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Abstract

Recently standardized MPEG Video-based Point Cloud Compression (V-
PCC) codec has shown promise in achieving a good rate-distortion ratio of
dynamic 3D point cloud compression by building on top of state-of-the-art
techniques for 2D video compression. Current error concealment methods of
V-PCC, however, lead to significantly distorted 3D point cloud frames under
imperfect network conditions. To address this problem, we propose a gen-
eral framework for concealing distorted and lost 3D point cloud frames due
to packet loss. We also design, implement, and evaluate a suite of tools for
each stage of our framework, which can be combined into multiple variants
of error concealment algorithms. We propose five error concealment algo-
rithms, four of which can conceal the geometry losses. These algorithms span
from point-to-point, triangular, and cube-based matching methods, which of-
fer wide variant of tradeoff between computational complexity and visual
quality. We conduct extensive experiments using seven dynamic 3D point
cloud sequences with diverse characteristics to understand the pros/cons of
our proposed error concealment algorithms. Our experiment results show that
our error concealment algorithms outperform: (i) the method employed by V-
PCC by at least 3.58 dB in Geometry Peak Signal-to-Noise Ratio (GPSNR)
and 10.68 in Video Multi-Method Assessment Fusion (VMAF) and (ii) point
cloud frame copy method by at most 5.8 dB in (3D) GPSNR and 12.0 in (2D)
VMAF. This work can both be broadened and deepen by: (i) accelerating the
running time exploiting the parallelization ability of graphics processing units
(GPUs). (ii) looking deeper into better matching of motion cubes and store
residual values in the metadata of the codec. (iii) applying real streaming sys-
tem with adaptive bitrate mechanism. (iv) make use of profound spatial info
remaining in the distorted 3D point cloud and conduct spatial concealment.
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中文摘要

近來動態影像專家小組 (MPEG)所制定的V-PCC編解碼器在點雲壓
縮率上展現超凡壓縮率，它將三 維的幾何資訊投影至二維，並使用

了舊有且成熟的二維影片壓縮技術。但在錯誤隱藏方面，V-PCC可說
是表現得很差。在不穩定的網際網路情況下，當有錯誤的位元流被傳

送，接收端收到後解碼的 三維點雲將會有嚴重的扭曲。為了解決點

雲傳輸錯誤的這個問題，我們提出一個通用的錯誤隱藏架構。 我們

也提出一系列包含設計，實作與比較的錯誤隱藏工具與演算法。在我

們提出的五個錯誤隱藏 演算法中，其中四個可以處理錯誤的幾何資

訊。這些演算法囊括了點對點，三角形法，與方塊配對法。對上述方

法，我們除了比較各種表現量尺之外，也提供了程式執行時間，讓開

發者得以在模組品質 與執行時間進行權衡比較。為了分析我們提出

的演算法的優點與缺點，我們在錯誤隱藏實驗中比較 了七組擁有不

同特徵的點雲人像影片。我們的實驗得出以下結論：(一)我們的演算
法在GPSNR量尺 中，至少贏過了V-PCC達3.58分貝。在VMAF量尺中
則至少多出10.68。(二)我們的演算法在GPSNR量尺中，至少贏過了三
圍複製法達5.8分貝。在VMAF量尺中則至少多出12。這項工作可以往
下列幾點作延伸：(一)以通用圖形處理器與平行運算加速錯誤隱藏程
式。(二)更深入的研究與改善運動向量預測並預先在編解碼器的元資
料中儲存運動向量殘值。(三)實作帶有自動位元率調整的點雲影片串
流系統。(四)更佳地運用幀內尚餘的幾何資訊，在少部分資訊流失時實
現幀間錯誤隱藏。
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Chapter 1

Introduction

Dynamic Three-Dimensional (3D) point cloud is gaining prominence as a representation

format for capturing and rendering volumetric videos, where 3D information (including

geometry, coordinates, and attributes, such as colors) of real-world scenes are recorded

and can be displayed as a free-viewpoint video for the viewers to consume with 6 Degree-

of-Freedom (6DoF). The rise of 3D point clouds as a media data format is fueled by

consumer-grade Light Detection and Ranging (LiDARs) as well as Red Green Blue-Depth

(RGB-D) cameras, and recent emerging study for point cloud compression algorithms. In

Decompress
Images Video

Dynamic 3D 
Point Cloud

Video Images
Encode Compress StreamStream Network Decode

Figure 1.1: (Simplified) V-PCC pipeline.

particular, the MPEG standardization activities represent two traditional signal-processing

(SP) based algorithms [22]. Both of them have exhibited a good rate-distortion ratio [22,

35], which may be an enabler of many distributed multimedia applications, in which point

clouds need to be encoded, streamed, and decoded in real-time, as depicted in Figure 1.1.

We envision that streaming of volumetric video with 6DoF free-viewpoint support

will soon become a killer application of dynamic 3D point clouds, partly due to the un-

fortunate COVID-19 pandemic. Such type of video for social gathering, remote collabo-

rations, and distance educations provides much more immersive experience than existing

Two-Dimensional (2D) video-based solutions. For real-time communications, dynamic

3D point clouds are likely streamed over Real-Time Transport Protocol (RTP) for smooth

interactions. Different from reliable Dynamic Adaptive HTTP Streaming (DASH), RTP

trades reliability for shorter latency. Unfortunately, lost (or late) packets of transmitted

1



bitstreams could lead to staggering negative impacts on the quality of the reconstructed

3D point clouds, which may dramatically degrade the user experience. To illustrate this,

Fig. 1.2 shows sample rendered images encoded and decoded by the referenced codec

V-PCC (Video-based Point Cloud Compression) [35] when: (a) the attribute (color) data

are lost, (b) the geometry (coordinate) and attribute data are lost, and (c) the error propa-

gates to a subsequent point cloud frame. More details on this figure will be explained in

Chapter 4.

(a) (b) (c)

Figure 1.2: Sample reconstructed point clouds under packet losses: (a) distorted attributes
(colors), (b) distorted geometry and attributes (colors), and (c) distortion due to error
propagation across point cloud frames.

In this scenario, to deliver immersive user experience over the best-effort Internet,

where the network bandwidth is diverse and dynamic, while high network latency and

packet loss are both possible, we develop several techniques to conceal transmission dis-

tortion due to lost or late packets in dynamic 3D point clouds streaming. Instead of

concealing the error in the video decoding process, we generate a new point cloud in the

place of the missing one. We exercised and compared several techniques when design-

ing the point cloud generation algorithms through real experiments. The techniques we

present have applications beyond error concealment. These techniques essentially gener-
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ate new frames for point clouds, given existing and nearby frames. For instance, given

two frames, we wish to generate an intermediate frame between the two. Such intermedi-

ate frame generation can be used to up-sample the point cloud sequence in the temporal

dimension, leading to smoother playback.

1.1 Limitations

We have the following assumptions and limitations for our work.

• Loss whole frames. We overwrite the whole packet of geometry information of

each frame. Then we consider the all geometry information in the exact frame

is unreliable as well as color information and completely depend on the temporal

concealment.

• All-Intra coding mode. We only use the all-intra mode from three modes provided

by V-PCC codec. We don’t use any metadata and 2D motions because we think

the back projection from 2D motions to 3D motions is not suitable for our current

concealment algorithms; thus, we can ignore the metadata packet loss.

1.2 Organizations

We organize the rest of this paper as follows. Chapter 3 presents the related work on

streaming 3D content. Chapter 4 analyzes the impact of losses on dynamic 3D point

clouds. Chapter 5 presents our error concealment techniques. The experiment results are

presented in Chapter 6. Chapter 8 concludes the paper.

1.3 Contributions

This paper makes the following contributions:

• We develop a suite of techniques to generate intermediate point clouds to con-

ceal transmission distortion in dynamic 3D point cloud streaming. To the best of

our knowledge, the only prior art is Wu et al. [66], which only presented a naive

and straightforward interpolation method for error concealment for 3D point cloud

streaming.

• We conduct extensive experiments with real dynamic point cloud sequences to

demonstrate the merits of our error concealment techniques and study the impli-

cations of different system parameters. For example, our error concealment tech-

niques outperform the current 2D frame copy (2DFC) error concealment in terms
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of rendered quality: by up to 11.09 dB in PSNR (Peak Signal-to-Noise Ratio) and

up to 0.3 in SSIM (Structural Similarity Index).
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Chapter 2

Background

We summarize the backgrounds of relative data representations and applications in this

section. We first list popular 3D Representations. What comes next is the detailed char-

acteristics analysis of 3D point clouds. Finally, we conclude the heterogeneity and appli-

cations for different kinds of point clouds.

2.1 3D Representations

(a) (b)

Figure 2.1: 3D representations of (a) 3D point clouds and (b) 3D meshes.

• Point Clouds. In point clouds, each point is composed of mandatory geometry

attributes, i.e., (x, y, z) coordinates with the optional attributes such as RGB col-
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ors, reflectances, and normals. Fig 2.1(a) shows a point cloud avatar from 8i [16]

dataset. Traditional RGB cameras can capture (x, y) coordinates and RGB colors.

The third coordinate z can be obtained from either stereo images, which derive

depth value by epipolar geometry [45] or commodity RGB-D cameras, which es-

timate depth by at least two infrared (IR) cameras and capture colors by a normal

RGB camera [36]. Because of the simplicity of the data format, point clouds are

easier to be manipulated, rendered [5], and stitched [4, 68]. Point clouds are also

more suitable for real-time interactive applications compared to the other 3D rep-

resentations. On the other hand, the primitiveness of the point cloud results in

high storage usage and high bandwidth consumption over the Internet if the data is

uncompressed. Fortunately, the emerging numbers of compression researches [7],

open-source codecs [65], and coding standards abound [6, 17, 53].

• Meshes. Meshes are composed of points, polygons, and textures. The polygons

not only form the surfaces but also provide connectivity information among ver-

tices for further applications. On the other hand, the connectivity makes 3D meshes

harder to be modified compared to point clouds. Fig 2.1(a) shows a mesh model.

The rendering [3] and compression [41] techniques for meshed are quite mature,

probably due to the popularity of video games. One drawback of 3D meshed is

that none of the output data types of any 3D scene acquisition sensors come in

the format of meshes. Nonetheless, 3D meshes can be generated by point clouds

following the process of normal estimation, downsampling, surface reconstruction,

and texture generation. Although there are open-sourced software for such conver-

sion process [11, 49, 71], the time-consuming generation process prevent meshes

from real-time applications.

• Light Fields. Light Fields (LF) can faithfully reproduce 3D scenes captured in

the past. It’s an ultimate way to present the real-world scenes with parallax and

color density. If LF can be projected in the air, it becomes the hologram and

the user can consume 6DoF scenes without any wearable devices. The current

state-of-the-art method of LF acquisition is to capture either micro-images by LF

camera [21] or image arrays, as depicted in Fig 2.2, captured by camera arrays

and gantries [37, 50, 72] with a slight angle and viewing position tweaking among

neighbor images. For micro-images, the refocusing applications which utilize the

wide depth of field abound [46]. On the other hand, image arrays acquired from the

camera array or the gantry are suitable for multi-view applications. The light field

video frames composed of 4D (with horizontal and vertical parallaxes) or 3D (hori-

zontal parallaxes only) image arrays can benefit from sophisticated 2D video Codec
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Figure 2.2: 5x9 image array created by 45 different images from the TUT dataset [59].

and Multiview Video Codec (MVC) [14] with affordable display devices [40]. For

example, the image array in Fig 2.2 can be displayed by Looking Glass Liquid

Crystal Display (LCD) with more than 45 horizontal parallaxes. Furthermore, with

the dihedral corner reflector devices, the light field images can be displayed as a

hologram [42]. For example, Fig 2.3 shows the holographic scenes displayed by

combining the Looking Glass LCD and the ASKA3D plate [2].

We use point clouds as the data type for 3D representations because of their ease of data

acquisition, vertex manipulation, scene registration, rendering, and interactions for tele-

conferences. Further characteristics of point clouds will be analyzed in the following

section.

2.2 Point Clouds

Compared to 3D meshes, which cannot be natively output by any existing sensors, the

point cloud is a light-weight data format with the following characteristics:
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Figure 2.3: A prototype holographic display driven by a laptop in our lab.

• No Edge or Face Information. Unlike polygon meshes, point clouds do not have

any information of connectivity which can form edges and faces. Thus, point clouds

can be directly captured by Time-of-Flight (TOF) sensors and are more suitable for

real-time applications. The lack of connectivity also enables point clouds to be

more easily edited. On the other hand, much more vertices are required for point

clouds to render an object with similar quality in comparison with 3D meshed,

which consume much more storage spaces.

• Heterogeneity. Depending on the applications, a variety of kinds of point clouds

are suitable for different applications. A wide spectrum of densities of point num-

bers from tens to millions by either directly acquired (sensors that output the point

cloud natively) or efficiently converted (generated from stereo images) can be ap-

plicable to applications with different budget (in terms of bandwidth or money)

concerns. Tens to hundreds of points acquired by low-cost sensors can be used

for human activity recognition [54] while prevent users from identity revealing;

moreover, this kind of point clouds favors resource-constrained embedded systems.

On the opposite, to form a human avatar with acceptable visual quality, more than a

half-million vertices are required [16]. The optional attributes can also be appended

as metadata or critical ingredients in addition to mandatory geometry coordinates

for each point of point clouds.

• Unordered. The point cloud is an unordered set, which means, for the dynamic

point clouds, each vertex of which contains no correlations to any other point within

the same frame (intra-frame). Here, the Dynamic 3D point clouds are the sequences

of 3D point clouds captured over a period of time, where each point cloud captured

at a specific time is referred to as a point cloud frame. The vertex number among
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point cloud frames is also different. In other words, there is no one-to-one correla-

tion among points in the different frames (inter-frame).

Given the aforementioned characteristics of point clouds, transmitting uncompressed dy-

namic point clouds may cause catastrophic network congestions. Unfortunately, dynamic

point clouds contain non-trivial spatial and temporal redundancy, which implies difficulty

and challenges for advanced applications like compression and error concealment.

2.3 Variants of Point Clouds

The diverse properties of sparseness levels and optional attributes demonstrate hetero-

geneity and flexibility of point clouds. Point clouds acquired by different sensors are

applied for different usage scenarios across healthcare, traffic safety, educations, and en-

tertainments.

• Sparse Point Clouds. Capturing tens of vertices without color attributes in each

Figure 2.4: Sample point clouds from mmWave radars.

frame, sensors that don’t reveal human identities, as Fig. 2.4 shows, can be installed

in places with privacy concern like bathrooms and bedrooms. For example, fall de-

tections can not only achieve by RGB cameras [15] but also by millimeter wave

(mmWave) radars [58] with tens of vertices [55] for healthcare services in nurs-

ing homes. The bandwidth-friendly characteristic of this kind of sensors acquiring

points with such sparseness level favors real-time applications. For example, Hu-

man activities can also be monitored and recognized with such sparseness level in

real-time [54, 70].
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• Cylindrical Point Clouds. Firing tens of lasers cylindrically, the LiDARs [61]

Figure 2.5: Sample point clouds from LiDARs.

output point clouds with high vertical resolution but sparse in horizontal resolution

as depicted in Fig. 2.5. Along with the high accuracy characteristic, this kind of

point cloud can be used for 3D urban models [62] and inspection for civil engineer-

ing [47, 56]. Pedestrian and obstacle detection is also an emerging applications due

to the popularity of self-driving cars.

• Dense Point Clouds. This kind of dense point cloud can be efficiently generated

Figure 2.6: Sample point clouds from RGB-D cameras.

by RGB-D cameras with color attributes. Fig. 2.6 shows an commercial Intel Re-

alSense RGB-D camera [33] and point cloud avatars of the 8i dataset [16] generated

by logical RGB-D cameras. The dense and colored point clouds can be utilized in

immersive communications among remote participants wearing a Head-Mounted
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Display (HMD). Dense point clouds generated from RGB-D cameras, where each

point contains color attributes, can be used in many XR applications including gam-

ing, entertainments, remote collaborations, and distance educations [64]. Here, XR

refers to HMD-enabled interaction modes, including Virtual Reality (VR), Aug-

mented Reality (AR), and Mixed Reality (MR), where users can freely move (in x,

y, and z coordinates) and rotate (in yaw, row, and pitch angles) to achieve 6-DOF in

a virtual world with immersive experience.

Though heterogeneity exists in point clouds, recent point cloud compression are mostly

focusing on the dense point cloud for entertainments and tele-conferences. As well as our

usage scenario, our work is mainly applicable to dense 3D point cloud streaming.
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Chapter 3

Related Work

3.1 Dynamic 3D Point Cloud Streaming

Existing work on streaming of static 3D content adopts diverse 3D representations. Re-

searchers have studied 3D content streaming with multi-resolution point-based repre-

sentations [48], progressive meshes [8, 10, 23], geometry images [30], and polygon

soup [19]. For static 3D content, since there is no temporal component, any packet

loss can be recovered through retransmission. Such research focused on error-resilient

coding to minimize the retransmission effort instead of error concealment. Dynamic 3D

content can be streamed with representations like multiple RGB-D video streams [69],

free-viewpoint videos [13], and dynamic 3D meshes [60]. Both RGB-D video streams

and free-viewpoint videos capture the 3D content into 2D videos, and thus video-based

error concealment still applies. Recently, the increased availability of LiDARs and RGB-

D cameras has spurred interests in the streaming of dynamic 3D point clouds. Hosseini

et al. [29] adapted MPEG DASH for streaming dynamic point clouds; Bo et al. [24] and

Lee et al. [38] presented two separate systems for the streaming dynamic 3D point clouds

to mobile phones. These papers employed KD-tree-based representations for 3D point

clouds, rather than more comprehensive codecs, such as V-PCC [35], which are more

fragile to packet loss. Further, the existing work targeted non-interactive applications,

where latency is less crucial and lost packets could be recovered through retransmission.

3.2 Point Cloud Compression

Streaming uncompressed avatars in the form of dynamic point clouds consume up to

4Gbps of bandwidth [7], not to mention a whole scene, which is not supported by con-

temporary network infrastructures [12]. For dynamic point clouds and point cloud videos,

MPEG has the standardized V-PCC [35], which projects each frame of 3D point clouds
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into several 2D images. The resulting 2D images can then be encoded using state-of-the-

art video codecs which exploits years of research and advances in video codecs. However,

the V-PCC reference decoder applies naive error concealment to recover any lost frame,

by copying the lost data from the previous 2D video frame over as a replacement. Do-

ing so leads to catastrophic distortion, because color or geometry information from the

previous 2D video frame does not align with that of the current 2D video frame, which

significantly distorts the reconstructed 3D point cloud frame.

3.3 Error Concealment

There are many advanced error concealment methods on video proposed in the literature.

For example, Muhammad et al. [44] proposed a multi-threaded algorithm for frame-level

error concealment. Through parallel computations, they successfully reduced the over-

all running time and outperformed the naive frame-copy and block-matching approaches.

Block-level error concealment algorithms [28, 32] attempts to conceal the distortion us-

ing both spatial and temporal information from surrounding blocks and frames, typically

guided by the motion vectors. For instance, Hwang et al. [32] proposed an improved

multi-directional interpolation algorithm for spatial error concealment, which gives higher

weights to the boundary pixels on the edges parallel to the interpolation direction. Hojati

et al. [28] gave an algorithm to conceal the errors in parallelogram partitions via recover-

ing the motion vectors therein. More recently, neural networks have been applied for 2D

error concealment [51, 52]. For example, Sankisa et al. [51] developed a deep neural net-

work to predict future optical flows, which are then used to conceal the damaged blocks

in individual frames. In their other work [52], the authors presented a temporal capsule

network to encode motion vectors as parameters, which are then extracted for motion-

compensated error concealment. Their network comes with an initial feature extraction

layer and a recurrent layer for spatio-temporal features. The capsule output is combined

with the most recent frames before being sent through a fully connected network.

3.4 Inpainting

Several recent papers have proposed methods to conceal errors in 3D point clouds due to

imperfection in data capture by inpainting. He et al. [26, 31] proposed several efficient in-

painting methods to conceal the attributes of point clouds, which exploit smoothness and

self-similarity in graph spectral domain. They represent irregular point clouds naturally

on graphs, split a point cloud into fixed-sized cubes as the processing unit, and search

for the most similar cubes to the target cube with holes inside. Fu et al. [20] inpainted
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dynamic 3D point clouds by leveraging both intra-frame self-similarity and inter-frame

consistency. Other studies focused on point cloud completion, which estimated the com-

plete geometry of the objects and scenes, based on partial observations. Recent work in

this area mostly employed deep learning techniques. Chen et al [9] propose a method that

perform point cloud scene completion of building facades using orthographic projection

and generative adversarial inpainting methods. Xie et al. [67] take 3D grids as interme-

diate representations to regularize unordered point clouds and propose a novel Gridding

Residual Network (GRNet) for point cloud completion. They devise two novel differen-

tiable layers, Gridding and Gridding Reverse, to convert between point clouds and 3D

grids without losing structural information. Wen et al. [63] propose Skip-Attention Net-

work (SANet) for 3D point cloud completion, which effectively exploit the local structure

details of incomplete point clouds during the inference of missing parts. Addresses miss-

ing data during capture which could lead to large holes in point clouds, they also propose

a structure-preserving decoder with hierarchical folding for complete shape generation.

In our work, however, the artifacts are mostly (much smaller) cracks due to imperfect

error concealment from the previous (and next) point cloud frames. These inpainting and

scene completion techniques are excessive for these cracks, and could be too heavy for

real-time dynamic 3D point cloud streaming. Our error concealment techniques for dy-

namic 3D point clouds are inspired by error concealment for video streaming. Compared

to spatial concealment, temporal concealment is more challenging, because the encoded

motion vectors are the motion vectors of the 2D video frames and may not correlate to

motion vectors of 3D point clouds unless the encoder specifically takes both 2D and 3D

data into consideration [39]. Hence, our work focuses on temporal error concealment.
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Chapter 4

Error Concealment Problem

4.1 System Overview

DecodeError Concealment Decompress

Images Video

Dynamic 3D point Cloud

VideoImages

Encode Compress

Stream

Stream

Damaged 3D point CloudConcealed 3D Point Cloud

Render

ABC

Network

Figure 4.1: Sample error concealment pipeline of dense point clouds, where missing
frames are concealed with neighboring ones.

We give a high level pipeline that conceals missing geometry (coordinates) and at-

tributes (colors) in Fig 4.1. We use V-PCC as the reference codec to encode and decode

the dynamic point clouds, where parts of the bitstreams are damaged. We locate the dam-

aged point cloud frame and consider the whole frame is missing and perform temporal

error concealment. In particular, we conceal the missing frame at B by matching and

interpolation from neighbor frames. Finally, we render the concealed point clouds and

adopt the similar method with PCC Arena [65] to evaluate the 2D and 3D metrics at C .

Note that, this figure was created with V-PCC in mind. For instance, the decompress step

at A is done by traditional 2D video codecs, such as HEVC [27]. Nonetheless, our pro-

posed error concealment algorithms at B operate on corrupted point clouds in 3D domain

and, hence, are agnostic to how the point clouds are compressed and streamed. The only
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assumption we make about the representation of the point clouds is that the geometry

and attribute data are encoded separately. Our approach is thus general and is applicable

beyond the MPEG V-PCC codec.

4.2 Problem

In this section, we briefly introduce the structure of V-PCC bitstreams. We then carry out

experiments with staged packet losses to understand how different packet loss patterns

affect the reconstructed 3D point clouds. Each V-PCC bitstream comprises three (sub)

bitstreams: Occupancy Video Data (OVD), Geometry Video Data (GVD), and Attribute

Video Data (AVD). Similar to Wu et al. [66], we parsed encoded V-PCC bitstreams and

encoder logs to identify individual NALUs (Network Abstraction Layer Units) in OVD,

GVD, and AVD bitstreams, where NALUs are essentially network packets. To emulate

lossy networks, we first manually marked the NALUs to drop. We then parsed the V-PCC

bitstream again and replaced the marked NALUs with zeros to create the corrupted V-PCC

bitstream. The resulting bitstream was subsequently decoded by the V-PCC reference

decoder for a reconstructed dynamic point cloud sequence. We observed that the V-PCC

reference decoder performs no error concealment in the 3D domain, but relies on the 2D

video codec to do so.

Table 4.1: Decoding Outcomes Under Diverse Loss Patterns

Pattern I P S I+P I+S P+S I+P+S
O CG - - - - - -
G CG CG-End N CG-End CG CG-End CG-End
A CA X N X CA X X

O+G CG CG-End N CG-End CG CG-End CG-End
O+A CG X N X CG X X
G+A CG CG-End N CG-End CG CG-End CG-End

O+G+A CG CG-End N CG-End CG CG-End CG-End

According to previous research results [66], we observe that dropping NALUs from

OVD and GVD leads to similar distortion on geometry structures while dropping NALUs

from AVD maintains the same geometry structures but with incorrect colors. In previous

research we have found that the V-PCC reference software performs no error concealment

in 3D space, but relies on 2D codecs to do so. However, only the NALUs of either I or

P frames were dropped in their study, and the implications of dropping different frames

were not thoroughly analyzed. Some of our pilot tests lead to more insights beyond their

reported results. However, only the NALUs of I frames were dropped in their study, while
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the NALUs of P frames and Supplemental Enhancement Information (SEI) were assumed

to be reliably delivered.

Different from Wu et al. [66]We study the impacts of packet loss of I frames, P frames,

and Supplemental Enhancement Information (SEI) NALUs from OVD, GVD, and AVD

in this paper. More precisely, we encode each point cloud sequence of 5 point cloud

frames with a single Group of Frame (GoF). We then drop some NALUs of the third

point cloud frame. We consider all permutations of dropping I frame, P frame, and SEI

NALUs, which leads to seven patterns. Besides, we consider dropping these NALUs

from all permutations of OVD (O), GVD (G) and AVD (A) bitstreams, which results in

43 corrupted V-PCC bitstreams in total1. We decode these V-PCC bitstreams and report

the decoding outcomes in Table 4.12. There are five different outcomes:

• N: No clear visual impairment is observed.

• CG: Point cloud frame 3 is distorted in both geometry and attributes.

• CA: Point cloud frame 3 is distorted in attributes only.

• CG-End: Point cloud frames 3–5 (end of the GoF) are distorted due to error propa-

gation of distorted frame 3 in both geometry and attributes.

• X: Point cloud frames 3–5 (end of the sequence) are not decoded due to an assertion

error of the reference decoder.

We make the following observations on this table:

• The reference decoder is not robust against inconsistent attribute and geometry

data. We see that when dropping P frame from AVD (A or O+A) without dropping

P frame from GVD results in assertion errors.

• Error propagation across point cloud frames happens whenever the P frame is

dropped. This can be seen in columns 2, 4, 6, and 7.

• Dropping SEI NALUs does not impose significant impact on the decoding outcomes.

For example, when only SEI NALUs are dropped, we see no clear visual impair-

ments in column 3. In addition, dropping additional SEI NALUs doesn’t make the

decoding outcome worse, e.g., rendered images from columns 2 (P) and 6 (P+S)

are visually identical.

1The OVD bitstream of a point cloud frame only contains I frames; hence, we got 43 rather than 49
corrupted bitstreams.

2The precise dynamic point cloud sequence used in this motivative experiment is independent to our
findings.

17



Fig. 1.2 gives three sample reconstructed point clouds with diverse distortion types. Fig. 1.2(a)

is resulted from corrupted AVD and thus contains incorrect attribute (i.e., color) data.

Fig. 1.2(b) is resulted from corrupted GVD and thus contains incorrect geometry data, in

addition to incorrect attribute data. Last, Fig. 1.2(c) demonstrates the corrupted geometry

data negatively affects the future frames’ geometry data. Because of cataclysmic distor-

tion on the reconstructed 3D point clouds, novel error concealment techniques that are

robust to error propagation caused by dynamic network conditions are needed.
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Chapter 5

Error Concealment Framework

In this section, we propose a suite of techniques to conceal errors for dynamic 3D point

cloud streaming. Because the metadata (such as video, sequence, and picture parameter

sets) of each bitstream is relatively small and critical, we assume proper error protection

schemes are applied on them. We note that concealing loss of attribute data (but geometry

data are received) is relatively easy – our algorithm simply copies the attribute of the

closest point in the previously received frame over. In the rest of this section, we focus

on the harder cases in our error concealment algorithm, where geometry data (in GVD)

(and possible attribute data) is missing entirely. Furthermore, we consider the worst-case

situation, where one or multiple 3D point cloud frames are lost. This kind of method is

also the default behavior of the V-PCC reference decoder. That is, the decoder wouldn’t

reconstruct partial point cloud frames.

5.1 Design Space

Table 5.1: Error Concealment Schemes

Name f1 f2 Motion Estimation f ′
2 Matching (m) Prediction P (·, ·)

3DFC Closest frame - - - m(p1) = p1 P (p1,m(p1)) = p1
PI Previous frame Next frame - f ′

2 = f2 most similar point in f2 interpolates between p1 and m(p1)
TI Previous frame Next frame - f ′

2 = f2 most similar triangle in f2 interpolates between p1 and m(p1)
CMI Previous frame Next frame Cube-based motion f ′

2 = f1 +M - f3 = f ′
2

NCI Previous frame Next frame Cube-based motion
f ′
2 = Σ27

i=1(Mi/Vi)/Σ
27
i=1(1/Vi)

where Mi = (xi, yi, zi), Vi = |xi| × |yi| × |zi|
- f3 = f ′

2

To ease the presentation of our proposed techniques, we first present a general frame-

work for the design space of 3D point cloud error concealment techniques, as a sequence

of steps. Each step can be performed with a different technique or skipped, leading to a

combinatorial explosion of error concealment methods. As such, we intentionally keep

our description of this design space vague and abstract in this section. Concrete realiza-

tion of each step will be described in details in subsequent sections.
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In our framework, the first step in error concealment is motion estimation. A major

challenge for 3D point cloud error concealment is that there is no explicit correspondence

between two point clouds – unlike video where there is a pixel-to-pixel correspondence.

Taking inspiration from the literature in error concealment for 2D videos, the first step

in error concealment for 3D point cloud is to estimate the motion between two 3D point

clouds. Algebraically, we denote M ≈ f1 − f2, where M is the motion, f1 and f2 as two

frames in the point cloud sequence.

After the motion is estimated, the algorithm can compensate for the motion by trans-

lating the points according to the estimated motion. This motion compensation step aims

to bring the points in one point cloud to the estimated position in the second point cloud,

i.e., we compute f ′
2 = f2 +M .

We then synthesize a point cloud f3, by predicting each point’s position and attributes,

from f1 and f ′
2. Each point p1 ∈ f1 has a corresponding point p2 = m(p1) ∈ f ′

2. We then

predict a point p3 ∈ f3 with a function P (p1,m(p1)).

Table 5.1 outlines four methods that we will present in this paper and how they fit

into this design space: 3DFC (3D Frame Copy) is a naı̈ve scheme that copies the closest,

non-loss, frame as the concealed frame. The prediction P simply copies a point over. No

motion estimation nor compensation is done for 3DFC. PI is a Point-to-Point Interpola-

tion scheme. Again, no motion estimation nor compensation is done. PI takes each point

in the previous frame and finds the most similar point, in terms of geometry and attributes,

in the next frame, and interpolates the concealed point between the two. TI (Triangular In-

terpolation) is similar to PI, except that it considers also the neighborhood information, by

computing the similarity of three points in terms of geometry and attributes. Finally, CMI

(Cube-based Motion Interpolation) performs block-based motion estimation between two

frames, and then translates each block using part of the motion to generate the new frame.

Other possibilities within this design space include extrapolation-based schemes, where

f1 and f2 are two previous frames and P extrapolates from p1 and p2. We elaborate on

four methods below.

5.2 3D Frame Copy (3DFC)

We begin by presenting 3D Frame Copy (3DFC), a naı̈ve scheme that simply copies the

closest available 3D point cloud for concealment. Suppose that we have two frames fp

and fn, and we wish to generate a missing frame fc that falls between fp and fn. We

denote the frame (between fp and fn) closest to fc as the source frame, and the other as

the target frame, breaking ties by preferring the previous frame.

3DFC simply replicates the points in the source frame as fc. 3DFC is simple and fast,
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Table 5.2: Symbols Used in This Paper

Sym. Description Sym. Description
fp Previous point cloud frame tp Triangle in fp
fc Current point cloud frame tn Triangle in fn
fn Next point cloud frame mn Motion vector for a point
ap Anchor point cloud frame tap Target point cloud frame
pp Point in fp lt List of matched triangle
pc Point in fc pairs (tp, tn)
pn Point in fn u Edge length of motion
pa Point in ap po Point in op
kp KD tree of fp estimation cubes
kn KD tree of fn i Number of neighboring
kta KD Tree of tap

ls length of a side
lp List of matched point pairs points in cn

(pp, pn) dn Neighboring triangles in fn
s Rendering point size α Weight of coordinate
en Estimated point in fn distance

corresponding to pp ∈ fp β Weight of color distance
cn Neighboring points in fn τ Searching radius for cn

but it causes the playback to appear stutter, since the same frame appears multiple times.

This effect is evident when there are multiple frames being interpolated between fp and

fn.

5.3 Point-to-Point Interpolation (PI)

A better approach to generate a concealed frame is to perform temporal interpolation

between fp and fn. The challenge for doing this is the lack of explicit point-to-point

correspondence among the points in fp and fn. Furthermore, 3D motion vectors are not

encoded in the bitstream.

Let fs be the source frame and ft be the target frame. To generate the interpolated

frame fc, the algorithm iterates through every point p in ft, and looks for the most similar

point m(p) from among the points in fs:

m(p) = argmin
q∈fp

∆(p, q), (5.1)

where ∆(p, q) = α∆g(p, q)+(1−α)∆a(p, q), ∆g is can be either Chebychev or Euclidean

distance between the coordinates of two points; ∆a is the Euclidean distance between the

color (RGB) vectors of the two points. α is a parameter to tune the relative importance

between the two terms of the utility function.

Naively iterating through all points in fs is slow. In practice, for performance, the

21



Algorithm 1 Point-to-Point Interpolation (PI) Algorithm
Build KD trees kp, kn for frames fp, fn
for point pp in fp do

Use kn to find neighboring points cn within a radius τ
Find the best matching point pn in cn using Eq. (5.3)
Interpolate a point pc using (pp, pn)
fc = fc ∪ {pc}

Render fc with point size s

(a) (b) (c)

Figure 5.1: Sample concealed point cloud using: (a) PI, (b) TI, and (c) CMI.

algorithm builds a KD-tree containing the points in fs, and uses the tree to query for a set

of points c(p, τ) ⊆ fs that is within Euclidean distance τ away from p. We only iterate

through the points in c(p, τ) to find the match m(p). For c(p, τ) is empty, then we let

m(p) = p. In other words,

m(p) =


p, if c(p, τ) is ϕ;

argmin
q∈c(p,τ)

∆(p, q), otherwise.

Here, the parameter τ is a control knob, where larger τ leads to potentially more

optimized matched point at a higher computational cost. We found that τ = 2 is a good

setting for balancing between quality and speed in our experiments. Algorithm 1 gives

the pseudocode of the PI algorithm. We have exercised several design variations for m(p)

in our pilot tests. For example, we have found that using point-to-plane distance function

for ∆g results in significantly worse quality of concealed point cloud frames. Hence, we

stick with point-to-point distance throughout this paper. Moreover, we found that the two

terms in Eq. (5.1) may differ a lot in scales and thus decided to normalize ∆g and ∆a with

a factor 1/
√
3m2, where m is the maximum possible value (for coordinates and colors).
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Algorithm 2 Triangular Interpolation (TI) Algorithm
Build KD trees kp, kn for frames fp, fn
for point pp in fp do

Find two closest points to form a triangle tp in fp
Use kn to find i neighboring points cn
Permute 3 points from cn into a set of triangles dn
Find the best matching triangle tn in dn using Eq. (5.2)
Interpolate each point of (tp,tn) into three pc
fc = fc ∪ {pc}

Render fc with point size s

5.4 Triangular Interpolation (TI)

Although our PI algorithm is fairly simple, it produces artifacts in the interpolated point

cloud frame fc, as shown in Fig. 5.1(a). One of the causes is that the PI algorithm matches

each point independently, without considering its neighborhood, and thus a point might

be matched incorrectly. We therefore considered extending PI to consider the geometry

and attributes of nearby points when computing the similarity between points.

To consider the neighbors, we perform point matching in a group of k points (k > 1)

instead of one-by-one. For each point p in fs, we first find k points closest to it, forming

a sequence of points N (p) (in arbitrary order). Similar to PI, we use the KD-tree to query

for a set of points c(p, τ) ⊆ fs that is within a distance τ away from p. We then iterate

through all k-permutations of points in c(p, τ), finding the best sequence of k points using

a utility function. If c(p, τ) has fewer than k points, then we copy the points from N (p)

to the concealed frame.

When k = 1, this is just PI. We pick k = 3 to balance between computation complex-

ity and the amount of neighbor information considered in matching. We call this method

triangular interpolation (TI).

We extend the notation m, ∆, ∆g and ∆a to take in an ordered list of points as input.

∆g and ∆a sums the pair-wise differences between the geometry coordinates and colors

of the points in the lists, respectively. In other words, TI computes m(N (p)) as

m(N (p)) =


N (p), if |c(p, τ)| < k;

argmin
S⊆πk(c(p,τ))

∆(N (p), S), otherwise.
(5.2)

Once TI finds the matching sequence of k points m(N (p)), TI computes a pair-wise

interpolation to produce k interpolated points for p. Note that each point can appear in

the neighborhood of multiple points, and thus can be interpolated more than once. The

resulting point cloud for TI will have more points than the original source point cloud.
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5.5 Cube Motion Interpolation (CMI)

We found that, while TI algorithm can lead to smoother surfaces and remove many small

holes in the model, for larger cracks in the surface of interpolated point clouds, TI is only

able to reduce its size, and not “sealing” it entirely (see Fig. 5.1(b) for an example). We

could increase the number of points in the neighborhood, k, to improve the quality, but

as TI’s computational complexity grows exponentially with k, we decided to consider

another method using a different paradigm.

The insights to our next method, Cube Motion Interpolation (CMI), stem from the

source of cracks appearing on the point cloud surfaces. A crack appears when points that

are close to each other in the source frame get matched with points that are far apart in

the target frame. Since the vector from p to m(p) is supposed to approximate the motion,

this means that two points that are close to each other in the source frame move in two

different directions, which is rare for rigid objects.

CMI ensures that a block of the points moves in a consistent direction to avoid creating

cracks in the generated frames. It works as follows. First, CMI uses Eq. (5.1) to find

m(p) for every point p in the source fs. Then, it partitions the points in fs into non-

overlapping cubes, and treats the displacement between m(p) and p as the motion vector,

CMI computes the average motion vector m̄C for each cube C. Finally, CMI generates

the interpolated frame by adding the motion rm̄C to each point p ∈ C, where 0 ≤ r ≤ 1

is the ratio of temporal distance between the generated frame and the source frame. Let

us denote this step as the interpolation step.

The advantage of CMI is that the rigid motion of cubes eliminates the possibility of

cracks. There are, however, possibilities of gaps between two cubes after interpolation.

To deal with this issue, we can enlarge the size of the cube (so that it now overlaps with

the adjacent cubes). We use the following heuristic to find the enlargement of a cube to

cover the gaps.

Let l be the length of each cube C. In the source frame, the distance between every

center of every cube is exactly l. If, after interpolation, the center of two adjacent, interpo-

lated, has a length l′ larger than l, then there is a possibility of visible gaps in the 3D point

cloud. We thus enlarge the size of C, from l to l′, and redo the interpolation step above.

To minimize the number of times CMI needs to repeat interpolation steps above, CMI

always enlarge the cubes in decreasing order of the magnitude of their motion. Fig. 5.1(c)

shows a concealed point cloud frame without cracks.
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(a) (b)

Figure 5.2: Less than perfect concealed point clouds due to: (a) rotation of the rifle and
(b) extrusion of facial expression.

5.6 Neighbor-Cube Interpolation (NC)

Although we fix the issue of gap between each cube after the rigid transformation of each

cube, we haven’t addressed the issue of extrusion, as shown in Fig 5.2. We decided to

consider the rigid motion from neighbor cubes and use the interpolated motion weighted

by the distance to neighbor center as the motion vector for each point. This method

eliminates the probability of that points near the boundaries of cubes move in the totally

different direction which cause either gaps or extrusions.

5.7 Extrapolation

Each of the algorithm above, PI, TI, and CMI, have an extrapolation variant, which we

termed PE, TE, and CME, respectively. The algorithms for works exactly the same way,

except that: (i) instead of using the previous frame and the next frame, the extrapolation

variants use the two previous frames, with the immediate previous frame fp as the source,

and (ii) instead of interpolating between points in the two frames, they extrapolate.

25



Algorithm 3 Cube-Based Motion Interpolation (CMI) Algorithm
Tar iter = 2 // target iteration, iteration for while loop
Cur iter = 0 // current iteration count
Uc flag = 0 // stop flag if all scaler unchanged
Build KD trees kta for frames tap
Divide ap into cubes with the same ls and store the center of non-empty cubes into list
C
Scaler = [1 * C.length]
// list of list storing neighbor cubes for each cube
Neighbors = [[] * C.length]
Search and record the neighbor cubes for each cube into Neighbors
while Uc flag == 0 and Cur iter ¡= Tar iter do

Cur iter += 1 {/}/ list of motion for each cube
Motions = []
for i = 1 to C.length do

// query points in cube with scaled cube size
P = query points(C[i], Scaler[i], ls)
M = [] // We will store motion the for whole block for avg
for each point p in P do

Use kta to find the nearest neighboring point tap by Eq. (5.1)
mn = tap - p
M.append(mn)

Motions.append(mean(M))
sort the motion by magnitude in Motions and store the index by descending order in
to M idx
Scaler cur = [0 * C.length] // 0 means not update yet, we store the final scaler outside
the while loop
for i = 1 to M idx.length do

Old Neighbors = Neighbor[i]
Search and record the neighbor cubes for C[i] +Motion[i] into New Neighbors
for j = 1 to Old Neighbors.length do

Candidate list = []
if not(Old Neighbors[j] in New Neighbor[j]) and Scaler cur[Old Neighbors[j]]
== 0 then

Candidate list.append(Old Neighbors[j])
if Candidate list.length == 0 then

Scaler cur[j] = 1
continue

S = the farthest center of candidate from current neighbor
Scaler cur[i] = S / ls

Uc flag = 0
for i = 1 to Scaler cur.length do

if Scaler cur[i] ¿ Scaler[i] then
Scaler[i] = Scaler cur[i]
Uc flag = 1
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Algorithm 4 Neighbor-Cube Interpolation (NCI) Algorithm
Tar iter = 2 // target iteration, iteration for while loop
Cur iter = 0 // current iteration count
Uc flag = 0 // stop flag if all scaler unchanged
Build KD trees kta for frames tap
Divide ap into cubes with the same ls and store the center of non-empty cubes into list
C
Scaler = [1 * C.length]
// list of list storing neighbor cubes for each cube
Neighbors = [[] * C.length]
Search and record the neighbor cubes for each cube into Neighbors
while Uc flag == 0 and Cur iter ¡= Tar iter do

Cur iter += 1 {/}/ list of motion for each cube
Motions = []
for i = 1 to C.length do

// query points in cube with scaled cube size
P = query points(C[i], Scaler[i], ls)
M = [] // We will store motion the for whole block for avg
for each point p in P do

Use kta to find the nearest neighboring point tap by Eq. (5.1)
mn = tap - p
M.append(mn)

Motions.append(mean(M))
sort the motion by magnitude in Motions and store the index by descending order in
to M idx
Scaler cur = [0 * C.length] // 0 means not update yet, we store the final scaler outside
the while loop
for i = 1 to M idx.length do

Old Neighbors = Neighbor[i]
Search and record the neighbor cubes for C[i] +Motion[i] into New Neighbors
for j = 1 to Old Neighbors.length do

Candidate list = []
if not(Old Neighbors[j] in New Neighbor[j]) and Scaler cur[Old Neighbors[j]]
== 0 then

Candidate list.append(Old Neighbors[j])
if Candidate list.length == 0 then

Scaler cur[j] = 1
continue

S = the farthest center of candidate from current neighbor
Scaler cur[i] = S / ls

Uc flag = 0
for i = 1 to Scaler cur.length do

if Scaler cur[i] ¿ Scaler[i] then
Scaler[i] = Scaler cur[i]
Uc flag = 1
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Chapter 6

Implementations and Experiments

6.1 Implementations

We have implemented our proposed error concealment algorithms in C++ using PCL [49]

libraries and other system utility functions in Python. For comparisons, we have also

realized 2DFC and 3DFC as the baselines since we are not aware of any other error

concealment algorithms designed for 3D point cloud streaming in the literature. We use

No Loss (NL) as a benchmark. We emphasize that while approaching NL is the ultimate

goal of error concealment, achieving NL is virtually impossible under typical scenarios.

We use V-PCC reference software version 11 [43] as our point cloud codec. To emulate

dynamic 3D point clouds streamed over the Internet, we implement a Gilbert-Elliot (G-E)

model [25] to generate packet (NALU) losses. We let q be the probability of transiting

from the good to the bad state, while 1 − q be the that from the bad to the good state.

The distorted V-PCC bitstreams are decoded by the V-PCC reference decoder, and then

repaired by different error concealment algorithms.

6.2 Experiments Setup

Table 6.1: Dynamic 3D Point Cloud Sequences

Queen Loot Red&Blk Soldier LongDress Basketball Dancer
Cplx. Low Low Low Low Medium High High
Pt.# 1.00 M 0.78 0.70 1.50 0.80 2.90 2.60

We employ seven MPEG dynamic 3D point cloud sequences with different complexity

levels [16] for our experiments, as listed in Table 6.1. Each sequence contains a human

actor, which is a representative object class in tele-conferences. We select the first 250

point cloud frames from each sequence, and encode them with All-Intra mode (which is
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Table 6.2: Statistics of GE drops

Queen Loot Red&Blk Soldier LongDress Basketball Dancer
5% avg geo drop 22.67 24.33 20.33 22.67 26.33 23 19

5% avg color drop 7 6.0 6.33 5 6.67 4 5
5% avg drop length 1.07 1.06 1.06 1.08 1.07 1.1 1.07
5% max drop length 3 3 2 2 2 2 3

10% avg geo drop 44 46.33 47.67 47.67 41 50.33 46.67
10% avg color drop 8.6 10.66 9.67 8.67 12.67 8 10

10% avg drop length 1.12 1.12 1.21 1.1 1.11 1.16 1.2
10% max drop length 3 3 5 3 3 4 3

15% avg geo drop 60 69.67 67 75.33 69.33 66.33 65.67
15% avg color drop 11 7.33 12 12 10.33 10.33 13

15% avg drop length 1.27 1.31 1.22 1.23 1.3 1.3 1.21
15% max drop length 3 4 4 4 4 5 4

Table 6.3: No. Frames 2DFC Fails to Conceal (Out of 750)

PLR Queen Loot Red&Blk Soldier LongDress Basketball Dancer
5% 37 42 28 33 35 36 30

10% 73 74 81 78 68 69 70
15% 88 109 111 108 113 109 98

more error resilient) of V-PCC at 20 frame-per-second. We analyze overall results from:

(i) all frames (including the frames not affected by packet losses), (ii) distorted frames

(including both color- and geometry-distorted ones), and (iii) geometry-distorted frames.

We adopt PCC Arena [65] to compute the 3D quality of concealed point cloud frames.

For 2D metrics, we also follow PCC Arena to use Open3D library [71] to render point

clouds into six 2D images along the x, y, and z axes. The difference is that we upgrade

Open3D to 0.14.1 with the new renderer class whose backend is filament [18] and we use

ImageMagick [57] to generate masks to eliminate backgrounds and calculate 2D metrics.

We report the average quality among them, if not otherwise specified. We consider the

following performance metrics:

• GPSNR: The PSNR of Chamfer distance between pair-wise closest points in the

target and reference frames.

• Hausdorff distance: The maximal shortest distance between the points in the target

and reference frames.

• CPSNR: The luminance component of color distortion between the nearest points

in the target and reference frames.

• PSNR: The PSNR of the foreground object (avatar) only, computed with ImageMag-

ick [57]. We exclude the background pixels as they are identical in both reference

and target rendered images.
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• SSIM: The luminance SSIM of the foreground object using ImageMagick [57].

• VMAF: We compute Video Multi-Method Assessment Fusion [1] to quantify the

perceived video quality.

• Running time: The per-frame execution time of each error concealment algorithm.

We run our algorithms on a single core of an AMD Ryzen 7 5800X CPU at 3.8

GHz.

The first three metrics are 3D quality metrics, while the next three are 2D quality metrics.

We carried out a grid search for the hyperparameters, such as the distance function and

utility weights. We have found that: (i) the Euclidean distance and (ii) α = 0.9 work the

best. Moreover, we set the query radius to be 2, the maximal neighboring points to be

5, and the Open3D rendering point size to be 3, if not otherwise specified. We vary the

G-E model parameter q to get packet loss rates of 5%, 10%, and 15%. For each packet

loss rate, we generate three packet loss traces for 250 point cloud frames, to emulate

three streaming runs. Based on our analysis in Sec. 4, we decide to exclude the following

NALUs when dropping packets: (i) headers, (ii) the first I frame of a GoF, and (iii) the

last GVD’s I frame in each GoF. Without doing this, the V-PCC reference decoder would

terminate prematurely due to assertion errors. In real-life scenarios, these crucial NALUs

(packets) can be protected by, e.g., Forward Error Correction (FEC) or Automatic Repeat

Request (ARQ).

6.3 Results

6.3.1 Limitations of The Current 2DFC method.

We first present per-frame visual quality using Queen, Red&Blk, and Dancer sequences,

which represents low, intermediate, and high complexity under all G-E parameters packet

loss rates. Note that: (i) We remove the frames that failed to concealed by 2DFC, which

is in favor of 2DFC, and plot all algorithms for these frame at the value of No Loss. (ii)

We select NL, 2DFC, 3DFC, PI and NC algorithms in this subsection. From Fig. 6.1

to Fig. 6.18, all figures clearly shows that the current practice, 2DFC, suffers from seri-

ous quality drop under packet losses comparing to our proposed error concealment algo-

rithms: (i) For Queen, the quality drops as high as 33 dB in GPSNR, 12.5 dB in CPSNR,

20 dB in PSNR, 0.32 in SSIM, and surge up to 45 thousands in Hausdorff Distance. (ii)

For Red&Blk, the quality drops as high as 17 dB in GPSNR, 13 dB in CPSNR, 12 dB

in PSNR, 0.48 in SSIM, and surge up to 35 thousands in Hausdorff Distance. (iii) For

Dancer, the quality drops as high as 14 dB in GPSNR, 10 dB in CPSNR, 10 dB in PSNR,
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0.37 in SSIM, and surge up to 140 thousands in Hausdorff Distance. We then take a closer

look at the error concealment results from 2DFC and find that it fails to conceal a signifi-

cant number of frames, as illustrated in Table 6.3. This demonstrates the necessity of 3D

error concealment algorithms.

6.3.2 Cumulative Distribution Function (CDF) Comparison.

We then plot CDF curves, each figure of which collect all three rounds of all distorted

frame for each packet loss rate. From Fig. 6.19 to Fig. 6.39, we observe that our error

concealment algorithms clearly outperform 2DFC and 3DFC at most of the time. Note

that, for lines of 2DFC, we still exclude frames that cannot be concealed. From now on,

for other algorithms except for 2DFC, we won’t exclude frames that cannot be concealed

by 2DFC. For all CDF figures, we can see that the better the quality is, except for Haus-

dorff distance, the lower and more right the line is. For example, except for Hausdorff

distance, NL is always the lowest and the most right line. We also take the Red&Blk

sequence who has intermediate complexity level as example. For 3D quality, Fig. 6.26

(a) reveals that, even after excluding the failed frames (see Table 6.3), 2DFC still results

in a few very low GPSNR values, as low as less than 30 dB. We can also see all the lines

of our algorithms are right to 3DFC algorithm in Fig. 6.26 (b) of CPSNR. For Hausdorff

Distance in Fig. 6.26 (c), we can also see all the lines of our algorithms are left to 3DFC

algorithm. In contrast, the 20% best performing frames achieved by our PI, TI, CMI, and

NC algorithms are above 51 dB, and our CMI and NC algorithms are above 52.5 dB, while

that of 3DFC is less than 50 dB. For 2D quality, Fig. 6.26 (d) reveals that, with 2DFC and

3DFC, the 20% best performing frames achieve 17.5 dB and 21 dB in PSNR, while our

error concealment algorithms achieve at least 22 dB, and our CMI and NC algorithms can

achieve 22.5. We can also see all the lines of our algorithms are right to 3DFC algorithm

in Fig. 6.26 (e) of SSIM. For VMAF, Fig. 6.26 (f) reveals that, with 2DFC and 3DFC,

the 20% best performing frames achieve 41.25 and 48.75, while our error concealment

algorithms achieve at least 55, and lines of our CMI and NC are right to lines of other

algorithms.

6.3.3 Bar Chart Analysis.

Next, we plot per-sequence overall visual quality results of distorted frames across all

packet loss rates in Fig. 6.40 to Fig. 6.45. We give 95% confidence intervals as error

bars in this figure. We make three key observations on this figure. First, our proposed

error concealment algorithms mostly outperform 2DFC by far even though we remove

the frames for 2DFC who cannot conceal some of the frames. Second, our proposed er-
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ror concealment algorithms mostly outperform 3DFC in terms of visual quality. Third,

among the four proposed error concealment algorithms, mostly, TI will outperform PI,

and CMI will outperform TI. This demonstrates the effectiveness of better matching ap-

proach (of TI) and motion compensation (of CMI) developed when exploring the design

space. However, between CMI and NC, there is no clear relationship between either one

of them outperforming another.

6.3.4 Improvement Analysis.

To better understand how much our error concealment algorithms outperform 3DFC, we

plot the per-sequence average quality improvement in Fig. 6.46 to Fig. 6.51. We give

95% confidence intervals as error bars in this figure. For GPSNR and Hausdorff dis-

tance in Figs. 6.46(a), Figs. 6.46(c), Figs. 6.48(a) and, Figs. 6.48(c) and, Figs. 6.50(a),

Figs. 6.50(c), we can see that all our proposed algorithms always outperform 3DFC. In

addition, TI always outperform PI, and CMI as well as NC always outperform the other

algorithms. Between CMI and NC, there is no clear relationship between either one of

them outperforming another. For YCPSNR, mostly, our proposed algorithms outperform

3DFC. For all 2D quality metrics, except for SSIM of NC algorithm for Soldier sequence,

all our proposed algorithms outperform 3DFC in all sequences. In summary, figures of

the chapter show that our proposed error concealment algorithms outperform the current

practices, 2DFC and 3DFC, in terms of both 3D and 2D visual quality.

6.3.5 Overhead of our error concealment algorithms.

We select 24 random point cloud frames from each considered sequence and measure the

running time of our algorithms. We report the average and 95% confidence intervals in

Fig. 6.52. Among the three algorithms, PI terminates the fastest: between 0.84 and 3.34

seconds on average across seven sequences. The running time of CMI (with motion com-

pensation) becomes longer compared to TI (considering all vertex permutations) when the

complexity level of sequences increases. This shows the importance of efficient motion

estimation algorithms, which is among our future tasks. In terms of memory consump-

tion, our proposed PI, TI, and CMI consumes at most 886, 1110, and 840 MB memory

(with Basketball sequence). We note that our C++ implementation is not well-optimized.

Parallelization techniques, such as Single Instruction Multiple Data (SIMD), General-

Purpose Graphics Processing Unit (GPGPU) can be adopted to reduce of execution and

memory overhead of our error concealment algorithms. Such optimization is among our

future tasks.
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Figure 6.1: Per-frame 3D visual quality of 5% packet loss from Queen: (a) GPSNR, (b)
YCPSNR, and (c) Hausdorff distance.
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Figure 6.2: Per-frame 2D visual quality of 5% packet loss from Queen: (a) PSNR, and
(b) SSIM.
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Figure 6.3: Per-frame 3D visual quality of 10% packet loss from Queen: (a) GPSNR, (b)
YCPSNR, and (c) Hausdorff distance.
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Figure 6.4: Per-frame 2D visual quality of 10% packet loss from Queen: (a) PSNR, and
(b) SSIM.
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Figure 6.5: Per-frame 3D visual quality of 15% packet loss from Queen: (a) GPSNR, (b)
YCPSNR, and (c) Hausdorff distance.
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Figure 6.6: Per-frame 2D visual quality of 15% packet loss from Queen: (a) PSNR, and
(b) SSIM.
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Figure 6.7: Per-frame 3D visual quality of 5% packet loss from Red&Blk: (a) GPSNR,
(b) YCPSNR, and (c) Hausdorff distance.

39



0 50 100 150 200 250
Frame

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

PS
N
R
 (d

B
)

NL
2DFC
3DFC
PI
NC

(a)

0 50 100 150 200 250
Frame

0.4

0.5

0.6

0.7

0.8

0.9

SS
IM NL

2DFC
3DFC
PI
NC

(b)

Figure 6.8: Per-frame 2D visual quality of 5% packet loss from Red&Blk: (a) PSNR, and
(b) SSIM.
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Figure 6.9: Per-frame 3D visual quality of 10% packet loss from Red&Blk: (a) GPSNR,
(b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.10: Per-frame 2D visual quality of 10% packet loss from Red&Blk: (a) PSNR,
and (b) SSIM.
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Figure 6.11: Per-frame 3D visual quality of 15% packet loss from Red&Blk: (a) GPSNR,
(b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.12: Per-frame 2D visual quality of 15% packet loss from Red&Blk: (a) PSNR,
and (b) SSIM.
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Figure 6.13: Per-frame 3D visual quality of 5% packet loss from Dancer: (a) GPSNR, (b)
YCPSNR, and (c) Hausdorff distance.
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Figure 6.14: Per-frame 2D visual quality of 5% packet loss from Dancer: (a) PSNR, and
(b) SSIM.
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Figure 6.15: Per-frame 3D visual quality of 10% packet loss from Dancer: (a) GPSNR,
(b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.16: Per-frame 2D visual quality of 10% packet loss from Dancer: (a) PSNR, and
(b) SSIM.
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Figure 6.17: Per-frame 3D visual quality of 15% packet loss from Dancer: (a) GPSNR,
(b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.18: Per-frame 2D visual quality of 15% packet loss from Dancer: (a) PSNR, and
(b) SSIM.
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Figure 6.19: Per-frame visual quality distribution of distorted frames of 5% packet loss
from Queen: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and
(f) VMAF.
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Figure 6.20: Per-frame visual quality distribution of distorted frames of 10% packet loss
from Queen: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and
(f) VMAF.
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Figure 6.21: Per-frame visual quality distribution of distorted frames of 15% packet loss
from Queen: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and
(f) VMAF.
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Figure 6.22: Per-frame visual quality distribution of distorted frames of 5% packet loss
from Loot: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and
(f) VMAF.
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Figure 6.23: Per-frame visual quality distribution of distorted frames of 10% packet loss
from Loot: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and
(f) VMAF.
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Figure 6.24: Per-frame visual quality distribution of distorted frames of 15% packet loss
from Loot: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM, and
(f) VMAF.
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Figure 6.25: Per-frame visual quality distribution of distorted frames of 5% packet loss
from Red&Blk: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.26: Per-frame visual quality distribution of distorted frames of 10% packet loss
from Red&Blk: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.27: Per-frame visual quality distribution of distorted frames of 15% packet loss
from Red&Blk: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.28: Per-frame visual quality distribution of distorted frames of 5% packet loss
from Soldier: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.29: Per-frame visual quality distribution of distorted frames of 10% packet loss
from Soldier: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.30: Per-frame visual quality distribution of distorted frames of 15% packet loss
from Soldier: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.31: Per-frame visual quality distribution of distorted frames of 5% packet loss
from LongDress: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.32: Per-frame visual quality distribution of distorted frames of 10% packet loss
from LongDress: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.33: Per-frame visual quality distribution of distorted frames of 15% packet loss
from LongDress: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.34: Per-frame visual quality distribution of distorted frames of 5% packet loss
from Basketball: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.35: Per-frame visual quality distribution of distorted frames of 10% packet loss
from Basketball: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.36: Per-frame visual quality distribution of distorted frames of 15% packet loss
from Basketball: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.37: Per-frame visual quality distribution of distorted frames of 5% packet loss
from Dancer: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.38: Per-frame visual quality distribution of distorted frames of 10% packet loss
from Dancer: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.39: Per-frame visual quality distribution of distorted frames of 15% packet loss
from Dancer: (a) GPSNR, (b) YCPSNR, (c) Hausdorff distance, (d) PSNR, (e) SSIM,
and (f) VMAF.
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Figure 6.40: Overall 3D visual quality of distorted frames from individual sequences of
5% packet loss: (a) GPSNR, (b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.41: Overall 2D visual quality of distorted frames from individual sequences of
5% packet loss: (a) PSNR, (b) SSIM, and (c) VMAF.
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Figure 6.42: Overall 3D visual quality of distorted frames from individual sequences of
10% packet loss: (a) GPSNR, (b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.43: Overall 2D visual quality of distorted frames from individual sequences of
10% packet loss: (a) PSNR, (b) SSIM, and (c) VMAF.
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Figure 6.44: Overall 3D visual quality of distorted frames from individual sequences of
15% packet loss: (a) GPSNR, (b) YCPSNR, and (c) Hausdorff distance.
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Figure 6.45: Overall 2D visual quality of distorted frames from individual sequences of
15% packet loss: (a) PSNR, (b) SSIM, and (c) VMAF.
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Figure 6.46: Per-sequence average 3D quality improvement of our error concealment
algorithms over 3DFC of 5% packet loss: (a) GPSNR ,(b) YCPSNR, and (c) Hausdorff
distance.
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Figure 6.47: Per-sequence average 2D quality improvement of our error concealment
algorithms over 3DFC of 5% packet loss: (a) PSNR ,(b) SSIM, and (c) VMAF.
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Figure 6.48: Per-sequence average 3D quality improvement of our error concealment
algorithms over 3DFC of 10% packet loss: (a) GPSNR ,(b) YCPSNR, and (c) Hausdorff
distance.
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Figure 6.49: Per-sequence average 2D quality improvement of our error concealment
algorithms over 3DFC of 10% packet loss: (a) PSNR ,(b) SSIM, and (c) VMAF.
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Figure 6.50: Per-sequence average 3D quality improvement of our error concealment
algorithms over 3DFC of 15% packet loss: (a) GPSNR ,(b) YCPSNR, and (c) Hausdorff
distance.
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Figure 6.51: Per-sequence average 2D quality improvement of our error concealment
algorithms over 3DFC of 15% packet loss: (a) PSNR ,(b) SSIM, and (c) VMAF.
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Figure 6.52: Average per-frame running time of our error concealment algorithms.
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Chapter 7

User Study

To collect human evaluations of the techniques, we carried out a pair-wise comparison

user study (n = 21, mean age X, Y female). Participants had no prior experience in pic-

ture quality evaluation, and were recruited via a call to participation through a university

advertisement page.

7.1 Design

The user studies followed ITU recommendations [34], to take place in a dimly lit room,

with a fixed viewing distance (i.e., 4H = 120cm distance between the viewer and the

screen). Video clips of the same model, but from different source techniques, were used

as pairs for comparison. Video order was chosen randomly for each participant with a

pairs of videos being played one at a time and separated by a two-second mid-grey page.

Participants saw 35 pairs of videos (each combination of videos from 7 models and 5

techniques). After seeing each pair of videos, participants were posed three questions

on a single voting page: (i) “Which video was smoother?”, (ii) “Which video had better

image quality?”, and (iii) “Which video did you prefer?”, and for each of these questions

participants could answer either “First video” or “Second video”. On average participants

took 40 minutes to complete training and main task.

Upon beginning the user study, the workflow and goal of the study was explained to

participants and they were asked to provide consent. Next, (as per ITU recommendations)

participants completed two vision tests to test for visual acuity and colour blindness. After

this, participants received detailed task instructions, and completed training to familiarise

themselves with the interface and experiment (training used models not included in the

main user study).
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Chapter 8

Conclusion and Outlook

(a) (b)

Figure 8.1: Less than perfect concealed point clouds due to: (a) extrusion of facial ex-
pression and (b) rotation of the rifle.

We conclude our work and list the future work in this chapter.

8.1 Conclusion

In this paper, we studied the uninvestigated problem of error concealment techniques of

the emerging dynamic 3D point cloud streaming. We developed a general framework to

explore the design space of these error concealment algorithms as a sequence of steps. By

introducing different techniques in individual steps and skipping some steps, we present
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a suite of error concealment algorithms, which perform point cloud interpolation (PI,

TI, CMI, and NCMI) or extrapolation (PE, TE, CME, and NCME). Through extensive

experiments, we show that our proposed error concealment algorithms: (i) significantly

outperform the baseline 2DFC and 3DFC in both 2D and 3D visual quality and (ii) achieve

different tradeoff points between the computational complexity and visual quality. Our

experiments shed some light on the unique challenges of concealing dynamic 3D point

clouds, and our proposed framework will stimulate more future development of novel

error concealment algorithms.

8.2 Future Work

This work can be extended in multiple dimensions. First, different usage scenarios, in

addition to (online) tele-conferencing and (offline) frame-rate upsampling, can be studied,

which dictates different requirements under diverse constraints. New design decisions,

such as the random-access and low-delay modes of V-PCC, could be leveraged for these

usage scenarios. We conclude the future work as the following:

• Graphic Processing Unit (GPU) Acceleration. We have reported the running time

with single-cored executions. We believe that general-purpose GPU (GPGPU) and

parallel computations can bring our implementation one step closer to real-time

applications.

• Cube Motion Improvement. We want to look deeply into motion vectors of each

divided cube for avatars through mathematically formulate problems of vectors. We

also want to store residual value in advance during the encoding process for better

matching of the cubes and lower processing time. If we could relax cubes into

cuboids, the artifacts due to rotation and extrusion, shown in Fig. 8.1(a), may be

eliminated.

• Rotations. Some of the cubes moving across frames are in the manner of rotations

rather than rigid transformations, as depicted in Fig. 8.1(b). Although there won’t

be obvious artifacts for point-based algorithms like PI and NCMI, the effectiveness

will still degrade. The concern for implementing rotation is that high complexity

may gain significant running time for dense point cloud applications.

• Real System. We want to establish the end-to-end system starting from dynamic 3D

point clouds, encoding, transmitting through real or simulated networks, decoding,

error concealment, and rendering to users with adaptive bitrate mechanism. Then

the concealed streaming of dynamic point clouds can be consumed in 6DoF via

HMDs, providing immersive experiences under non-perfect network conditions.
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• Spatial Concealment. We assume all point cloud frames are lost, which may not

be always the case. All of our concealment algorithms are in the temporal domain

because from our reference software V-PCC, the catastrophic distortion happens in

damaged frames. There could be still some useful information residing in damaged

frames or metadata that can be used for intra-frame concealment. When only partial

frames are lost, intra-frame techniques can be employed for better visual quality.
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