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Introduction



Virtual Reality (VR)

• Virtual Reality (VR) technology is thriving in recent years

• Various VR applications, e.g., healthcare, education and training, 
and entertainment [1] [2]

• Market report shows that VR market size value can reach USD 62.1 
billion in 2027 [3]

• Industry and academia focus on improving VR experience
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[1] Berg, Leif P., and Judy M. Vance. "Industry use of virtual reality in product design and manufacturing: a survey." Virtual reality 21.1 (2017): 1-17.
[2] Virtual Speech, VR Applications: 21 Industries already using Virtual Reality, https://virtualspeech.com/blog/vr-applications
[3] Grand View research, Virtual Reality Market Size, Industry Report, 2020-2027



Classify VR: Interaction Mode

4Video is the example video from OculusQuest, 
https://www.reddit.com/r/OculusQuest/comments/bu6io9/3dof_6dof_explained/

• Interaction mode of VR: 3DoF v.s. 6DoF (Degree of Freedom)
• Today’s VR content is mostly in the format of 360 video (3DoF)
• 6DoF interaction can not achieved by single 360 video 
• More descriptive 3D representations are required for enabling 

6DoF VR



3D Representations

• Recently, MPEG release several standards for different 3D data 
representations

• We study the Test Model for Immersive Video (TMIV), which is a 
reference codec of MIV
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Point Cloud 

• Point Cloud Compression (PCC) 
standard

• Easy to manipulate
• Low rendering quality
• PCC standard focus on object

RGBD videos

• MPEG Immersive Video (MIV) 
standard

• High rendering quality
• Need complex view synthesis 

algorithm support
• MIV standard focus on scene



Overview of TMIV Codec 
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View Synthesizer in MIV

• The synthesizer in MIV decoder conducts synthesis for 
multiple passes, and combining the  results of each pass to 
get final synthesized result

• The number of passes and number of views per pass are 
according to configuration file
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TMIV version: 3.0



Challenges



Pilot Study for TMIV

• To understand the performance of TMIV, we conduct small scale 
experiments to evaluate TMIV under various configurations

• Experiment 1: vary number of views per pass
• Number of passes: 1

• Number of views per pass: 1, 2, …, 7

• Experiment 2: vary number of passes
• Number of passes: 1, 3, 7

• Number of views per pass: [7], [1, 4, 7], [1, 2, …, 7]
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The Results of Pilot study

• In experiment 1, the results show that 
the source view size, video quality, and 
decoding time grows along with the 
number of source views
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• In experiment 2, results show that the decoding time 
and the number of passes are positively correlated, but 
video quality and the number of passes  are not.

The parameters in TMIV’s configuration significantly affect the 
performance



Challenges

• TMIV can not determine the configuration automatically

• The pre-defined configuration can not make optimal tradeoff 
among 
• video quality, 

• decoding time, and 

• bandwidth consumption

• The optimal configuration may different according to scene and 
camera parameters

• To solve this configuration optimization problem, we introduce a 
new component, a configuration optimizer for the TMIV codec
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Configuration 
Optimization Problem



Problem Statement

• Given: 
• Source views 𝑉

• each view 𝑣 (𝑣 = 1,2, … , 𝑉) consists of texture (𝑇𝑣) and depth (𝐷𝑣)

• 𝑉 corresponding source camera parameters 𝐶𝑉
• described by position (𝑃𝑣) and Orientation (𝑂𝑣)

• The camera parameters of target view 𝐶𝑇
• described by 𝑃𝑇 and 𝑂𝑇

• Goal:
• According to inputs, finding the optimal 𝑓∗ from all 𝐹 possible TMIV 

configurations to maximize a user-defined utility function 𝑈 ∙
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𝑓∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝜖𝐹𝑈(𝑓)



Define 𝑭 and 𝑼 ∙

• We define the configuration 𝐹 with two essential parameter of 
TMIV
• The number of passes 𝑁

• The number of views per pass 𝑟𝑛, 𝑛 = 1,2, …𝑁

• We define the utility function 𝑈 ∙ as the following
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𝑈 ∙ =
𝑄𝑇 − 𝑄𝐽

𝑌𝑇
where 
• 𝑄𝑇 is the video quality of the synthesized target view, and 
• 𝑄𝐽 is the requested video quality (In our experiment, we set 𝑄𝐽 to 20 

dB (WS-PSNR or PSNR))
• 𝑌𝑇 is the decoding time, 

• We note that 𝐹 and 𝑈 ∙ can be defined according to different 
scenarios

Maximize Quality

Minimize running time



Configuration Optimizer



Configuration Optimizer

• To solve the problem, we propose configuration optimizer to 
generate optimal configuration 𝑓∗ according to camera 
parameters (𝐶𝑉, 𝐶𝑇) and source views (𝑇𝑣, 𝐷𝑣)
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NN-based Algorithms

• Finding 𝑓∗ in 𝐹 is not a easy task because of the huge 
configuration search space (depends on 𝐶𝑉, 𝐶𝑇,𝑇𝑣,and 
𝐷𝑣)

• We utilize Neural-Network-based (NN-based) 
approaches to find 𝑓∗

• We treat the problem as
• A regression problem, solving by Convolutional Neural 

Network (CNN)

• A decision making problem, solving by Deep Reinforcement 
Learning (DRL)
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Input Preprocessing

• The input data of both NN algorithms are composed of 𝐶𝑉 , 𝐶𝑇 , 𝑇𝑣 , 
and 𝐷𝑣 (from 7 source views)

• We down-sample both 𝑇𝑣, and 𝐷𝑣 to the same resolution of 256 ×
256

• We subtract 𝐶𝑇 from 𝐶𝑉, then duplicating results for 256x256 
times

• The resulting inputs contain
• 256x256x7, 𝑇𝑣
• 256x256x7, 𝐷𝑣
• 256x256x7x6, 𝐶𝑉, 𝐶𝑇
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Output Post-processing

• The output of both model is a vector 𝐸, where 𝐸 =
(𝑒1, 𝑒2, … , 𝑒𝑁), and N represents the number of passes

• We set output dimension = 3 in our experiments 

• 𝐸 represents the number of view be added in each 
pass

• The number of views for each pass 𝑟𝑛 𝑛 = 1,…𝑁 is 
calculated by
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Regression Problem (Solving by CNN)

• We treat the problem as a regression problem, where the predicted 
target is a vector of integer

• Our CNN model include two parts
• Convolutional network: used to extract feature

• Fully-connected network: used to infer the results from feature

• Conv. BLK represents a convolutional layer + an ReLU activation layer

• FC. BLK represents a fully-connected layer + an ReLU activation layer
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Decision Making Problem: RL Introduction
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• In reinforcement learning, there are an agent and environment
• The agent performs some action in the environment and 

environment feedback state (observation) and reward to the agent
• The goal of the agent is learning how to perform actions according 

to states to get maximal total reward

Figure from https://towardsdatascience.com/deep-q-network-combining-deep-reinforcement-learning-a5616bcfc207



Decision Making Problem (Solving by DRL)

• Action: the number of extra views to 
reach the next state

• Reward: the difference of the utility 
values between the current state and 
the following state

• DRL agent start at the initial state and 
choose the most valuable action to 
move towards the optimal state 

22

• We treat the problem as a decision making problem
• We formulate the configuration as a search space composed of 

states 𝑠 = (𝑁, 𝑟𝑛, 𝑇𝑣, 𝐷𝑣 , 𝐶𝑣 , 𝐶𝑇)

𝑁, 𝑟𝑛



DRL Agent

• The inputs (observation) of the agent are composed of 
𝑟𝑛, 𝑇𝑉, 𝐷𝑣 , 𝐶𝑉 , and 𝐶𝑇
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• We adopt Deep Q learning, 
where the agent predict the 
future reward 𝑄 of each action

• The agent choose the action have 
maximal 𝑄



Training Procedure

• CNN algorithm
• Learning rate: 10−5

• Adopting MSE as the loss function

• The model takes about three hours to converge

• DRL algorithm
• Adopting target network

• Adopting ϵ-greedy policy 

• Adopting experience replay

• The model takes about two days to converge
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Target Network

• In Deep Q learning, we have 2 
neural networks model in 
training

• These model have same 
architecture but different weight

• Every m steps, the weight from 
prediction network are copied to 
target network

• Using target network 
approaches lead to more 
stability in the learning process
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Original DQN:

DQN + target network:



Experience Replay

• We store trajectory, which consisting of the current state 𝑠, the 
selected action 𝑎, the immediate reward 𝑅, and the next state 𝑠′, 
in memory for training

• The memory is a First-In-First-Out (FIFO) queue, which queue size 
is 1,000

• For each training round, a data batch with 32 trajectories is 
randomly sampled from the memory
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• Experience replay can
• Reduces correlation between experiences
• Increases learning speed
• Reuses past transitions to avoid catastrophic 

forgetting



ϵ-greedy Policy

• The agent in DRL choose an action according to:

• Its observation, which is output 𝑄 values of each action

• Randomly

• In this way, agent can explore new search space to find the 
optimal results

• In our experiments, ϵ is increased by number of steps 
(~100,000: 0.5, 100,000~200,000:0.7, 200,000~:0.9)
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Produce Dataset

• We run TMIV with various video sequences, 𝑟𝑛 , and 𝑁 to calculate 
performance under different setting

• For video sequences, we select ten video sequences from MPEG dataset

• We choose 7 videos from each video sequence as the source view

• For 𝑟𝑛 and 𝑁, we run all of the combination when 𝑁 < 3

• Procedure: TMIV encoder -> video encoder (h.265)->video decoder 
(h.265)->TMIV decoder
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Training and Testing Dataset

• In ERP video sequences:
• Training set: all the non-source-view cameras in video sequence

• Testing set: random camera pose from pose trace provided by 
MPEG

• In PTP video sequences:
• We select all the non-source-view cameras as the target view to 

generate data

• We adopt leave-one-out strategy to split training and testing set
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Objective Evaluations



Experiment Setup

• Baselines:
• Default (DEF): default configuration of TMIV

• Optimal (OPT):  configuration with optimal utility value

• Performance metrics:
• Number of required views

• Video quality (WS-PSNR, PSNR)

• Decoding time

• Optimal score (
𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑣𝑎𝑙𝑢𝑒

𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑣𝑎𝑙𝑢𝑒
)
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Qualitative Evaluations

• Most of synthesized results are similar

• However, the CNN and DRL algorithms sometimes generate noticeable 
distortion because of insufficient number of source views
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Evaluation Results (ERP, Training Set)

• Our algorithm require fewer views 
and decoding time

• The difference of quality between our 
algorithms and baseline is small (std.: 
0.5)

• In optimal score, our algorithms 
achieve higher score, and DRL achieve 
large improvement

• Overall, our algorithms outperform 
baseline in ERP training set, and DRL 
achieve the best performance
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1.48
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43.9
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19.7
(11%)
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Evaluation Results (ERP, Testing Set)

• The results of testing set show the 
trend similar with training set 

• In optimal score, CNN algorithm 
achieve lower optimal score than DEF

• Overall, our algorithms required 
fewer views than DEF, and DRL has 
better performance than other 
algorithms

Summary, in ERP video sequences 
• DRL algorithm perform well for various user positions and orientations. 
• CNN algorithm results in inferior performance when facing new user positions and 

orientations.

3.42
(49%)

1.47
(21%)

40.39
(20%)



• Our algorithms require fewer 
source views and less decoding 
time than DEF algorithm

• They also achieve comparable 
quality to baselines (Std.:0.37)

• In optimal score, our algorithms 
outperform DEF

• Overall, the performance of our 
algorithms better than DEF, and 
it very close to OPT
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Evaluation Results (PTP, Training Set)
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(79%)

5.36
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5.62
(80%)
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Evaluation Results (PTP, Testing Set)

• Similar to training set, our 
algorithm outperform DEF 
algorithms in required view, 
decoding time, and optimal score

• DRL achieve lower optimal score 
than CNN, and it have higher 
variance compared to the results 
in training set

• Overall, our algorithms 
outperform DEF, and the 
performance of DRL shows 
higher variance in the testing set

Summary, in PTP video sequences
• The CNN and DRL algorithms perform well for various video sequences and user 

positions and orientations
• The CNN algorithm leads to more stable performance with new video sequences

5.31
(76%)

5.49
(78%)

5.54
(77%)

5.33
(74%)



Subjective Evaluations



Experiment Setup
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• We conduct subjective evaluations on both ERP 

and PTP video sequences to study the perceived 

quality of our algorithms and baselines

• For ERP video sequences, 
• We choose 6 camera parameter settings from each video sequences (3 

from training set, 3 from testing set)
• We ask user watch synthesized results through HMD
• 6 camera parameter settings x 3 video sequences (18 rounds)

• For PTP video sequences,
• We choose 4 camera parameter settings from each video sequences
• We ask user watch synthesized results through 27’’ 2D monitor
• 4 camera parameter settings x 7 video sequences (28 rounds)

• In each round, subject have to rank the synthesized results from different 
algorithms

• We recruit 23 subjects for both ERP and PTP experiments
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Evaluation Results (ERP)

• The pairwise comparisons show no 
obvious superior algorithm

• We model the pairwise 
comparisons and the ranking results 
using the Bradley-Terry and 
Plackett-Luce model

• The estimated coefficients of both 
models range between -0.1 to 0.09 
and the corresponding p-values of 
the coefficients are greater than 
0.15

• Overall, the perceived quality of our 
algorithms and baseline are similar

40

Bradley-Terry

Plackett-Luce

Minimum

Maximum



42

Evaluation Results (PTP)

• The pairwise comparisons show no 
obvious superior algorithm

• The estimated coefficients of both 
models range between -0.003 to 
0.16 

• The OPT algorithm is statistically 
superior to the DEF algorithm, but 
this result can be neglected

• Overall, the perceived quality of our 
algorithms and DEF are similar

Bradley-Terry

Plackett-Luce

Minimum

Maximum



Summary of Our Findings



Summary

• Our evaluations results show that our algorithms require fewer 
source views and less computational resources to deliver 
comparable video quality and perceived quality compared to the 
baseline algorithms

• According to our recommendation, our algorithms can reduce the 
number of views and decoding time and maintain similar video 
quality
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Conclusion and Future Direction

• In this thesis, we propose two ML-based configuration optimization 
algorithms (CNN and DRL algorithms)

• Our algorithms work with user-specified utility function and 
computer best configuration for TMIV

• We conduct both objective and subjective experiments to evaluate 
our algorithms

• Our experiment results show that our algorithm can reduce the 
resource requirement and achieve comparable quality to default 
configuration
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• Several system challenges need to be addressed, such as 

• The inference frequency of our algorithms

• The performance under diverse and dynamic network and 
system condition

Conclusion

Future Directions



Use Case: Real Estate Virtual Tour

• To show the feasibility of our algorithms, we build a capturing system 
to capture more video sequences from various scenes

• We build our system based on Airsim, which is an open-source drone 
simulator

• Our system inputs camera parameters (e.g., position, rotation, FoV, 
and resolution), and outputs the video sequence and corresponding 
camera parameter in the required format of MIV codec

• The experiment results in the new dataset are similar to previous 
experiments

46



Sample Synthesized Results
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Thank you
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