame. We carry out 5-fold cross-validation to find the optimal hyperparame-

ters, where 80% of the frames are used for training and 20% for validation. We vary the

following hyperparameters: (i) maximal tree depth ∈ {1, 5, 10, 15, 20} in DT, (ii) kernel

∈ {linear, poly, rbf, sigmoid, precomputed} and regularization ∈ {1, 5, 10, 25, 20} in

SVM, and (iii) maximal tree depth ∈ {1, 5, 10, 25, 20} and number of trees

∈ {10, 50, 100, 150, 200} in RF. The optimal hyperparameters are underlined above and

are adopted in the rest of this thesis. We used these frames and parameters to train our

LEC model, and the overall results are shown in Table 6.2. Next, we report the overall

Chamfer distance and running time from DT, SVM, and RF in Figs. 6.6(a) and 6.6(c),

also using 5-fold cross-validation. This figure shows that DT outperforms both SVM

and RF by up to 17.17%, and can save 10.53% and 15.00% running time, respectively.

We also report the results of Hausdorff distance, average IoU, and detection accuracy in

Figs. 6.6(b), 6.6(d), and 6.6(e). Since DT outperforms SVM and RF in Chamfer distance

and runs faster, the LEC algorithm adopts DT as the decision model.

Design decision of concealment approaches. To identify the best-performing alter-

native algorithms in individual approaches (TP, SI, TI), we first give sample results from

3 vehicles with a C-V2X network in Figs. 6.7–6.9. Fig. 6.7(a) shows that MP leads to the

Chamfer distance between 0.12–11.87 m. Furthermore, Figs. 6.8(a) and 6.9(a) show that

MP results in the Hausdorff distance between 12.27–28.64 m and a per-frame running

time of < 1152 ms. Therefore, MP works the best among all TP alternative algorithms.

Similarly, Figs. 6.7(b), 6.7(c), 6.8(b), and 6.8(c) reveal that NN and BSF achieve the

lowest Chamfer and Hausdorff distances among alternative algorithms of the SI and TI

approaches. Figs 6.7(d), 6.8(d), and 6.9(d) further confirmed the superiority of DT com-

pared to SVM and RF. Moreover, we plot the pre-frame results of the LEC algorithm and

all alternative algorithms from 1-, 5-, and 7-vehicle simulations in Figs. 6.10–6.18.

Next, we plot the overall Chamfer distance, Hausdorff distance, running time, aver-

age IoU, and detection accuracy of all alternative algorithms from 1-, 3-, 5-, and 7-vehicle

simulations in Figs. 6.19–6.23 using a co-simulator dataset in a C-V2X network. We ob-

serve that MP, NN, and BSF are the best algorithms for the TP, SI, and TI approaches, re-

32

spectively. Particularly, MP, NN, and BSF reduce the Chamfer distance by up to 73.28%,

98.47%, and 71.48%, compared to other alternative algorithms in TP, SI, and TI respec-

tively. We can say the same for the Hausdorff distance with up to: 32.96%, 73.58%, and

9.84%. Similarly, the average IoU is up to: 0.26%, 2.11%, and -0.14%, and the detection

accuracy is up to: 2.74%, -14.25%, and 1.49%. In summary, we recommend using MP,

NN, and BSF in the TP, SI, and TI approaches. For brevity, MP, NN, BSF and TP, SI, TI

are used interchangeably in the following discussion.

Performance of LEC with the co-simulator dataset. We compare the performance

of LEC with other algorithms in Fig. 6.24. We observe the superior performance of our

LEC algorithm, which: (i) reduces the Chamfer distance by up to 75.77%, (ii) cuts the

Hausdorff distance by up to 30.17%, and has a small gap of at most 25.55% compared

with OPT, (iii) a small IoU gap up to 0.04% compared with OPT, and (iv) improves the

detection accuracy by at most 33.31% with a tiny gap of as small as 0.75% compared with

OPT. In addition, our LEC algorithm runs fast: it terminates in 360–570 ms throughput

our evaluations.

Performance of LEC in a DSRC network. Also with the co-simulator dataset, we

present sample results from 3-vehicle simulations in a DSRC network. We observe an av-

erage packet loss rate of 40.18%. Compared to C-V2X, the DSRC network often causes

longer inter-packet intervals, which negatively affect the overall performance. Table 6.3

gives the overall results, which shows that our LEC algorithm outperforms TP, SI, and

TI in Chamfer and Hausdorff distances by 12.25%–87.43% and 2.46%–66.58%, respec-

tively. Compared to OPT, our LEC algorithm saves on average 74.47% running time,

while achieving a small gap of 8.86%, 2.11%, 0.04%, and 0.45% in Chamfer distance,

Hausdorff distance, average IoU, and detection accuracy, respectively. We notice that the

running time of OPT is underestimated, as selecting the best approach requires multiple

Chamfer distance calculations, which is extremely time-consuming.

Performance of LEC in the pre-recorded KITTI dataset. We present sample re-

sults from 3-vehicle simulations with the KITTI Odometry dataset in a C-V2X network.

We use the same hyperparameters but retrain DT, SVM, and RF with 4071 frames from se-

quence 8 with 5-fold cross-validation. DT still performs the best and is used in our LEC

algorithm model. This KITTI pre-recorded dataset only contains one LiDAR-equipped

vehicle. Hence, we duplicate trajectory in sequence 0 three times and time-shift it by

10 and 20 seconds to create a 3-vehicle dataset. Table 6.3 gives the overall results with-

out average IoU and detection accuracy because the KITTI Odometry dataset does not

contain labels. We observe an average packet loss rate of 64.93%. Our LEC algorithm

outperforms TP, SI, and TI in Chamfer and Hausdorff distances by 2.56%–92.49% and

0.58%–62.48%, respectively. Moreover, our LEC algorithm saves 70.72% of the running

33

time compared to OPT, with small gaps of 5.56% and 2.59% in Chamfer and Hausdorff

distances.

Table 6.3: Performance Comparison in: (Top) DSRC, (Bottom) C-V2X Networks

TP SI TI LEC OPT
Co-simulator Dataset in a DSRC Network

Chamfer D. (m) ↓ 0.98 6.84 3.23 0.86 0.79

Hausdorff D. (m) ↓ 8.95 26.12 20.92 8.73 8.55

Run. Time (ms) ↓ 589 1130 570 589 2307

IoU (%) ↑ 66.59 66.34 66.38 66.75 66.79

Accuracy (%) ↑ 52.52 45.96 52.91 53.91 54.36

Pre-recorded Dataset in a C-V2X Network

Chamfer D. (m) ↓ 5.06 1.37 0.39 0.38 0.36

Hausdorff D. (m) ↓ 31.93 14.08 12.05 11.98 11.67

Run. Time (ms) ↓ 50 820 420 380 1298

In summary, our LEC algorithm outperforms the best TP, SI, and TI alternative algo-

rithms in C-V2X and DSRC networks. In addition, our LEC algorithm can run faster and

achieves small gaps from OPT.

34

1 3 5 7
Number of Vehicles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

DT SVM RF

(a)

1 3 5 7
Number of Vehicles

0

5

10

15

20

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

DT SVM RF

(b)

1 3 5 7
Number of Vehicles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
u

n
n

in
g

 T
im

e
 (

s
)

DT SVM RF

(c)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 I

o
U

 (
%

)

DT SVM RF

(d)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

D
e
te

c
ti

o
n

 A
c
c
u

ra
c
y
 (

%
) DT SVM RF

(e)

Figure 6.6: Simulation results from our LEC algorithm in a C-V2X network: (a) Chamfer
distance, (b) Hausdorff distance, (c) running time, (d) average IoU, and (e) detection
accuracy.

35

0 10 20 30 40 50 60
Time (s)

100

101

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

101

102

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

2

4

6

8

10

12

14

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

2

4

6

8

10

12

14

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

DT SVM RF

(d)

Figure 6.7: Sample performance results from 3 vehicles in a C-V2X network: Chamfer
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

36

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

70

80

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

DT SVM RF

(d)

Figure 6.8: Sample performance results from 3 vehicles in a C-V2X network: Hausdorff
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

37

0 10 20 30 40 50 60
Time (s)

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

R
u

n
n

in
g

 T
im

e
 (

s
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
u

n
n

in
g

 T
im

e
 (

s
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

100

101

R
u

n
n

in
g

 T
im

e
 (

s
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
u

n
n

in
g

 T
im

e
 (

s
)

DT SVM RF

(d)

Figure 6.9: Sample performance results from 3 vehicles in a C-V2X network: Running
time of (a) TP, (b) SI, (c) TI, and (d) LEC.

38

0 10 20 30 40 50 60
Time (s)

100

101

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

101

102

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

100

101

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

DT SVM RF

(d)

Figure 6.10: Sample performance results from 1 vehicle in a C-V2X network: Chamfer
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

39

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

35

40

45

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

70

80

90

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

DT SVM RF

(d)

Figure 6.11: Sample performance results from 1 vehicle in a C-V2X network: Hausdorff
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

40

0 10 20 30 40 50 60
Time (s)

0.0

0.1

0.1

0.2

0.2

0.3

0.3

R
u

n
n

in
g

 T
im

e
 (

s
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
u

n
n

in
g

 T
im

e
 (

s
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

100

101

R
u

n
n

in
g

 T
im

e
 (

s
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
u

n
n

in
g

 T
im

e
 (

s
)

DT SVM RF

(d)

Figure 6.12: Sample performance results from 1 vehicle in a C-V2X network: Running
time of (a) TP, (b) SI, (c) TI, and (d) LEC.

41

0 10 20 30 40 50 60
Time (s)

100

101

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

101

102

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

6

7

8

9

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

6

7

8

9

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

DT SVM RF

(d)

Figure 6.13: Sample performance results from 5 vehicles in a C-V2X network: Chamfer
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

42

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

70

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0

20

40

60

80

100

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

35

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

35

40

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

DT SVM RF

(d)

Figure 6.14: Sample performance results from 5 vehicles in a C-V2X network: Hausdorff
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

43

0 10 20 30 40 50 60
Time (s)

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

R
u

n
n

in
g

 T
im

e
 (

s
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
u

n
n

in
g

 T
im

e
 (

s
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

100

101

R
u

n
n

in
g

 T
im

e
 (

s
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
u

n
n

in
g

 T
im

e
 (

s
)

DT SVM RF

(d)

Figure 6.15: Sample performance results from 5 vehicles in a C-V2X network: Running
time of (a) TP, (b) SI, (c) TI, and (d) LEC.

44

0 10 20 30 40 50 60
Time (s)

101

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

101

102

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

6

7

8

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

6

7

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

DT SVM RF

(d)

Figure 6.16: Sample performance results from 7 vehicles in a C-V2X network: Chamfer
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

45

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

70

80

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

35

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

30

35

40

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

DT SVM RF

(d)

Figure 6.17: Sample performance results from 7 vehicles in a C-V2X network: Hausdorff
distance of (a) TP, (b) SI, (c) TI, and (d) LEC.

46

0 10 20 30 40 50 60
Time (s)

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

R
u

n
n

in
g

 T
im

e
 (

s
)

CP MP

(a)

0 10 20 30 40 50 60
Time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
u

n
n

in
g

 T
im

e
 (

s
)

NN LS

(b)

0 10 20 30 40 50 60
Time (s)

100

101

R
u

n
n

in
g

 T
im

e
 (

s
)

PM
ICP

SF BSF

(c)

0 10 20 30 40 50 60
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
u

n
n

in
g

 T
im

e
 (

s
)

DT SVM RF

(d)

Figure 6.18: Sample performance results from 7 vehicles in a C-V2X network: Running
time of (a) TP, (b) SI, (c) TI, and (d) LEC.

47

1 3 5 7
Number of Vehicles

0

2

4

6

8

10

12

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

CP MP

(a)

1 3 5 7
Number of Vehicles

101

102

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

NN LS

(b)

1 3 5 7
Number of Vehicles

0

1

2

3

4

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

PM ICP SF BSF

(c)

Figure 6.19: Simulation results from different numbers of vehicles in a C-V2X network.
Chamfer distance from: (a) TP, (b) SI, and (c) TI.

48

1 3 5 7
Number of Vehicles

0

5

10

15

20

25

30

35

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

CP MP

(a)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

NN LS

(b)

1 3 5 7
Number of Vehicles

0

5

10

15

20

25

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

PM ICP SF BSF

(c)

Figure 6.20: Simulation results from different numbers of vehicles in a C-V2X network.
Hausdorff distance from: (a) TP, (b) SI, and (c) TI.

49

1 3 5 7
Number of Vehicles

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R
u

n
n

in
g

 T
im

e
 (

s
)

CP MP

(a)

1 3 5 7
Number of Vehicles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u

n
n

in
g

 T
im

e
 (

s
)

NN LS

(b)

1 3 5 7
Number of Vehicles

100

101

R
u

n
n

in
g

 T
im

e
 (

s
)

PM ICP SF BSF

(c)

Figure 6.21: Simulation results from different numbers of vehicles in a C-V2X network.
Running time from: (a) TP, (b) SI, and (c) TI.

50

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 I

o
U

 (
%

)

CP MP

(a)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 I

o
U

 (
%

)

NN LS

(b)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 I

o
U

 (
%

)

PM ICP SF BSF

(c)

Figure 6.22: Simulation results from different numbers of vehicles in a C-V2X network.
Average IoU from: (a) TP, (b) SI, and (c) TI.

51

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

D
e
te

c
ti

o
n

 A
c
c
u

ra
c
y
 (

%
) CP MP

(a)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

D
e
te

c
ti

o
n

 A
c
c
u

ra
c
y
 (

%
) NN LS

(b)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

D
e
te

c
ti

o
n

 A
c
c
u

ra
c
y
 (

%
) PM ICP SF BSF

(c)

Figure 6.23: Simulation results from different numbers of vehicles in a C-V2X network.
Detection accuracy from: (a) TP, (b) SI, and (c) TI.

52

1 3 5 7
Number of Vehicles

0

1

2

3

4

5

6

7

C
h

a
m

fe
r
 D

is
ta

n
c
e
 (

m
)

TP
SI

TI
LEC

OPT

(a)

1 3 5 7
Number of Vehicles

0

5

10

15

20

25

H
a
u

s
d

o
r
ff

 D
is

t.
 (

m
)

TP
SI

TI
LEC

OPT

(b)

1 3 5 7
Number of Vehicles

0

1

2

3

4

5

6

R
u

n
n

in
g

 T
im

e
 (

s
)

TP
SI

TI
LEC

OPT

(c)

1 3 5 7
Number of Vehicles

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 I

o
U

 (
%

)

TP
SI

TI
LEC

OPT

(d)

1 3 5 7
Number of Vehicles

0
10
20
30
40
50
60
70

D
e
te

c
ti

o
n

 A
c
c
u

ra
c
y
 (

%
) TP

SI
TI
LEC

OPT

(e)

Figure 6.24: Simulation results from our LEC algorithm in a C-V2X network: (a) Cham-
fer distance, (b) Hausdorff distance, (c) running time, (d) average IoU, and (e) detection
accuracy.

53

Chapter 7

Conclusion and Future Work

In this chapter, we conclude our work and discuss the possibility of our error concealment

approaches for real-world CAVs. This is followed by the future work.

7.1 Concluding Remarks

In this thesis, we considered a dynamic point cloud streaming system from a LiDAR-

equipped CAV to an edge server for classification tasks. Although streaming point clouds

over unreliable wireless networks could lead to incomplete point cloud frames due to

packet loss and late packets, the error concealment problem of dynamic LiDAR point

clouds has never been studied in the literature. To fill this gap, we designed, developed,

and evaluated a LiDAR Error Concealment (LEC) algorithm, which adaptively employs

Temporal Prediction (TP), Spatial Interpolation (SI), or Temporal Interpolation (TI) ap-

proaches to conceal incomplete point cloud frames for the smallest deviation in Chamfer

distance. Such decisions are made by comparing the incomplete ratios of adjacent point

cloud frames. For each concealment approach, we proposed and compared multiple alter-

native algorithms using a comprehensive co-simulator of CARLA and NS-3 implemented

by us and the KITTI Odometry dataset. Our simulation results revealed that the LEC al-

gorithm outperforms the alternative algorithms by up to 82.68% and 30.17% in Chamfer

and Hausdorff distances, within at most 570 ms per-frame running time in a C-V2X net-

work. Our LEC algorithm also outperforms other algorithms by up to 87.43% and 66.58%

in Chamfer and Hausdorff distances in a DSRC network. In the KITTI dataset, our LEC

algorithm outperforms the alternative algorithms in Chamfer and Hausdorff distances by

up to 92.49% and 62.48%. Moreover, our LEC algorithm saves 70.72% of the running

time compared to OPT, with small gaps of 5.56% and 2.59% in Chamfer and Hausdorff

distances.

However, some additional work is needed to combine our error concealment algo-

54

rithm with real-world CAVs. For each CAV, we recommend Velodyne HDL-64E S2 or

Livox HAP as onboard-LiDAR, which are typically mounted in front of the vehicle roof.

To work with other sensors, we need to align the position of these sensors. We recom-

mend using the C-V2X communication module to upload point clouds and the DSRC

communication module to receive messages from the edge server. We recommend using

a mini-PC to pre-process point clouds in CAVs and a stronger computer with GPU in the

edge server for error concealment and classification tasks.

7.2 Future Work

Our work can be extended in several directions:

• A smarter model for the LEC algorithm. In our work, we only consider the DT,

SVM, and RF models, which are low-complexity ML models. These models are

known to be vulnerable to overfitting, which may be attributed to their limited abil-

ity to capture the complex relationship between features, especially the nonlinear

problems. We may apply Reinforcement Learning (RL) [39] to the LEC algorithm,

or use an Incremental Decision Tree algorithm [67] to keep the model up-to-date.

RL makes decisions by learning an optimal strategy, and Incremental Decision Tree

makes decisions by dividing features. Compared with decision tree, RL is more

suitable for complex environments for adaptive adjustment and has advantages for

long-term decision problems. However, designing and tuning RL algorithms re-

quire expertise and experience to ensure fast convergence and good performance.

The Incremental Decision Tree algorithm incorporates new features to avoid con-

cept drift. Hence, the algorithm can adapt to new feature distributions promptly

while maintaining the accuracy of historical data. On the other hand, incomplete

ratios as input to the decision model may cause higher latency, and we have not

considered the spatial relationship between the lost sectors. All these challenges

need to be carefully considered.

• A more complete messaging protocol. In our work, we focus on designing, devel-

oping, and evaluating error concealment algorithms over transmitted PU messages

at an intersection. In the future, we can perform larger-scale simulations, which

can further highlight the merits of our solution for automatic driving. We need to

evaluate some specific scenarios, such as dead-end turns and other common traffic

accident scenarios. We need to evaluate some specific metrics, such as safe pas-

sage rate and safe distance. Moreover, we currently only detect vehicles and should

consider more dynamic objects, such as pedestrians and cyclists. All these enhance-

55

ments would simulate more future research projects in this exciting direction.

• Multi-vehicles feature extraction and fusion. In this thesis, we only consider single-

vehicle point clouds for error concealment. We can collect point clouds from nearby

vehicles for error concealment in the future. In addition, merging point clouds

from multiple LiDAR-equipped CAVs for cooperative perception could reveal more

challenging system issues before autonomous driving becomes a reality.

56

Bibliography

[1] C.-S. Adam. Deep learning with point clouds, 2019.

https://news.mit.edu/2019/deep-learning-point-clouds-1021.

[2] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet x.509 public key infras-

tructure Time-Stamp Protocol (TSP). Technical report, 2001.

[3] A. Akbari, M. Trocan, S. Sanei, and B. AGranado. Joint sparse learning with non-

local and local image priors for image error concealment. IEEE Transactions on

Circuits and Systems for Video Technology, 30(8):2559–2574, 2019.

[4] M. Al-Jarrah, A. Al-Dweik, E. Alsusa, and E. Damiani. RFID reader localization

using hard decisions with error concealment. IEEE Sensors Journal, 19(17):7534–

7542, 2019.

[5] C. Anagnostopoulos, C. Koulamas, A. Lalos, and C. Stylios. Open-source integrated

simulation framework for cooperative autonomous vehicles. In Proc. of IEEE Con-

ference on Mediterranean Conference on Embedded Computing (MECO), pages 1–

4, 2022.

[6] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundancy in network

traffic: findings and implications. In Proc. of ACM Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), pages 37–48, 2009.

[7] E. Arnold, M. Dianati, R. Temple, and S. Fallah. Cooperative perception for 3D

object detection in driving scenarios using infrastructure sensors. IEEE Transactions

on Intelligent Transportation Systems, 23(3):1852–1864, 2020.

[8] V. Banks, K. Plant, and N. Stanton. Driver error or designer error: Using the per-

ceptual cycle model to explore the circumstances surrounding the fatal Tesla crash

on 7th May 2016. Safety Science, 108:278–285, 2018.

[9] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall.

SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences.

57

In Proc. of IEEE/CVF Conference on Computer Vision (ICCV), pages 9296–9306,

2019.

[10] Z. Cai, J. Liang, K. Hou, and S. Liu. LiDAR point cloud image interpolation via

separable convolution. In Proc. of IEEE Conference on Chinese Control Conference

(CCC), pages 6709–6713, 2022.

[11] L. Cenkeramaddi, J. Bhatia, A. Jha, S. Vishkarma, and J. Soumya. A survey on sen-

sors for autonomous systems. In Proc. of IEEE Conference on Industrial Electronics

and Applications (ICIEA), pages 1182–1187, 2020.

[12] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu. F-cooper: Feature based

cooperative perception for autonomous vehicle edge computing system using 3D

point clouds. In Proc. of ACM/IEEE Symposium on Edge Computing (SEC), pages

88–100, 2019.

[13] Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception for connected

autonomous vehicles based on 3D point clouds. In Proc. of IEEE Conference on

Distributed Computing Systems (ICDCS), pages 514–524, 2019.

[14] Q. Chen, S. Vora, and O. Beijbom. PolarStream: Streaming LiDAR object detection

and segmentation with polar pillars. arXiv preprint arXiv:2106.HZCY+2007545,

2021.

[15] S. Chen, J. Hu, Y. Shi, L. Zhao, and W. Li. A vision of C-V2X: Technologies, field

testing, and challenges with chinese development. IEEE Internet of Things Journal,

7(5):3872–3881, 2020.

[16] X. Chen, S. Shi, B. Zhu, K. Cheung, H. Xu, and H. Li. MPPNet: Multi-frame

feature intertwining with proxy points for 3D temporal object detection. In Proc. of

European Conference on Computer Vision (ECCV), pages 680–697, 2022.

[17] J. Claybrook and S. Kildare. Autonomous vehicles: No driver. . . no regulation?,

2018. https://www.science.org/doi/full/10.1126/science.aau2715.

[18] G. Cui, W. Zhang, Y. Xiao, L. Yao, and Z. Fang. Cooperative perception technology

of autonomous driving in the internet of vehicles environment: A review. Sensors,

22(15):5535, 2022.

[19] J. Cui, H. Qiu, D. Chen, P. Stone, and Y. Zhu. COOPERNAUT: End-to-end driving

with cooperative perception for networked vehicles. In Proc. of IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 17252–17262,

2022.

58

[20] Q. Delooz and A. Festag. Network load adaptation for collective perception in V2X

communications. In Proc. of IEEE Conference on Connected Vehicles and Expo

(ICCVE), pages 1–6, 2019.

[21] Q. Delooz, R. Riebl, A. Festag, and A. Vinel. Design and performance of

congestion-aware collective perception. In Proc. of IEEE Conference on Vehicu-

lar Networking (VNC), pages 1–8, 2020.

[22] S. Demetriou, P. Jain, and K.-H. Kim. CoDrive: Improving automobile positioning

via collaborative driving. In Proc. of IEEE Conference on Computer Communica-

tions (INFOCOM), pages 72–80, 2018.

[23] E. Dierikx, A. Wallin, T. Fordell, J. Myyry, P. Koponen, M. Merimaa, T. Pinkert,

J. Koelemeij, H. Peek, and R. Smets. White rabbit precision time protocol on long-

distance fiber links. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-

quency Control, 63(7):945–952, 2016.

[24] C. Domke and Q. Potts. LiDARs for self-driving vehicles: a technological arms race,

2020. https://www.automotiveworld.com/articles/lidars-for-self-driving-vehicles-a-

technological-arms-race.

[25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open

urban driving simulator. In Proc. of PMLR Conference on Robot Learning (CoRL),

pages 1–16, 2017.

[26] M. Drago, T. Zugno, M. Polese, M. Giordani, and M. Zorzi. MilliCar: An ns-

3 module for mmWave NR V2X networks. In Proc. of ACM Workshop on NS-3

(WNS3), pages 9–16, 2020.

[27] M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Communications of

the ACM, 24(6):381–395, 1981.

[28] D. Frossard, S. Suo, S. Casas, J. Tu, R. Hu, and R. Urtasun. StrObe: Streaming

object detection from LiDAR packets. arXiv preprint arXiv:2011.06425, 2020.

[29] S. Gao, K. Yang, H. Shi, K. Wang, and J. Bai. Review on panoramic imaging and

its applications in scene understanding. IEEE Transactions on Instrumentation and

Measurement, 71:1–34, 2022.

[30] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI

dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

59

[31] C. Glennie. Calibration and kinematic analysis of the velodyne HDL-64E S2 LiDAR

sensor. Photogrammetric Engineering & Remote Sensing, 78(4):339–347, 2012.

[32] Google. Draco, 2023. https://github.com/google/draco.

[33] T. Hackel, N. Savinov, L. Ladicky, J. Wegner, K. Schindler, and M. Pollefeys.

Semantic3D.net: A new large-scale point cloud classification benchmark. arXiv

preprint arXiv:1704.03847, 2017.

[34] W. Han, Z. Zhang, B. Caine, B. Yang, C. Sprunk, O. Alsharif, J. Ngiam, V. Vasude-

van, J. Shlens, and Z. Chen. Streaming object detection for 3-D point clouds. In

Proc. of European Conference on Computer Vision (ECCV), pages 423–441, 2020.

[35] T.-K. Hung, I.-C. Huang, S. Cox, W. Ooi, and C.-H. Hsu. Error concealment of

dynamic 3D point cloud streaming. In Proc. of ACM Conference on Multimedia

(MM), pages 3134–3142, 2022.

[36] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang. Survey on the

internet of vehicles: Network architectures and applications. IEEE Communications

Standards Magazine, 4(1):34–41, 2020.

[37] Y. Jia, R. Mao, Y. Sun, S. Zhou, and Z. Niu. Online V2X scheduling for raw-level

cooperative perception. In Proc. of IEEE Conference on Communications (ICC),

pages 309–314, 2022.

[38] Y. Jiang, H. Qiu, M. McCartney, G. Sukhatme, M. Gruteser, F. Bai, D. Grimm, and

R. Govindan. CARLOC: Precise positioning of automobiles. In Proc. of ACM Con-

ference on Embedded Networked Sensor Systems (SenSys), pages 253–265, 2015.

[39] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 4:237–285, 1996.

[40] J. Kenney. Dedicated Short-Range Communications (DSRC) standards in the united

states. Proc. of IEEE, 99(7):1162–1182, 2011.

[41] S.-W. Kim, B. Qin, Z. Chong, X. Shen, W. Liu, M. Ang, E. Frazzoli, and D. Rus.

Multivehicle cooperative driving using cooperative perception: Design and ex-

perimental validation. IEEE Transactions on Intelligent Transportation Systems,

16(2):663–680, 2014.

[42] L. Liu, X. Chen, S. Zhu, and P. Tan. CondLaneNet: a top-to-down lane detection

framework based on conditional convolution. In Proc. of IEEE/CVF Conference on

Computer Vision (ICCV), pages 3773–3782, 2021.

60

[43] L. Liu, J. Zhang, R. He, Y. Liu, Y. Wang, Y. Tai, D. Luo, C. Wang, J. Li, and

F. Huang. Learning by analogy: Reliable supervision from transformations for un-

supervised optical flow estimation. In Proc. of IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6489–6498, 2020.

[44] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu. Morphing and sampling network

for dense point cloud completion. In Proc. of the AAAI Conference on Artificial

Intelligence (AAAI), pages 11596–11603, 2020.

[45] X. Liu, C. Qi, and L. Guibas. FlowNet3D: Learning scene flow in 3D point clouds.

In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 529–537, 2019.

[46] P. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,

L. Lücken, J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simulation

using SUMO. In Proc. of IEEE Conference on Intelligent Transportation Systems

(ITSC), pages 2575–2582, 2018.

[47] F. Lu, G. Chen, S. Qu, Z. Li, Y. Liu, and A. Knoll. PointINet: Point cloud frame in-

terpolation network. In Proc. of AAAI Conference on Artificial Intelligence (AAAI),

pages 2251–2259, 2021.

[48] M. Malinverno, F. Raviglione, C. Casetti, C.-F. Chiasserini, J. Mangues-Bafalluy,

and M. Requena-Esteso. A multi-stack simulation framework for vehicular appli-

cations testing. In Proc. of ACM Symposium on Design and Analysis of Intelligent

Vehicular Networks and Applications (DIVANet), pages 17–24, 2020.

[49] E. Marvasti, A. Raftari, A. Marvasti, and Y. Fallah. Bandwidth-adaptive feature

sharing for cooperative LIDAR object detection. In Proc. of IEEE Conference on

Connected and Automated Vehicles Symposium (CAVS), pages 1–7, 2020.

[50] D. Mills. Internet time synchronization: the network time protocol. IEEE Transac-

tions on Communications, 39(10):1482–1493, 1991.

[51] Nsnam. Network Simulator 3 (NS-3), 2023. https://www.nsnam.org/.

[52] C. Perkins, O. Hodson, and V. Hardman. A survey of packet loss recovery techniques

for streaming audio. IEEE Network, 12(5):40–48, 1998.

[53] L. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

61

[54] P. Pirri, C. Pahl, N. Ioini, and H. Barzegar. Towards cooperative maneuvering simu-

lation: Tools and architecture. In Proc. of IEEE Conference on Consumer Commu-

nications & Networking Conference (CCNC), pages 1–6, 2021.

[55] C. Qi, L. Yi, H. Su, and L. Guibas. PointNet++: Deep hierarchical feature learning

on point sets in a metric space. Advances in Neural Information Processing Systems,

30, 2017.

[56] Y. Qian, L. Yu, W. Liu, and A. Hauptmann. ELECTRICITY: An efficient multi-

camera vehicle tracking system for intelligent city. In Proc. of IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 588–

589, 2020.

[57] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. AVR: Augmented ve-

hicular reality. In Proc. of ACM Conference on Mobile Systems, Applications, and

Services (MobiSys), pages 81–95, 2018.

[58] C. Qu, S. Shivakumar, W. Liu, and C. Taylor. LLOL: Low-latency odometry

for spinning LiDARs. In Proc. of IEEE Conference on Robotics and Automation

(ICRA), pages 4149–4155, 2022.

[59] R. Ravindran, M. Santora, and M. Jamali. Multi-object detection and tracking, based

on DNN, for autonomous vehicles: A review. IEEE Sensors Journal, 21(5):5668–

5677, 2020.

[60] S. Shi, X. Wang, and H. Li. PointRCNN: 3D object proposal generation and detec-

tion from point cloud. In Proc. of IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 770–779, 2019.

[61] P. Szikora and N. Madarász. Self-driving cars—the human side. In Proc. of IEEE

Conference on Informatics, pages 383–387, 2017.

[62] J. Tang, S. Li, and P. Liu. A review of lane detection methods based on deep learning.

Pattern Recognition, 111:107623, 2021.

[63] S.-M. Tang, C.-H. Hsu, Z. Tian, and X. Su. An aerodynamic, computer vision, and

network simulator for networked drone applications. In Proc. of ACM Conference

on Mobile Computing and Networking (MobiCom), page 831–833, 2021.

[64] TCITS ETSI. Intelligent transport systems (its); vehicular communications; basic

set of applications; part 2: Specification of cooperative awareness basic service.

Draft ETSI TS, 20(2011):448–51, 2011.

62

[65] G. Thandavarayan, M. Sepulcre, and J. Gozalvez. Analysis of message generation

rules for collective perception in connected and automated driving. In Proc. of IEEE

Symposium on Intelligent Vehicles (IV), pages 134–139, 2019.

[66] G. Thandavarayan, M. Sepulcre, and J. Gozalvez. Generation of cooperative per-

ception messages for connected and automated vehicles. IEEE Transactions on

Vehicular Technology, 69(12):16336–16341, 2020.

[67] N. Vanli, M. Sayin, M. Mohaghegh, H. Ozkan, and S. Kozat. Nonlinear regression

via incremental decision trees. Pattern Recognition, 86:1–13, 2019.

[68] A. Varga and R. Hornig. An overview of the OMNeT++ simulation environment. In

Proc. of ICST Conference on Simulation Tools and Techniques (SimuTools), 2010.

[69] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in Neural Information Pro-

cessing Systems, 30, 2017.

[70] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph attention convolution for

point cloud semantic segmentation. In Proc. of IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 10296–10305, 2019.

[71] X. Wen, T. Li, Z. Han, and Y.-S. Liu. Point cloud completion by skip-attention

network with hierarchical folding. In Proc. of IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1939–1948, 2020.

[72] C.-H. Wu, C.-F. Hsu, T.-K. Hung, C. Griwodz, W. Ooi, and C.-H. Hsu. Quanti-

tative comparison of point cloud compression algorithms with PCC Arena. IEEE

Transactions on Multimedia, pages 1–16, February 2022. Accepted to Appear.

[73] J. Xu, X. Le, C. Chen, and X. Guan. SPINet: self-supervised point cloud frame

interpolation network. Springer Neural Computing and Applications, 35(14):9951–

9960, 2023.

[74] J. Xu, Z. You, X. Le, C. Chen, and X. Guan. HINet: Hierarchical point cloud

frame interpolation network. In Proc. of IEEE Conference on Intelligent Control

and Information Processing (ICICIP), pages 334–340, 2021.

[75] R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma. OpenCDA: an open coop-

erative driving automation framework integrated with co-simulation. In Proc. of

IEEE Conference on Intelligent Transportation Systems Conference (ITSC), pages

1155–1162, 2021.

63

[76] R. Xu, H. Xiang, X. Han, X. Xia, Z. Meng, C.-J. Chen, C. Correa-Jullian, and J. Ma.

The OpenCDA open-source ecosystem for cooperative driving automation research.

IEEE Transactions on Intelligent Vehicles, 8(4):2698–2711, 2023.

[77] J.-R. Xue, J.-W. Fang, and P. Zhang. A survey of scene understanding by event rea-

soning in autonomous driving. International Journal of Automation and Computing,

15(3):249–266, 2018.

[78] X. Yan, H. Yan, J. Wang, H. Du, Z. Wu, D. Xie, S. Pu, and L. Lu. FBNet: Feedback

network for point cloud completion. In Proc. of European Conference on Computer

Vision (ECCV), pages 676–693, 2022.

[79] Y. Yang, C. Feng, Y. Shen, and D. Tian. FoldingNet: Interpretable unsupervised

learning on 3D point clouds. arXiv preprint arXiv:1712.07262, 2(3):5, 2017.

[80] D. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh. Sensor and sensor fusion

technology in autonomous vehicles: A review. Sensors, 21(6):2140, 2021.

[81] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou. PoinTr: Diverse point cloud

completion with geometry-aware transformers. In Proc. of IEEE/CVF Conference

on Computer Vision (ICCV), pages 12498–12507, 2021.

[82] X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. Guo, F. Qian, and Z. Mao. EMP: edge-

assisted multi-vehicle perception. In Proc. of ACM Conference on Mobile Comput-

ing and Networking (MobiCom), pages 545–558, 2021.

[83] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh. PolarNet:

An improved grid representation for online LiDAR point clouds semantic segmenta-

tion. In Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 9601–9610, 2020.

[84] L. Zhao, X. Lin, W. Wang, K.-K. Ma, and J. Chen. Rangeinet: Fast LiDAR point

cloud temporal interpolation. In Proc. of IEEE Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 2584–2588, 2022.

[85] L. Zhao, Z. Zhu, X. Lin, X. Guo, Q. Yin, W. Wang, and J. Chen. RAI-Net: Range-

adaptive LiDAR point cloud frame interpolation network. In Proc. of IEEE Sym-

posium on Broadband Multimedia Systems and Broadcasting (BMSB), pages 1–6,

2021.

64

