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Virtual Reality (VR)

 Virtual Reality (VR) technology is thriving in recent years

» Various VR applications, e.g., healthcare, education and training,
and entertainment [1] [2]

* Market report shows that VR market size value can reach USD 62.1
billion in 2027 [3]

Industry and academia focus on improving VR experience

[1] Berg, Leif P., and Judy M. Vance. "Industry use of virtual reality in product design and manufacturing: a survey." Virtual reality 21.1 (2017): 1-17.
[2] Virtual Speech, VR Applications: 21 Industries already using Virtual Reality, https://virtualspeech.com/blog/vr-applications
[3] Grand View research, Virtual Reality Market Size, Industry Report, 2020-2027 3



Classify VR: Interaction Mode

Interaction mode of VR: 3DoF v.s. 6DoF (Degree of Freedom)
Today’s VR content is mostly in the format of 360 video (3DoF)
6DoF interaction can not achieved by single 360 video

More descriptive 3D representations are required for enabling
6DoF VR

3DoF 3DoF+ 6DoF

Video is the example video from OculusQuest,
https://www.reddit.com/r/OculusQuest/comments/bu6io9/3dof_6dof_explained/



3D Representations

* Recently, MPEG release several standards for different 3D data
representations

* We study the Test Model for Immersive Video (TMIV), which is a
reference codec of MIV

Point Cloud RGBD videos

e 3 o "%
* Point Cloud Compression (PCC) * MPEG Immersive Video (MIV)
* Easy to manipulate * High rendering quality
e Low rendering quality * Need complex view synthesis
* PCC standard focus on object algorithm support

e MIV standard focus on scene



Overview of TMIV Codec 1 e
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View Synthesizer in MIV

* The synthesizer in MIV decoder conducts synthesis for
multiple passes, and combining the results of each pass to
get final synthesized result

 The number of passes and number of views per pass are
according to configuration file

TMIV version: 3.0 S

1 Synthesizer

i "RendererMethod": "MultipassRenderer”,

~ Pass 1 i i
I"MultipassRenderer": {
E "NumberOfPasses": 3,
1

"NumberOfViewsPerPass": [2, 4, 9],

1 " T w, w H "
| Pass 2 |- Merge 1 | i SynthesizerMethod™: "Synthesizer",
1 "Synthesizer": {

Target Camera
Parameter

Source Camera
Parameter

View
Selector

Source View Multi-pass

Synthesized View

> Pass N Merge N-1







Pilot Study for TMIV

e To understand the performance of TMIV, we conduct small scale
experiments to evaluate TMIV under various configurations

* Experiment 1: vary number of views per pass
 Number of passes: 1

* Number of views per pass: 1, 2, ..., 7

* Experiment 2: vary number of passes
 Number of passes: 1, 3, 7
 Number of views per pass: [7], [1, 4, 7], [1, 2, ..., 7]




The Results of Pilot study
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The parameters in TMIV’s configuration significantly affect the

performance
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Challenges

 TMIV can not determine the configuration automatically

* The pre-defined configuration can not make optimal tradeoff
among
* video quality,
* decoding time, and
e bandwidth consumption

* The optimal configuration may different according to scene and
camera parameters

 To solve this configuration optimization problem, we introduce a
new component, a configuration optimizer for the TMIV codec

11



Configuration
Optimization Problem



Problem Statement

* Given:
* Source views V
* eachviewv (v = 1,2, ..., V) consists of texture (T,,) and depth (D,,)
* IV corresponding source camera parameters Cy
* described by position (B,) and Orientation (0,)
* The camera parameters of target view Cr
* described by Py and O

e Goal:

 According to inputs, finding the optimal f* from all F possible TMIV
configurations to maximize a user-defined utility function U(-)

f* = argmaxyepU(f)

13



Define F and U(-)

* We define the configuration F with two essential parameter of

TMIV

* The number of passes N
* The number of views per passr,, n=1,2,...N

* We define the utility function U(+) as the following

where

ey =2

r—

Maximize Quality

Yr

Minimize running time

* (@ isthe video quality of the synthesized target view, and

* Qyisthe requested video quality (In our experiment, we set ¢; to 20

dB (WS-PSNR or PSNR))
* Yristhe decoding time,

* We note that F and U(+) can be defined according to different

scenarios

14



Configuration Optimizer



Configuration Optimizer

* To solve the problem, we propose configuration optimizer to
generate optimal configuration ™ according to camera
parameters (Cy, C7) and source views (T, D,,)

Configuration %[ Configuration } < -

.. Network
Template Optimizer
| Optimized Configu$tion Target Camera
Parameters
Source View Ootimal
TMIV TMIV ptimz
Source Camera Target View
Encoder Decoder ——— §

Parameters

———

Network
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NN-based Algorithms

* Finding ™ in F is not a easy task because of the huge

configuration search space (depends on Cy, Cr,T,,,and
Dy)

* We utilize Neural-Network-based (NN-based)
approaches to find [~

* We treat the problem as

* Aregression problem, solving by Convolutional Neural
Network (CNN)

* A decision making problem, solving by Deep Reinforcement
Learning (DRL)

17



Input Preprocessing

* The input data of both NN algorithms are composed of Cy, Cr, T,
and D,, (from 7 source views)

* We down-sample both T,,, and D,, to the same resolution of 256 x
256

* We subtract C from Cy,, then duplicating results for 256x256
times

Integrated inputs

* The resulting inputs contain 25BX256x(T+T+(21+21))
« 256x256x7, T, T Dy
« 256x256x7, D, Py, Oy
* 256x256x7x6, Cy, Cr Diff. Map Gen.

PTJ OT
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Output Post-processing

* The output of both model is a vector E, where E =
(e1, €5, ...,eyn), and N represents the number of passes

* We set output dimension = 3 in our experiments

* F represents the number of view be added in each
pass

* The number of views for each pass r,,(n = 1,...N) is
calculated by

(
On €n — O:
0, r; = 0and 7 < n;

n

E €i, otherwise.

\ =1
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Regression Problem (Solving by CNN)

We treat the problem as a regression problem, where the predicted
target is a vector of integer

Our CNN model include two parts
e Convolutional network: used to extract feature
* Fully-connected network: used to infer the results from feature

Conv. BLK represents a convolutional layer + an RelLU activation layer

FC. BLK represents a fully-connected layer + an RelLU activation layer

Input

1 I

CNN-based Regression Model \
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Decision Making Problem: RL Introduction

* In reinforcement learning, there are an agent and environment

* The agent performs some action in the environment and
environment feedback state (observation) and reward to the agent

* The goal of the agent is learning how to perform actions according

to states to get maximal total reward

State

Figure from https://towardsdatascience.com/deep-g-network-combining-deep-reinforcement-learning-a5616bcfc207 21



Decision Making Problem (Solving by DRL)

We treat the problem as a decision making problem

We formulate the configuration as a search space composed of
statess = (N, n,, T, D, C,, Cr)

e Action: the number of extra views to
reach the next state
Actlona
* Reward: the difference of the utility A

values between the current state and

the following state A

* DRL agent start at the initial state and :
choose the most valuable action to +0 denotes terminate state
move towards the optimal state

22



Observation
256x256x(14+42+3)

™ Tv, DU’ Cv, and CT
 We adopt Deep Q learning,

DRL Agent
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Training Procedure

* CNN algorithm
* Learning rate: 107>
* Adopting MSE as the loss function
* The model takes about three hours to converge

* DRL algorithm
* Adopting target network
* Adopting e-greedy policy
* Adopting experience replay
 The model takes about two days to converge

24



Target Network

Original DQN:

Q(St, Ar) < Q5 Ar) + @ [RH-I + ymax Q(Siy 1, Aryr) — Q5 -4-t)]

In Deep Q learning, we have 2
neural networks model in

training DQN + target network:
These model have same (, - O ) — O 2

. . . 0sSprr, = (r +ymax (s, a;w; ) — Q(s,a;w;))”
architecture but different weight i o :
Every m steps, the weight from g |
prediction network are copied to Parameer update i very
target network Q’ Q

k Target Network Prediction Network
Using target networ , L
approaches lead to more
stability in the learning process :
Input

25



Experience Replay

We store trajectory, which consisting of the current state s, the
selected action a, the immediate reward R, and the next state s’,
in memory for training

The memory is a First-In-First-Out (FIFO) queue, which queue size
is 1,000

For each training round, a data batch with 32 trajectories is
randomly sampled from the memory

i i
Experience replay can
: : y (s,a,r,s")
* Reduces correlation between experiences o
. ramnin

* Increases learning speed ,—--9-----. a [ Confiaurat
* Reuses past transitions to avoid catastrophic | Agent | S‘i;‘t;ggfaf;

forgetting Tt

Observation
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e-greedy Policy

* The agent in DRL choose an action according to:
* Its observation, which is output Q values of each action
 Randomly

* In this way, agent can explore new search space to find the
optimal results

* In our experiments, € is increased by number of steps
(~100,000: 0.5, 100,000~200,000:0.7, 200,000~:0.9)

o

Random
1-€ action

€ Greedy
action
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Produce Dataset

performance under different setting

(h.265)->TMIV decoder

For r;, and N, we run all of the combination when N < 3

We choose 7 videos from each video sequence as the source view

We run TMIV with various video sequences, 7;, , and N to calculate

For video sequences, we select ten video sequences from MPEG dataset

Procedure: TMIV encoder -> video encoder (h.265)->video decoder

EquiRectangular Projection (ERP)

PerspecTive Projection (PTP) :

Sequence | Projection | Resolution | Cameras | No. Frames
Classroom ERP 4096x2048 24 300
Hijack ERP 4096x4096 10 300
Museum ERP 2048x2048 15 120

Kitchen PTP 1920x 1080 25 97

Painter PTP 2048x 1088 16 300
Frog PTP 1920x 1080 13 300
Fencing PTP 1920x 1080 10 250
Street PTP 1920x 1088 9 250
Carpark PTP 1920x 1088 9 250
Hall PTP 1920x 1088 9 500

28




Training and Testing Dataset

* In ERP video sequences:
* Training set: all the non-source-view cameras in video sequence

* Testing set: random camera pose from pose trace provided by
MPEG

* In PTP video sequences:

* We select all the non-source-view cameras as the target view to
generate data

* We adopt leave-one-out strategy to split training and testing set

29



Objective Evaluations



Experiment Setup

* Baselines:
» Default (DEF): default configuration of TMIV
e Optimal (OPT): configuration with optimal utility value

 Performance metrics:

* Number of required views
* Video quality (WS-PSNR, PSNR)

* Decoding time
utility_value

)

e Optimal score
P (optimal_utility_value

31



Qualitative Evaluations

* Most of synthesized results are similar

* However, the CNN and DRL algorithms sometimes generate noticeable
distortion because of insufficient number of source views

32



Evaluation Results (ERP, Training Set)

Our algorithm require fewer views
and decoding time

The difference of quality between our
algorithms and baseline is small (std.:
0.5)

In optimal score, our algorithms
achieve higher score, and DRL achieve
large improvement

Overall, our algorithms outperform
baseline in ERP training set, and DRL
achieve the best performance

Average Required Views

o
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Evaluation Results (ERP, Testing Set) @

3.42 1.47
(49%) (21%)
* The results of testing set show the  &° } S
.. . . . 5 20
trend similar with training set g4 %
g &
* In optimal score, CNN algorithm 82 s
achieve lower optimal score than DEFE, g,
. . DEF CE:\I _r[])RL OPT DEF CEINor'tr[])rEL OPT
e Overall, our algorithms required 039 ’
fewer views than DEF, and DRL has  w,,,——2% .00
better performance than other = 200 } 20.75
algorithms g1 050
2100 E
S 50 70.25
;é . 000, L 94% || s0%
DEF CNN DRL OPT DEF CNN DRL

Algorithm Algorithm

Summary, in ERP video sequences
* DRL algorithm perform well for various user positions and orientations.

* CNN algorithm results in inferior performance when facing new user positions and

orientations. 34



Evaluation Results (PTP, Training Set) [

. . 5.52 5.36
Our algorithms require fewer (79%) (77%)
source views and less decoding L T 1 %30 %
time than DEF algorithm g, % 20
g &
They also achieve comparable 22 - v 310
. . © 2 g
quality to baselines (Std.:0.37) g, -- 3
< 0
. . DEF CNN DRL OPT DEF CNN DRL OPT
In optimal score, our algorithms 5 g7 N9orithm Algorithm
outperform DEF 5 oo U8%) o0 —
‘aE_J 1T A A ’ ==
Overall, the performance of our 5’ 2075
algorithms better than DEF, and ~ §* 5050
it very close to OPT 32 v o 8025 —=
go -- 0.00 24% 96%
= DEF CNN DRL OPT DEF CNN DRL
Algorithm Algorithm
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Evaluation Results (PTP, Testing Set) 3

5.31 5.49

* Similar to training set, our £, S N
algorithm outperform DEF = :
algorithms in required view, g“ %20
decoding time, and optimal score %-f:? AR -- ;;T“’

* DRL achieve lower optimal score Nl o DFC OPT i ORN DRL OPT
than CNN, and it have higher 5.54 533
variance compared to the results 21— e (?_4%) 1.00 -
in training set iﬁ 2075

e Overall, our algorithms g‘* %050
outperform DEF, and the 32 _ 8025 —==
performance of DRL shows g';’{, -- ool 1 24% || 94%
higher variance in the testing set = DFF O DAL 0T oo DR

Summary, in PTP video sequences

 The CNN and DRL algorithms perform well for various video sequences and user
positions and orientations

* The CNN algorithm leads to more stable performance with new video sequencess¢




Subjective Evaluations



Experiment Setup

We conduct subjective evaluations on both ERP IR .

and PTP video sequences to study the perceived : = _
" [ subject |
. ‘(M,\\ 8.5

For ERP video sequences,

* We choose 6 camera parameter settings from each video sequences (3
from training set, 3 from testing set)

* We ask user watch synthesized results through HMD
* 6 camera parameter settings x 3 video sequences (18 rounds)

quality of our algorithms and baselines

For PTP video sequences,
* We choose 4 camera parameter settings from each video sequences
* We ask user watch synthesized results through 27"’ 2D monitor
* 4 camera parameter settings x 7 video sequences (28 rounds)

In each round, subject have to rank the synthesized results from different
algorithms

We recruit 23 subjects for both ERP and PTP experiments

38



Sample Synthesized Results




Evaluation Results (ERP)

Maximum

The pairwise comparisons show no op-
obvious superior algorithm

B Minimum

DARL-

We model the pairwise
comparisons and the ranking results
using the Bradley-Terry and
Plackett-Luce model

Count (%)
56

54
52
50
48

48
44

Algorithm (Winner)

The estimated coefficients of both DEF:
models range between -0.1 to 0.09 . . . .
. DEF CNN‘ DRL OPT
and the corresponding p-values of Algorithm (Losen
the coefficients are greater than e
015 Coefficient 0.00 -0.10 -0.07 0.08

Bradley-Terry

. . p-value N/A 016 030 0.24
Overall, the perceived quality of our | __ .. “Coefficient 000 007 005 009

algorithms and baseline are similar pvalue  NA 045 058 031
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Maximum

Evaluation Results (PTP)

The pairwise comparisons show no OPT-
obvious superior algorithm

B Minimum

’a;? Count (%)
The estimated coefficients of both £ DRL-
models range between -0.003 to £
0.16 5 CNN-

< 46
The OPT algorithm is statistically .

superior to the DEF algorithm, but

47%

(303)

this result can be neglected DEF CNN DRL  OPT
Algorithm (Loser)

Overall, the perceived quality of our

algorithms and DEF are similar DEF CNN DRL OPT
B Coefficient 0.00 -0.003 0.04 0.10

radley-Terry
p-value N/A 096 0.52 0.06

Coefficient 0.00 0.07 0.02 0.16
p-value N/A 034 076 0.02

Plackett-Luce
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Summary of Our Findings



Summary

* Our evaluations results show that our algorithms require fewer
source views and less computational resources to deliver
comparable video quality and perceived quality compared to the
baseline algorithms

* According to our recommendation, our algorithms can reduce the
number of views and decoding time and maintain similar video

quality
Compared to DEF
T Dataset Rec.
ype arase e¢ No. Video | Decoding | Utility
of Views | Quality Time Value
ERP Training (Seen Camera Parameters) || DRL 79% 100% 89% +9%
Testing (New Camera Parameters) DRL 79% 101% 100% +2%
Training (Seen Video Sequences
DRL 23% 98% 22% 75%
PTP | and Camera Parameters) i
Testing (New Video Sequences CNN 949 98% 939 +70%
and Camera Parameters)
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Conclusion and Future Direction

Conclusion
* In this thesis, we propose two ML-based configuration optimization
algorithms (CNN and DRL algorithms)

* Our algorithms work with user-specified utility function and
computer best configuration for TMIV

* We conduct both objective and subjective experiments to evaluate
our algorithms

* Our experiment results show that our algorithm can reduce the
resource requirement and achieve comparable quality to default
configuration

Future Directions

» Several system challenges need to be addressed, such as
* The inference frequency of our algorithms

* The performance under diverse and dynamic network and
system condition 45



Use Case: Real Estate Virtual Tour

* To show the feasibility of our algorithms, we build a capturing system
to capture more video sequences from various scenes

* We build our system based on Airsim, which is an open-source drone
simulator

e Our system inputs camera parameters (e.g., position, rotation, FoV,
and resolution), and outputs the video sequence and corresponding
camera parameter in the required format of MIV codec

* The experiment results in the new dataset are similar to previous
experiments

Texture/Depth video and ‘ = -
camera parameter Configuration User Trace \
i ""'—.—____‘_H‘“- ,.‘_‘,\
Capture Video Sequences Optimizer }—].S'

e Gy =R c MT nea
> Optimal Optima
. . Configuration Configuration _
Ld
_ Target View ,// :
| g
a

Video Video = ]
atlases
TMIV > Encoder ™ Decoder ™ TMI;I/ ;
Encoder Decoder  H%

camera parameter Metadata
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Sample Synthe5|zed Results

CNN
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Tse-Hou Hung (tsehou.nthu@gmail.com)
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