
Quantitative Comparison of Point Cloud Compression Algorithms

Cheng Hao Wu (<u>chenghao.nthu@gmail.com</u>) Advisor: Cheng-Hsin Hsu

Networking and Multimedia Systems Lab, ISA, National Tsing Hua University

Outline

- Introduction
- Challenges
- Implementations
- Experimental Setup
- Objective Results
- Subjective Results
- Future of NN-based PCC algorithms
- Conclusion

INTRODUCTION

3D Representations

Meshes

- Better efficiency on rendering due to hardware acceleration and optimization
- Widely used in entertainment content industry

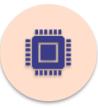
Point Clouds

- Native data format of
 - the capture equipment
- No correlations among points
- Optional attributes
 - Colors
 - Normals
 - Reflectance

Holographic Telepresence 6DoF VR

AR applications on end devices

Scene Reconstruction


- For native objects, point clouds are more suitable than meshes
 - Save the computational overhead from converting point clouds to meshes

□ Acceptable Visual Quality \rightarrow 4 Gbps¹ (one object)

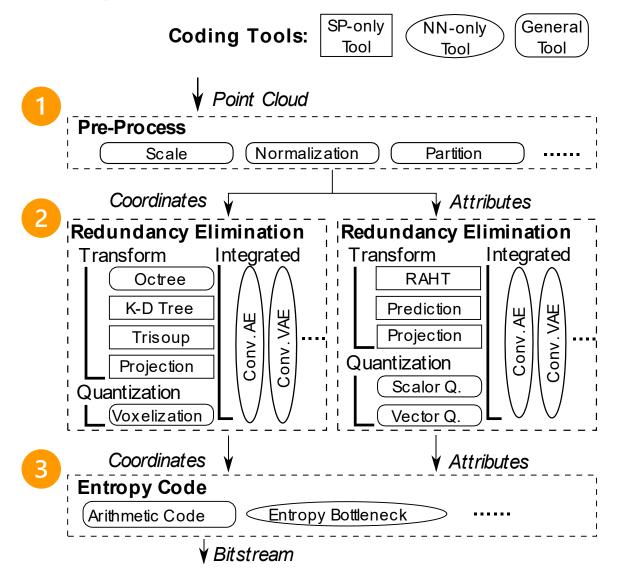
Point Cloud Compression (PCC) is essential

[1] C. Cao, M. Preda, and T. Zaharia, "3D point cloud compression: A survey," ACM 5 International Conference on 3D Web Technology (Web3D'19), pages 1–9, July 2019.

Common PCC Algorithms

Signal Processingbased (SP-based)

Neural Networkbased (NN-based)


 Relies on conventional techniques like, transformation, quantization, and entropy coding

- Octree
- K-d tree
- Voxelization

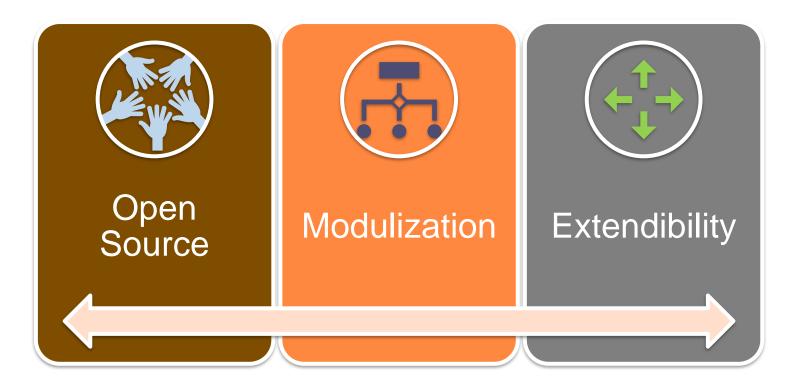
Takes advantages on feature extraction

- AutoEncoder
- Variational AutoEncoder
- Generative Adversarial Network

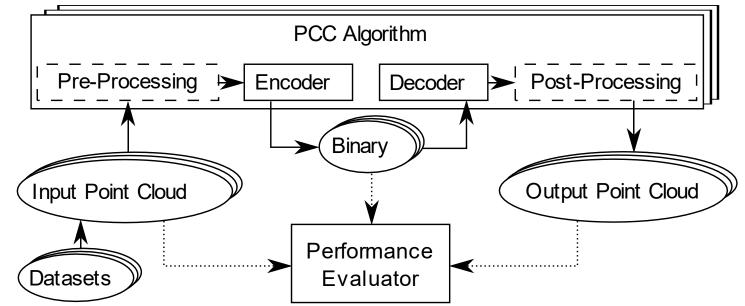
General Encoder Architecture of PCC Algorithms

CHALLENGES

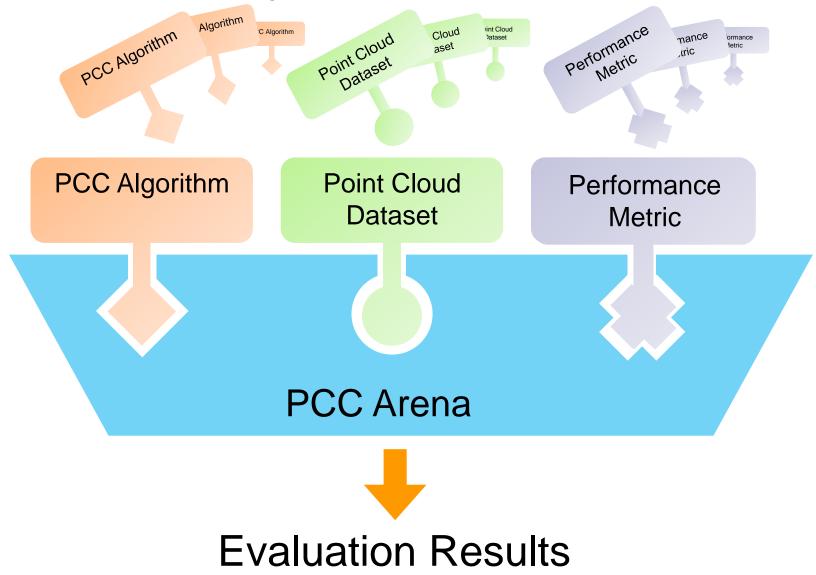
Inconsistency on Performance Evaluations Scheme


For different PCC algorithms, evaluation results are inconsistent on

Hard to compare different PCC algorithms fairly and completely


Therefore...

- We propose PCC Arena, a PCC algorithm benchmark platform [MMVE'20] and [TMM'21, submitted]
 - GitHub link: <u>https://github.com/xtorker/PCC_Arena</u>


IMPLEMENTATIONS

High-Level Architecture of PCC Arena

- Each PCC algorithm has its own rate control method
- Performance evaluator analyzes the results for each
 - Input point cloud
 - PCC algorithm
 - Set of coding parameters

Extendibility of PCC Arena

EXPERIMENTAL SETUP

Performance Metrics

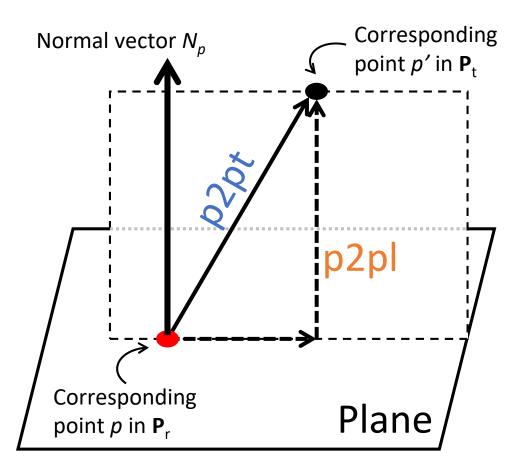
- Non-visual Metrics
 - bpp (bits-per-point)
 - Running time (Encoding/Decoding)
- 2D Visual Metrics (render 6 2D images along x, y, z axes)
 - PSNR
 - SSIM
- 3D Visual Metrics: Coordinates
- 3D Visual Metrics: With Colors

3D Visual Metrics: Coordinates

 \mathbf{P}_r : reference point cloud \mathbf{P}_t : target point cloud

Asymmetric Chamfer Distance (ACD) $\operatorname{ACD}(\mathbf{P}_{1}, \mathbf{P}_{2}) = \frac{1}{|\mathbf{P}_{1}|} \sum_{p \in \mathbf{P}_{2}} \min_{p' \in \mathbf{P}_{2}} \|p - p'\|_{2}^{2} \quad \begin{array}{l} \operatorname{ACD}_{rt} = \operatorname{ACD}(\mathbf{P}_{r}, \mathbf{P}_{t}) \\ \operatorname{ACD}_{tr} = \operatorname{ACD}(\mathbf{P}_{t}, \mathbf{P}_{r}) \end{array}$ Chamfer Distance (CD) $\label{eq:cd} \text{CD} = \frac{1}{2}(\text{ACD}_{\text{rt}} + \text{ACD}_{\text{tr}}) \text{ Average error}$ CD Peak Signal-to-Noise Ratio (CD-PSNR) $CD-PSNR = 10 \log_{10} \frac{M_r^2}{CD}$ M_r is the maximal distance between any two points in P_r Hausdorff Distance (HD)
$$\begin{split} \text{HD} &= \max(\max_{p \in \mathbf{P}_{r}} (\min_{p' \in \mathbf{P}_{t}} \|p - p'\|_{2}^{2}), \max_{p' \in \mathbf{P}_{t}} (\min_{p \in \mathbf{P}_{r}} \|p - p'\|_{2}^{2})) \\ & \text{Largest error} \end{split}$$

Two Definitions of Distance


Point-to-point (p2pt)

 $\|p - p\prime\|_2$

Point-to-plane (p2pl)¹

$$(p - p\prime) \cdot N_p$$

 N_p is the normal vector of the plane of \mathbf{P}_r that contains p

[1] D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point cloud compression," *IEEE International Conference on Image Processing (ICIP'17)*, pp. 3460-3464, September 2017

3D Visual Metrics: With Colors

- Luminance Color PSNR (L-CPSNR)
 - PSNR on luminance channel with MSE as distance $L-CPSNR = 10 \log_{10} \frac{M^2}{L-MSE(\mathbf{P}_r, \mathbf{P}_t)}$
- Viola et al.'s QoE (VQoE)¹
 - QoE metric
 - Consider both coordinate and color
 - Empirical derived α=0.6597
 - $\mathbf{VQoE} = \alpha \cdot \mathbf{CD} + (1 \alpha) \cdot H_{\mathbf{L}_2}^{\mathbf{Y}}$

Candidate PCC Algorithms

- SP-based
 - Draco [Google]
 - G-PCC [MPEG 3DG]
 - V-PCC [MPEG 3DG]
- NN-based
 - GeoCNNv1 [Université Paris-Saclay, FR] [ICIP'19]
 - GeoCNNv2 [Université Paris-Saclay, FR] [MMSP'20]
 - PCGCv1 [NJU, CN] [TCSVT'21]
 - PCGCv2 [NJU, CN] [DCC'21]

Rate Control

Draco: quantization parameter qp

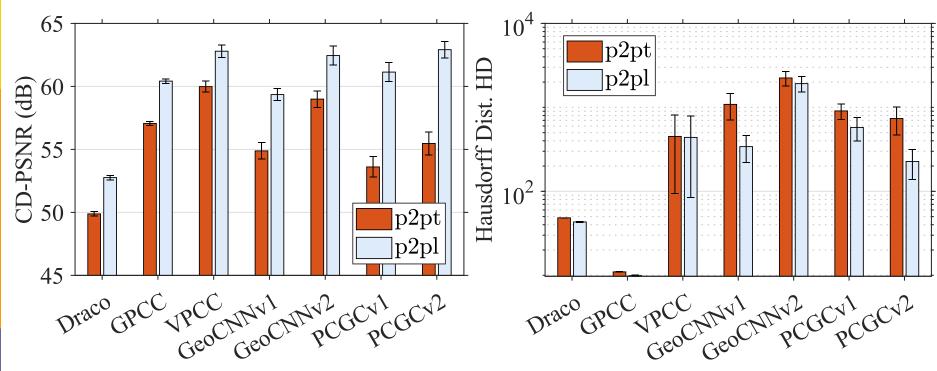
- Quantize the input value to the specified bits
- G-PCC: positionQuantizationScale
 - Similar mechanism to Draco
- V-PCC: preset config file
 - 2D image qp value (and other parameters), recommended by MPEG
- GeoCNN/GeoCNNv2/PCGCv1/PCGCv2: different models
 - Train different models with different rate-distortion parameters

Training Process (for NN-based)

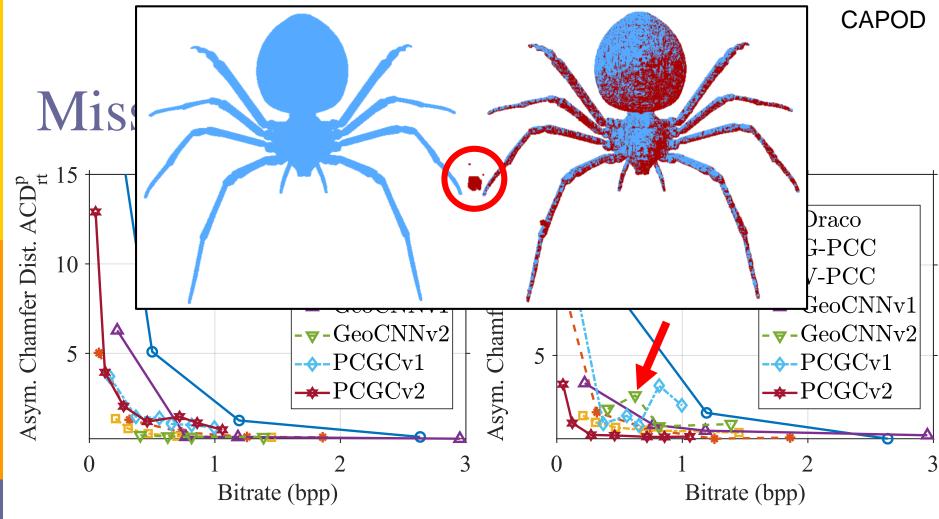
- Use pre-trained model if the authors have provided
 - PCGCv1, PCGCv2
- If not, we follow the same procedure to train the model
 - GeoCNNv1, GeoCNNv2
- Generating training dataset for all NN-based PCC algorithms with SNC (mesh)
 - Use scripts provided by the authors first
 - If it's not the case, use our scripts (as same as the script we used to generate the testing datasets) to generate point clouds from meshes

Testing Datasets

- Sampled from meshes with CloudCompare¹
- Number of points: 500k
- Coordinates only

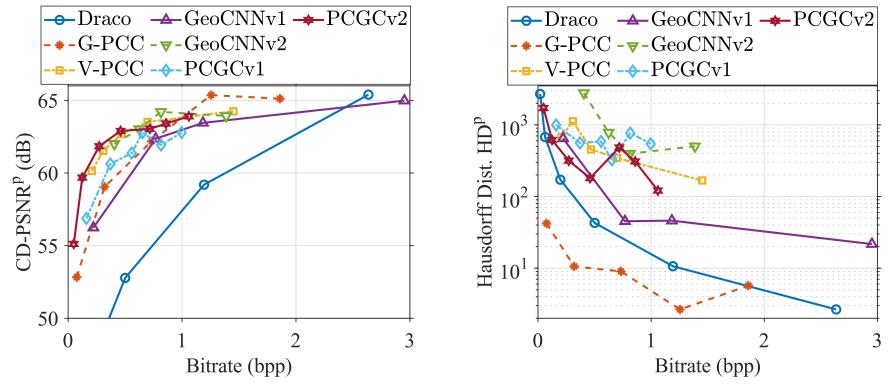

 - MN40 (ModelNet40)
 SNC (ShapeNetCore) Objects
 - CAPOD
 - 8i dataset (avatars)
- With color
 - SNCC (ShapeNetCore with color)
 - 8iC dataset (avatars with color)
- All datasets are prepared a version with normal included for evaluation purpose (point2plane metrics)

22


OBJECTIVE RESULTS

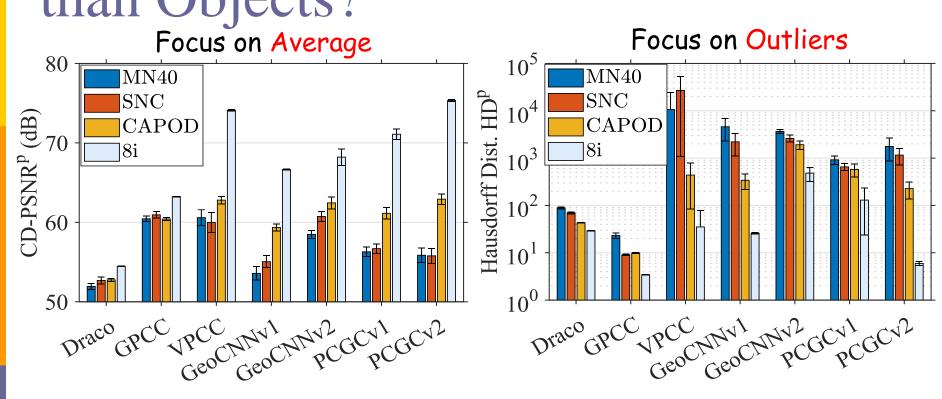
CAPOD 0.5 bpp

Point-to-Plane (p2pl) Is Better



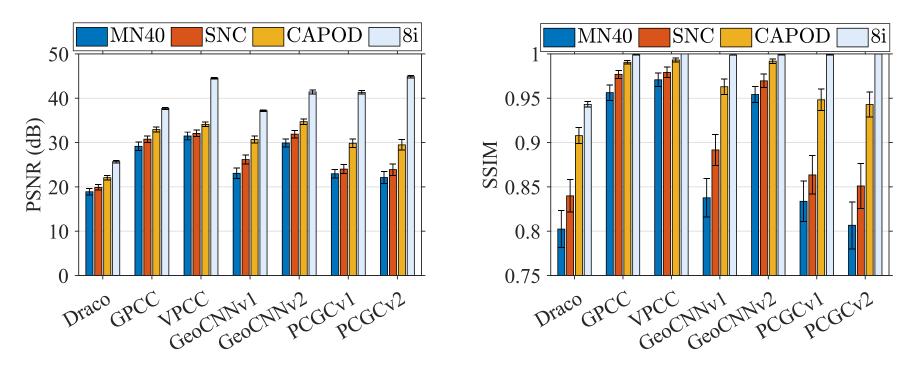
- Overall, point-to-plane metrics have similar trend with point-to-point ones
- Point-to-plane metrics are more related to the visual quality [1]
 [1] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, "Geometric distortion metrics for point cloud compression," in 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017, pp. 3460–3464.

- High ACD^p_{rt} value indicates missing points in the reconstructed point cloud
- High ACD^p_{tr} value indicates extra points in the reconstructed point cloud


NN-based PCC Algorithms Perform Well But Not Stable

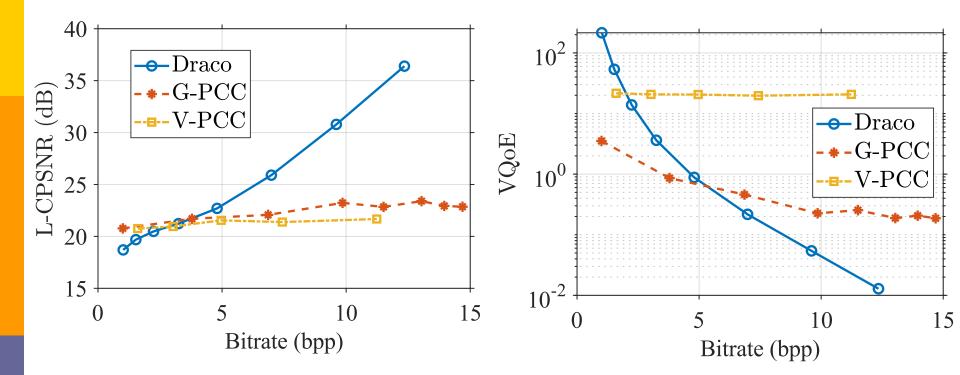
- GeoCNNv2 and PCGCv2 have the leading position, but face severe outlier problem
- G-PCC performs the best over 1 bpp and has stable results on the reconstructed point cloud

CAPOD


Avatars Are Easier to Compress ^{0.5 bpp} than Objects?

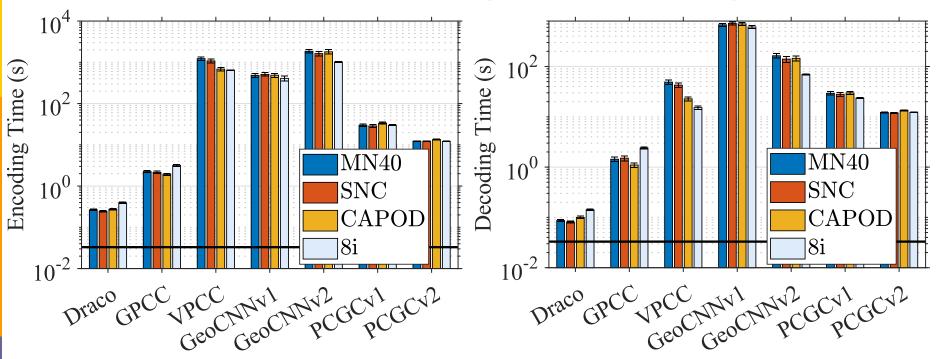
- All NN-based PCC algorithms and V-PCC have much better quality and higher stability on 8i (avatars) than other datasets (objects)
- All NN-based PCC algorithms are trained with object datasets

0.5 bpp


How About 2D Visual Quality?

- SP-based PCC algorithms achieve more robust performance across different datasets than NN-based ones
- NN-based PCC algorithms may not be general enough to handle arbitrary object classes

SNCC


Coding Efficiency with Colors

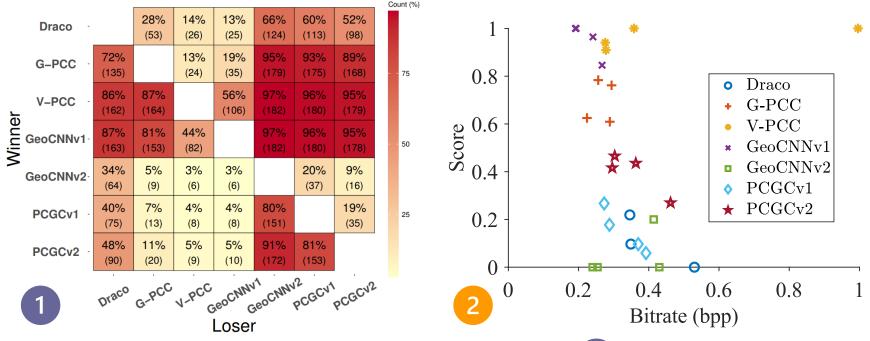
- Draco preserve more color information at higher bitrate
- Draco has better control on trading off the quality and bitrate

SNCC

Real-time Encoding/Decoding?

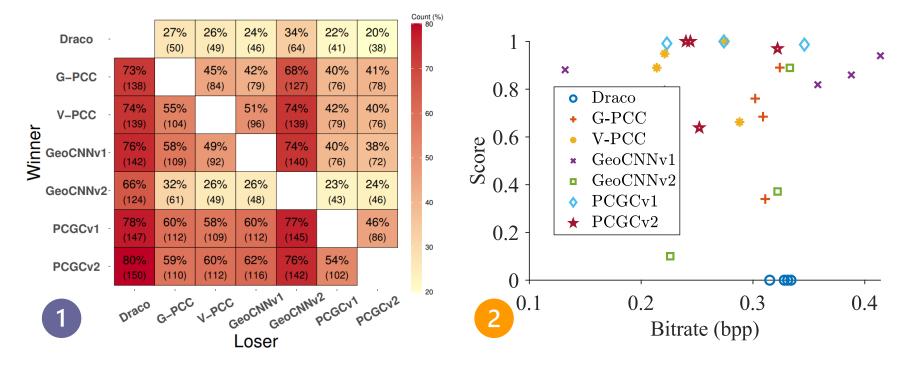
- Draco has the lowest running time, but none of the PCC algorithms encode/decode in real-time
- The more recent proposed NN-based PCC algorithm has lower running time

SUBJECTIVE RESULTS


User Study Setup

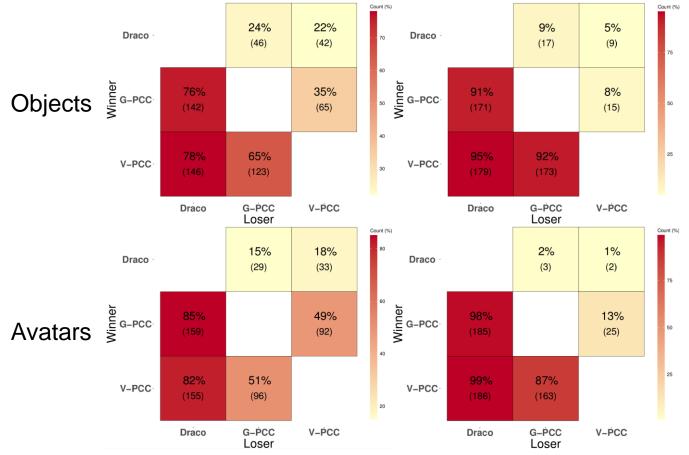
- Web-based questionnaire consists of 2 parts
 - Perceived image quality
 - Perceived point cloud similarity
- Each part consists of 4 types of point cloud
 - Coordinate-only objects (chair)
 - Colored objects (chair)
 - Coordinate-only avatars
 - Colored avatars
- We recruit 47 subjects in total

Subjects are asked to rank the GIF images from the best to the worse


Subjects prefer V-PCC and GeoCNNv1 in Image Quality on Coordinate-only Objects

- □ Plackett-Luce model → normalized model coefficients 2
- V-PCC and GeoCNNv1 take the lead, while GeoCNNv2 performs the worst
- GeoCNNv2 suffers from non-trivial artifacts

0.5 bpp


It Is Hard to Tell The Difference Among PCC Algorithms on Coordinate-only Avatars

- Winning percentages are very close to 50% in most cases 1
- GeoCNNv2 delivers much better subjective image quality than Draco, which is opposite on objects 2

0.5 bpp

0.5 bpp Very Similar Trend Are Found in Colored Objects And Avatars Image Quality Point Cloud Similarity

- V-PCC performs the best, followed by G-PCC
- Draco suffers from the duplicated points¹

¹Draco is specifically designed to avoid merging duplicated points, see https://github.com/ google/draco/issues/591#issue comment-703820616 35

No Significant Correlation with Objective Metrics

			Туре	Y-PSNR (dB)	SSIM	ACD ^p _{rt}	ACD ^p _{tr}	CD^p	CD-PSNR ^p (dB)	HD ^p	L-CPSNR (dB)	VQoE
			Chair	0.19	0.21	0.07	-0.16	-0.02	0.03	-0.13	-	-
		Coord.	Avatar	0.76	0.76	-0.80	-0.78	-0.79	0.31	-0.32	-	-
	Oue		All	0.54	0.49	-0.21	-0.49	-0.38	0.22	-0.25	-	-
	Qua.		Chair	0.78	0.81	-0.82	-0.80	-0.82	0.83	-0.76	0.79	-0.82
on		Color	Avatar	0.84	0.83	-0.91	-0.91	-0.91	0.89	-0.91	0.95	-0.91
lati			All	0.75	0.77	-0.86	-0.85	-0.86	0.79	-0.83	0.58	-0.86
Correlation Coefficient			Chair	0.21	0.23	0.04	-0.12	-0.02	0.00	-0.20	-	- /
ට ටි		Coord.	Avatar	0.81	0.79	-0.83	-0.82	-0.83	0.36	-0.34	-	- /
	Sim.		All	0.57	0.51	-0.23	-0.48	-0.39	0.23	-0.30	-	- /
I	Shin.		Chair	0.79	0.66	-0.69	-0.71	-0.71	0.75	-0.66	0.72	-0.71
I		Color	Avatar	0.78	0.76	-0.93	-0.93	-0.93	0.84	-0.93	0.95	-0.93
ı			All	0.72	0.64	-0.81	-0.82	-0.82	0.72	-0.80	0.57	-0.82
			Chair	0.35	0.29	0.72	0.41	0.93	0.88	0.51	-	-
I		Coord.	Avatar	2.9×10^{-6}	3×10^{-6}	$3.1 imes \mathbf{10^{-7}}$	8×10^{-7}	5×10^{-7}	0.11	0.09	-	-
I	Qua.		All	$1.9 imes10^{-5}$	$1.4 imes 10^{-4}$	0.12	1.1×10^{-4}	$4.2 imes 10^{-3}$	0.10	0.06	-	-
I	Qua.		Chair	2.6×10^{-3}	$1.4 imes 10^{-3}$	$1.1 imes 10^{-3}$	1.7×10^{-3}	1.2×10^{-3}	$7.9 imes10^{-4}$	4×10^{-3}	2.2×10^{-3}	1.2×10^{-3}
e		Color	Avatar	5.4×10^{-4}	$8.6 imes10^{-4}$	$4.3 imes 10^{-5}$	3.2×10^{-5}	$3.1 imes 10^{-5}$	$9.7 imes 10^{-5}$	$3.6 imes 10^{-5}$	$\mathbf{3.4 imes 10^{-6}}$	$3.1 imes 10^{-5}$
p-value			All	2.4×10^{-5}	1.1×10^{-5}	$f 6.8 imes 10^{-8}$	$1.3 imes 10^{-7}$	$7.1 imes 10^{-8}$	3.9×10^{-6}	4.4×10^{-7}	2.8×10^{-3}	7.1×10^{-8}
-V5			Chair	0.27	0.24	0.83	0.54	0.92	0.99	0.31	-	-
¥		Coord.	Avatar	1.6×10^{-7}	$5.6 imes10^{-7}$	$f 4.7 imes 10^{-8}$	$8.6 imes10^{-8}$	$5.9 imes 10^{-8}$	0.06	0.08	-	-
	Sim.		All	$3.8 imes10^{-6}$	5.8×10^{-5}	0.09	1.7×10^{-4}	3.4×10^{-3}	0.09	0.03	-	_
I	5111.		Chair	$2 imes 10^{-3}$	0.02	0.01	0.01	0.01	4.8×10^{-3}	0.02	0.01	0.01
		Color	Avatar	2.7×10^{-3}	4.1×10^{-3}	1.4×10^{-5}	8.8×10^{-6}		6.1×10^{-4}	9.6×10^{-6}	$2.6 imes \mathbf{10^{-6}}$	8.8×10^{-6}
			All	7.5×10^{-5}	7.1×10^{-4}	1.9×10^{-6}	7.8×10^{-7}	$7.4 imes10^{-7}$	8.4×10^{-5}	3.1×10^{-6}	3.6×10^{-3}	$7.4 imes 10^{-7}$

• Bold font indicates the highest value among all the considered objective metrics in each row.

□ Avatar → some objective metrics have significant correlations

- Objects \rightarrow no significant correlation
- None of objective metric can predict the quality well

0.5 bpp

FUTURE OF NN-BASED PCC ALGORITHMS

Potential Advantages and Disadvantages of the NN-based PCC Algorithms

- Not data-dependent
- Perform very well on 8i datasets (avatars)
 - Good news for 3D immersive teleconferencing
- Not stable, generate outlier points (blocks) in some cases
- The latest one (PCGCv2) has a much lower running time
 - Still slower than SP-based ones
- Few papers work on compressing attributes like colors
 - Worth further research

CONCLUSION

Conclusion

- Propose an open-source, modularized benchmark platform, PCC Arena
- Conduct an extensive comparison of seven PCC algorithms along with a wide spectrum of datasets and performance metrics
- Conduct a user study and analyze the correlations between subjective scores and objective metrics
- Discuss on some great potentials of NN-based PCC algorithms

Future Directions

- Offer the options for users to manipulate the input point cloud datasets
 - automatically alignment, rotation, scaling, etc.
- Consider application-wise performance metrics, even develop one for certain usage scenario
 - The performance metrics are independent of the usage scenarios

Publications and Cooperators

- C. Wu, C. Hsu, T. Kuo, C. Griwodz, M. Riegler, G. Morin, and C. Hsu, "PCC Arena: A benchmark platform for point cloud compression algorithms," *ACM International Workshop on Immersive Mixed and Virtual Environment Systems (MMVE'20)*, pages 1–6, June 2020.
- C. Wu, X. Li, R. Rajesh, W. Ooi, and C. Hsu, "Dynamic 3D point cloud streaming: distortion and concealment," ACM Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV'21), pages 98–105, September 2021.
- C. Wu, C. Hsu, T. Hung, C. Griwodz, W. Ooi, and C. Hsu, "Quantitative comparison of point cloud compression algorithms with PCC Arena," *IEEE Transactions on Multimedia*, July 2021, Under Review.
- **Carsten Griwodz**, *University of Oslo*
- □ Wei Tsang Ooi, *National University of Singapore*
- Chih-Fan Hsu, National Yang Ming Chiao Tong University
- Géraldine Morin, Université de Toulouse IRIT
- **Rahul Rajesh**, *National University of Singapore*
- D Michael Riegler, *Simula Research Lab, Norway*
- **Tzu-Kuan Hung**, *National Tsing Hua University*
- **Ting-Chun Kuo**, *National Tsing Hua University*
- □ Xiner Li, *Tsinghua University*

Thank you for listening

BACKUP SLIDES

PCC Arena

- Algorithm Wrapper
 - Define a new class for each PCC algorithm inherited from the base class
 - Implement the virtual method in the base class, that are encode() and decode()
 - Base class provides public methods either for running over a dataset or running on a single point cloud

Evaluator

- class ViewIndependentMetric()
 - Wrap the metric software and parse the results

Config Files

Set up all the config parameters with YAML files

Software for Quality Metrics

- Modified based on mpeg-pcc-dmetric
- Implement a QoE metric of combining coordinates and color from Prof. Pablo's paper
- Bypass the built-in on the fly resolution calculation due to the unexpected behavior of it
 - Calculate the resolution with an open-source project, gdiam-1.0.3
 - resolution: Maximum distance of a pair of points among a point cloud

Modifications on Sample PCC Algorithms

PCGCv1

- Improve file I/O in testing phase
- Change .ply loader for generality
- PCGCv2
 - Extract encoding and decoding part from the whole experiment evaluation script