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INTRODUCTION
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3D Representations

Meshes Point Clouds
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 Native data format of

the capture equipment

 No correlations among 

points

 Optional attributes

◼ Colors

◼ Normals

◼ Reflectance

 Better efficiency on 

rendering due to 

hardware acceleration 

and optimization

 Widely used in 

entertainment content 

industry



Applications Relying on Point Clouds

 For native objects, point clouds are more suitable 

than meshes

◼ Save the computational overhead from converting 

point clouds to meshes

 Acceptable Visual Quality → 4 Gbps1 (one object)
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Holographic 
Telepresence

6DoF VR AR applications 
on end devices

Scene 
Reconstruction

Point Cloud Compression (PCC) is essential
[1] C. Cao, M. Preda, and T. Zaharia, “3D point cloud compression: A survey,” ACM 

International Conference on 3D Web Technology (Web3D’19), pages 1–9, July 2019.



Common PCC Algorithms

 Relies on conventional 

techniques like, 

transformation, 

quantization, and 

entropy coding

◼ Octree

◼ K-d tree

◼ Voxelization 6

Signal Processing-
based (SP-based) 

Neural Network-
based (NN-based)

 Takes advantages on 

feature extraction

◼ AutoEncoder

◼ Variational 

AutoEncoder

◼ Generative Adversarial 

Network



General Encoder Architecture of 

PCC Algorithms
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CHALLENGES
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Inconsistency on Performance 

Evaluations Scheme

9

Hard to compare different PCC algorithms 
fairly and completely

 For different PCC algorithms, evaluation results 

are inconsistent on

Datasets Performance 
Metrics

Coding 
Parameters



Therefore…
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Open 
Source

Modulization Extendibility

 We propose PCC Arena, a PCC algorithm 

benchmark platform [MM  ’20] and [TMM’21, submitted]

◼ GitHub link: https://github.com/xtorker/PCC_Arena

https://github.com/xtorker/PCC_Arena


IMPLEMENTATIONS
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High-Level Architecture of PCC Arena
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 C C  A l g o r i t h m

D e c o d e r n c o d e r

 C C  A l g o r i t h m
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 valuator

 CC Algorithm

Decoder ncoder
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 ost  rocessing
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 Each PCC algorithm has its own rate control 

method

 Performance evaluator analyzes the results for 

each

◼ Input point cloud

◼ PCC algorithm

◼ Set of coding parameters



Extendibility of PCC Arena
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PCC Algorithm Point Cloud 

Dataset

Performance 

Metric
Performance 

Metric

PCC Arena

Performance 

Metric

Point Cloud 

Dataset
PCC Algorithm

Evaluation Results



EXPERIMENTAL

SETUP
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Performance Metrics

 Non-visual Metrics

◼ bpp (bits-per-point)

◼ Running time (Encoding/Decoding)

 2D Visual Metrics (render 6 2D images along x, 

y, z axes)

◼ PSNR

◼ SSIM

 3D Visual Metrics: Coordinates

 3D Visual Metrics: With Colors
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3D Visual Metrics: Coordinates

 Asymmetric Chamfer Distance (ACD)

 Chamfer Distance (CD)

 CD Peak Signal-to-Noise Ratio (CD-PSNR)

 Hausdorff Distance (HD)
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: reference point cloud : target point cloud

Mr is the maximal distance 

between any two points in Pr



Two Definitions of Distance

 Point-to-point (p2pt)

 Point-to-plane (p2pl)1
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Np is the normal vector of the 

plane of Pr that contains p

[1] D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud 

compression," IEEE I                f    c     I  g     c     g (I I ’17), pp. 3460-3464, September 2017

Plane
Corresponding 
point p in Pr

Normal vector Np
Corresponding 
point p’ in Pt

p2pl



3D Visual Metrics: With Colors

 Luminance Color PSNR (L-CPSNR)

◼ PSNR on luminance channel with MSE as distance

  iola et al ’s  o  (VQoE)1

◼ QoE metric

◼ Consider both coordinate and color

◼ Empirical derived α=0.6597

18[1] I   iola,     ubramanyam, and    Cesar, “A color-based ob ective quality metric for point cloud contents,” 

I    International Conference on  uality of Multimedia   perience ( oM X’20), pages 1–6, May 2020



Candidate PCC Algorithms

 SP-based

◼ Draco [Google]

◼ G-PCC [MPEG 3DG]

◼ V-PCC [MPEG 3DG]

 NN-based

◼ GeoCNNv1 [Université Paris-Saclay, F ] [ICI ’19]

◼ GeoCNNv2 [Université Paris-Saclay, FR] [MM  ’20]

◼  C Cv1 [ JU, C ] [TC  T’21]

◼  C Cv2 [ JU, C ] [DCC’21]
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Rate Control

 Draco: quantization parameter qp

◼ Quantize the input value to the specified bits

 G-PCC: positionQuantizationScale

◼ Similar mechanism to Draco

 V-PCC: preset config file

◼ 2D image qp value (and other parameters), 

recommended by MPEG

 GeoCNN/GeoCNNv2/PCGCv1/PCGCv2: 

different models

◼ Train different models with different rate-distortion 

parameters
20



Training Process (for NN-based)
 Use pre-trained model if the authors have 

provided

◼ PCGCv1, PCGCv2

 If not, we follow the same procedure to train the 

model

◼ GeoCNNv1, GeoCNNv2

 Generating training dataset for all NN-based 

PCC algorithms with SNC (mesh)

◼ Use scripts provided by the authors first

◼ If it’s not the case, use our scripts (as same as the 

script we used to generate the testing datasets) to 

generate point clouds from meshes 21



Testing Datasets

 Sampled from meshes with CloudCompare1

 Number of points: 500k

 Coordinates only

◼ MN40 (ModelNet40)

◼ SNC (ShapeNetCore)

◼ CAPOD

◼ 8i dataset (avatars)

 With color

◼ SNCC (ShapeNetCore with color)

◼ 8iC dataset (avatars with color)

 All datasets are prepared a version with normal included

for evaluation purpose (point2plane metrics)

22

Objects

[1] CloudCompare.org. CloudCompare - open source project. https://www.danielgm.net/cc/



OBJECTIVE RESULTS
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Point-to-Plane (p2pl) Is Better
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 Overall, point-to-plane metrics have similar trend

with point-to-point ones

 Point-to-plane metrics are more related to the 

visual quality [1] [1] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “ eometric 

distortion metrics for point cloud compression,” in 2017 I    International 

Conference on Image Processing (ICIP). IEEE, 2017, pp. 3460–3464.

CAPOD

0.5 bpp



Missing Points and Extra Points
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 High ACDrt
p

value indicates missing points in the 

reconstructed point cloud

 High ACDtr
p

value indicates extra points in the 

reconstructed point cloud

CAPOD



NN-based PCC Algorithms 

Perform Well But Not Stable
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 GeoCNNv2 and PCGCv2 have the leading 

position, but face severe outlier problem

 G-PCC performs the best over 1 bpp and has 

stable results on the reconstructed point cloud

CAPOD



Avatars Are Easier to Compress 

than Objects?

27

 All NN-based PCC algorithms and V-PCC have much 

better quality and higher stability on 8i (avatars) than 

other datasets (objects)

 All NN-based PCC algorithms are trained with object 

datasets

Focus on Average Focus on Outliers

0.5 bpp



How About 2D Visual Quality?

28

 SP-based PCC algorithms achieve more robust 

performance across different datasets than NN-based 

ones

 NN-based PCC algorithms may not be general enough 

to handle arbitrary object classes

0.5 bpp



Coding Efficiency with Colors
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 Draco preserve more color information at higher 

bitrate

 Draco has better control on trading off the quality 

and bitrate

SNCC



Real-time Encoding/Decoding?

30

 Draco has the lowest running time, but none of 

the PCC algorithms encode/decode in real-time

 The more recent proposed NN-based PCC 

algorithm has lower running time

SNCC



SUBJECTIVE RESULTS
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User Study Setup

 Web-based questionnaire 

consists of 2 parts

◼ Perceived image quality

◼ Perceived point cloud similarity

 Each part consists of 4 types 

of point cloud

◼ Coordinate-only objects (chair)

◼ Colored objects (chair)

◼ Coordinate-only avatars

◼ Colored avatars

 We recruit 47 subjects in total
32

Subjects are asked to rank

the GIF images from the 

best to the worse



Subjects prefer V-PCC and GeoCNNv1 in 

Image Quality on Coordinate-only Objects

33

 Rank → Pairwise comparison matrix

 Plackett-Luce model → normalized model coefficients

 V-PCC and GeoCNNv1 take the lead, while GeoCNNv2 

performs the worst

 GeoCNNv2 suffers from non-trivial artifacts

0.5 bpp



It Is Hard to Tell The Difference Among PCC 

Algorithms on Coordinate-only Avatars

34

 Winning percentages are very close to 50% in most 

cases

 GeoCNNv2 delivers much better subjective image 

quality than Draco, which is opposite on objects

0.5 bpp



Very Similar Trend Are Found in Colored 

Objects And Avatars

35

 V-PCC performs the best, followed by G-PCC

 Draco suffers from the duplicated points1

0.5 bpp

Image Quality Point Cloud Similarity

Objects

Avatars

1Draco is specifically designed 

to avoid merging duplicated 

points, see https://github.com/ 

google/draco/issues/591#issue

comment-703820616



No Significant Correlation with 

Objective Metrics

36

 Avatar → some objective metrics have significant 

correlations

 Objects → no significant correlation

 None of objective metric can predict the quality well

0.5 bpp



FUTURE OF NN-BASED PCC

ALGORITHMS
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Potential Advantages and Disadvantages of 

the NN-based PCC Algorithms

 Not data-dependent

 Perform very well on 8i datasets (avatars)

◼ Good news for 3D immersive teleconferencing

 Not stable, generate outlier points (blocks) in 

some cases

 The latest one (PCGCv2) has a much lower 

running time

◼ Still slower than SP-based ones

 Few papers work on compressing attributes like 

colors

◼ Worth further research 38



CONCLUSION
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Conclusion

 Propose an open-source, modularized

benchmark platform, PCC Arena

 Conduct an extensive comparison of seven PCC 

algorithms along with a wide spectrum of 

datasets and performance metrics

 Conduct a user study and analyze the 

correlations between subjective scores and 

objective metrics

 Discuss on some great potentials of NN-based 

PCC algorithms
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Future Directions

 Offer the options for users to manipulate the 

input point cloud datasets

◼ automatically alignment, rotation, scaling, etc.

 Consider application-wise performance metrics, 

even develop one for certain usage scenario

◼ The performance metrics are independent of the 

usage scenarios 

41
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Q&A
43

Thank you for listening



BACKUP SLIDES
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PCC Arena

 Algorithm Wrapper

◼ Define a new class for each PCC algorithm inherited 

from the base class

◼ Implement the virtual method in the base class, that 

are encode() and decode()

◼ Base class provides public methods either for running 

over a dataset or running on a single point cloud

 Evaluator

◼ class ViewIndependentMetric()

 Wrap the metric software and parse the results

 Config Files

◼ Set up all the config parameters with YAML files 45



Software for Quality Metrics

 Modified based on mpeg-pcc-dmetric

 Implement a QoE metric of combining 

coordinates and color from  rof   ablo’s paper

 Bypass the built-in on the fly resolution 

calculation due to the unexpected behavior of it

◼ Calculate the resolution with an open-source project, 
gdiam-1.0.3

◼ resolution: Maximum distance of a pair of points 

among a point cloud
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Modifications on Sample PCC 

Algorithms

 PCGCv1

◼ Improve file I/O in testing phase

◼ Change .ply loader for generality

 PCGCv2

◼ Extract encoding and decoding part from the whole 

experiment evaluation script
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