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Abstract

With the growth of Extended Reality (XR) and capturing devices, point
cloud representation has become attractive to academics and industry. Point
Cloud Compression (PCC) algorithms further promote numerous XR appli-
cations that may change our daily life. However, in literature, PCC algo-
rithms are often evaluated with heterogeneous datasets, metrics, and parame-
ters, making the results hard to interpret. In this thesis, we propose an open-
source benchmark platform called PCC Arena. Our platform is modularized
in three aspects: PCC algorithms, point cloud datasets, and performance met-
rics. Users can easily extend PCC Arena in each aspect to fulfill the require-
ments of their experiments. To show the effectiveness of PCC Arena, we
integrate seven PCC algorithms into PCC Arena along with six point cloud
datasets. We then compare the algorithms on ten carefully selected metrics
to evaluate the quality of the output point clouds. We further conduct a user
study to quantify the user-perceived quality of rendered images that are pro-
duced by different PCC algorithms. Several novel insights are revealed in our
comparison: (i) Signal Processing (SP)-based PCC algorithms are stable for
different usage scenarios, but the trade-offs between coding efficiency and
quality should be carefully addressed, (ii) Neural Network (NN)-based PCC
algorithms have the potentials to consume lower bitrate yet perform simi-
larly to SP-based algorithms, (iii) NN-based PCC algorithms may generate
artifacts and suffer from long running time, and (iv) NN-based PCC algo-
rithms are worth more in-depth studies as the recently proposed NN-based
PCC algorithms improve on the quality and running time. We believe that
PCC Arena can play an essential role in allowing engineers and researchers
to better interpret and compare the performance of future PCC algorithms.
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中文摘要

隨著擴增實境和攝像裝置的成長普及，點雲這一種資料表示型態越

來越受到學術界和產業界的青睞。點雲壓縮演算法更進一步地促進了

無數的擴增實境應用並改變我們的日常生活。然而，點雲壓縮演算法

在文獻中通常都是以不同的資料集、量尺和執行參數進行評估，這讓

評估出來的結果很難公平的解讀比較。在這篇論文中，我們提出一個

開源的評量平台叫做「PCC Arena」。這個平台在三個方面做了模組
化的設計：點雲壓縮演算法、點雲資料集和表現量尺。使用者可以很

輕易的在任何一個方面擴展我們的平台以滿足他們實驗需求。為了展

示PCC Arena的成效，我們將七個點雲壓縮演算法和六個點雲資料集整
合到其中並透過十個特別挑選的表現量尺來比較不同演算法所產出的

點雲之品質。我們進一步進行了使用者研究來量化不同點雲壓縮演算

法產生的點雲渲染在二維平面上的使用者主觀品質感受。我們從實驗

結果中得出幾點新穎的觀察：一、以訊號處理為基底的點雲壓縮演算

法在不同的使用情境下表現得比較穩定，但是要小心注意編碼效率與

品質之間的取捨。二、以神經網路為基底的點雲壓縮演算法有潛力用

更低的位元速率來呈現相似於以訊號處理為基底的點雲壓縮演算法的

品質。三、以神經網路為基底的點雲壓縮演算法可能產生缺損並受限

於較長的執行時間。四、最近提出的以神經網路為基底的點雲壓縮演

算法分別在品質及執行時間上都有進步，值得更深入的研究。我們相

信PCC Arena會扮演一個重要的角色，讓工程師和研究人員更好地解釋
和比較未來所提出的點雲壓縮演算法的表現。
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Chapter 1

Introduction

With the growing number of Extended Reality (XR)1 capable devices, we are a step

closer to many immersive applications in various industry verticals, such as entertain-

ment, healthcare, educations, emergency management, engineering, and marketing. 3D

meshes and point clouds are two popular data formats for 3D models representing objects

and scenes. A mesh comprises a set of polygons, where each polygon contains multiple

vertices, edges, and a face. These polygons can be augmented with additional information

like texture, reflectance, and orientation. Meshes can be efficiently rendered on hardware-

accelerated GPUs. Meshes are widely used to represent 3D models created by computer

graphics software, like AutoCAD, 3D Max, and Maya. The creators may choose to attach

textures to the meshes created in this manner. Meshes can also represent natural objects

and scenes that were captured by sensors. However, such meshes are harder to produce

because none of the sensors, including RGB cameras, Time-of-Flight (ToF) cameras, and

LiDAR scanners, natively output 3D meshes. That is, sensor data must be processed to

generate mesh models, which is computationally expensive and less suitable for real-time

applications.

A point cloud, in contrast, is a lighter-weight representation, which only consists of

a set of points storing the coordinates and optional attributes, such as colors, normals,

and reflectance. Although point clouds can either be directly captured (e.g., from LiDAR

scanners) or efficiently generated (e.g., from RGB images, depth images, or both), the

resulting point clouds may be too sparse to be visually appealing in XR applications.

Therefore, dense point clouds are needed. For example, it is reported that at least half a

million points are required to represent an acceptable-quality human avatar [15]. How-

ever, streaming uncompressed dynamic point clouds dictates more than 4 Gbps band-

width [10], which exceeds the capacity of most commodity access links. Therefore, an

1We use XR as an umbrella term to refer to Virtual Reality (VR), Mixed Reality (MR), Augmented
Reality (AR), and other spatial computing technologies.
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effective and efficient Point Cloud Compression (PCC) algorithm is the enabler of many

real-time XR applications.

The existing PCC algorithms can be classified into two categories: (i) Signal-Processing

(SP) [19, 49, 53] and (ii) Neural Network (NN) [3, 20, 23, 45, 46, 47, 60, 61, 65] based

algorithms. MPEG Geometry-based Point Cloud Compression (G-PCC) [38] and Video-

based Point Cloud Compression (V-PCC) [39] are two representative SP-based PCC al-

gorithms. They employ classical signal processing techniques to leverage the data redun-

dancy for compressing point clouds. In contrast, NN-based PCC algorithms adopt neural

networks to learn the key features from large point cloud datasets. While increasingly

more NN-based PCC algorithms [45, 47, 60, 61] have been proposed, they are often eval-

uated by solely comparing against prior SP-based PCC algorithms. Furthermore, PCC

algorithms are evaluated with different datasets, metrics, and parameters, making their

evaluation results hard to interpret. To the best of our knowledge, quantitative comparison

among multiple SP- and NN-based PCC algorithms under a broad spectrum of conditions

has not been performed in the literature.

We believe that the absence of comprehensive comparisons among PCC algorithms is

due to the lack of a general and extensible benchmark platform of PCC algorithms.

1.1 Contributions

In this thesis, we propose PCC Arena, which includes: (i) a diverse set of point cloud

datasets, derived from popular mesh datasets, (ii) a rich set of performance metrics for

quantifying perceived quality, bitrate, running time, etc., and (iii) a recommended pro-

cedure to fairly compare existing and future PCC algorithms. The PCC Arena project

was launched in April 2020 on GitHub 2 and published in a preliminary workshop pa-

per [63]. Since then, we have extensively extended PCC Arena. We report the extensions

and completely new evaluation results in the current thesis. This thesis makes three main

contributions:

• We design, implement, and release a modularized benchmark platform, PCC Arena,

to facilitate performance comparison among PCC algorithms using diverse datasets

and metrics.

• We carry out a quantitative comparison study among representative SP- and NN-

based PCC algorithms using our proposed PCC Arena. Both objective and subjec-

tive quality metrics are employed in this study.

2See https://github.com/xtorker/PCC_Arena for our project page.
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• We provide a detailed discussion on the performance, limitations, and potential of

NN-based PCC algorithms, which sheds some light on the future development of

PCC algorithms.

In particular, PCC Arena is an open-source project with a modularized design that offers

extensibility in three dimensions: PCC algorithms, point cloud datasets, and performance

metrics. Engineers and researchers can readily implement their proposed algorithms,

collected datasets, and preferred metrics following the design of PCC Arena. After that,

they can compare their work against the popular ones in the literature. If they choose

to share their implementations with the open-source community, their work will become

more visible to the authors of follow-up studies. Hence, we believe PCC Arena would

accelerate the development of future PCC algorithms.

1.2 Organizations

The rest of this thesis is organized as follows. We first introduce the background, includ-

ing 3D representations, point cloud analytics, and performance benchmark in Chapter 2.

We survey the literature in Chapter 3. We introduce representative PCC algorithms in

Chapter 4. This is followed by the architecture and implementations of PCC Arena in

Chapter 5. Chapter 6 presents the point cloud datasets and Chapter 7 defines the per-

formance metrics. We analyze the evaluation results in Chapter 8 and 9. Chapter 10

highlights the pros and cons of NN-based PCC algorithms, and Chapter 11 concludes the

thesis.

1.3 Limitations

To demonstrate the practicality of PCC Arena, we use it to benchmark seven representa-

tive PCC algorithms: three SP-based [38, 39, 53], and four NN-based [45, 47, 60, 61].

Our evaluation results reveal that:

• The SP-based PCC algorithms offer different trade-off points between coding effi-

ciency and time complexity when bandwidth is scarce. The gap among SP-based

PCC algorithms diminishes when the bandwidth is abundant (above 1 bit-per-point,

or bpp).

• The NN-based PCC algorithms show great potential at lower bitrates, e.g., saving

as high as 50% of bandwidth compared to SP-based ones. They, however, run

slower than the SP-based PCC algorithms (at least 10 times slower) and suffer from

varying performance with different models or datasets.
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• The NN-based PCC algorithms deliver similar point cloud quality to the SP-based

ones at lower bitrates most of the time. However, some models seem to be more

challenging for NN-based PCC algorithms and are vulnerable to catastrophic qual-

ity drops. More precisely, we observe that about 4.4% of the output point clouds

from some NN-based PCC algorithms suffer at least two orders of magnitude drops

in visual quality.

• Several objective metrics show correlations with subjective scores. However, such

correlation is only significant in a relatively small dataset of avatars, showing op-

portunities for developing better Quality-of-Experience (QoE) models for 3D point

clouds.

We emphasize that the seven PCC algorithms are not an exhaustive list of PCC algorithms

in the literature. This is, however, not a concern. Given its modularized design, PCC

Arena can be used to evaluate other PCC algorithms, including those developed in the

future.
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Chapter 2

Background

2.1 3D Representations

To represent a 3D model, there are several data types to store and render it, including

RGBD images, light-field images, 3D meshes, and point clouds. We introduce the last

two representations, 3D meshes and point clouds, in this section.

Point Clouds

Normal

Estimation

Surface

Reconstruction

Mesh & Texture

Generation

Point Clouds

with Normals

Point Clouds

with Surfaces

3D Meshes

Figure 2.1: Simplified pipeline for generating 3D meshes from point clouds.

3D Meshes. 3D meshes consist of static or dynamic sets of: (i) points, (ii) polygons,

and (iii) textures. The polygons are grouped to represent the surfaces in scenes. While

different types of polygons can be used in 3D meshes, triangles are used the most often

for their simplicity. The pipelines of rendering 3D meshes are quite mature, probably due

to the popularity of computer games. In fact, modern GPUs support fast and high-quality

rendering of 3D meshes in a scene, from arbitrary virtual camera position and orientation.

The key limitation of the 3D meshes is the capturing of nature scenes. 3D meshes

are not output data types of any capturing sensors. In particular, the raw data from, e.g.,

RGB cameras, RGBD cameras, and LiDAR sensors, need to be processed by some non-

trivial algorithms in order to generate 3D meshes. Fig. 2.1 shows a simplified pipeline

of 3D meshes generation from point clouds, which consists of three stages. In normal

estimation, the normal of each point is estimated by considering near-by points. In sur-

face reconstruction, close-by points are clustered to form surfaces. In mesh and texture

generation, the points, edges, and surfaces form the meshes, while the textures are also

attached. We emphasize that each of these stages can be done by a wide spectrum of
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algorithms, each with its pros and cons. Generating 3D meshes is no easy task for two

reasons. First, the algorithms are quite heavy, and thus cannot be run in real-time. Second,

the noise produced by the capturing sensors may be amplified in the pipeline, leading to

degraded 3D mesh quality.

MPEG groups have defined quite a few 3D mesh codecs in the past. For example, the

MPEG-4 group proposed a 3D mesh codec called FAMC (Frame-based Animated Mesh

Compression) [33], which supported both spatial and temporal scalability. At least a 60%

average gain in the compression ratio was reported when comparing FAMC with previous

3D mesh codecs.

Extra points

in frame n+1

Ambigious 1-1 mapping

to points in frame n

②

Frame: n Frame: n+1

Overlap

Time

①

Figure 2.2: Example of varying number of points and non-existing 1-1 mapping over
time.

Point Clouds. Point clouds are composed of points, where each point consists of

(x, y, z) coordinates as well as other attributes, like RGB, reflection, normals, etc. Point

clouds can be directly captured by LiDAR or other sensors. They can also be generated

from multiple 2D images taken at different positions with diverse orientations. Compared

to 3D meshes, point clouds have the following unique properties.

• No connectivity information. Point clouds do not contain edge connections among

points. Therefore, to achieve a comparable rendered quality to 3D meshes, many

more points are needed in corresponding point clouds. Otherwise, holes and cracks

may become visible. Point clouds, therefore, may incur high storage, transmission,

and processing complexities.

• Unordered points. The points of a static point cloud have no specific order among

them. Unfortunately, some graphics algorithms may dictate the proper order of

points before performing the actual tasks. These algorithms, therefore, must esti-

mate the point order themselves. For dynamic point clouds, this problem is even

worse, as point clouds contain no 1-1 mapping among points at different time in-

stances. That is, the future coordinates of a point at the current moment are gen-

erally unknown. In fact, the number of points of a dynamic point cloud could be

6



varying over time. Fig. 2.2 illustrates these two challenges when processing dy-

namic point clouds.

• Ease of manipulation. Because of the above two properties, 3D point clouds are

easy to manipulate. For example, stitching multiple point clouds is less complicated

than doing the same on multiple 3D meshes.

Point clouds, compared to 3D meshes, have a much lower rendering complexity.

Hence, they may be more suitable for interactive applications. The main limitation of

point clouds is the tremendous data size for dense enough point clouds to guarantee

visually-appealing rendered scenes.

2.2 Novel 3D Applications

With the growing development of 3D representations, different novel 3D applications pop

out and attract the attentions. There are many potential applications benefiting from the

developing of the 3D representations, including cultural heritage conservation, teleconfer-

ence, film making support, etc. Schwarz et al. [48] demonstrated the ability to decode and

playback the AR content in real-time with MPEG V-PCC codec. Although it is a prelim-

inary version of playing the AR contents on mobile devices, the authors properly showed

the potential of V-PCC and the 3D content consuming on mobile devices. Lee et al. [29]

proposed a real-time streaming system called GROOT. GROOT encodes the point clouds

using conventional signal-processing tools and makes the decision based on the viewport

information, including positions and orientations, sent by the client mobile devices. The

mobile devices at the end user side will decode and render the point clouds. The main dif-

ference of GROOT and the other related work in the literature is that the authors avoided

the 3D to 2D projection procedure during the encoding and decoding processes. This

makes GROOT more suitable for fully immersive and interactive applications on large

3D content.

2.3 Neural Networks

Neural network has been adopted to several point cloud related applications in the litera-

ture for years. In the earlier works, researchers have proposed neural network approaches

for voxelized point clouds. In other words, the whole pipeline required a pre-processing

procedure to convert the raw point clouds into voxelized point clouds, which had uniform

distance among each pair of neighboring points. This procedure significantly reduced the

search space of the applied neural network model.
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In 2017, Qi et al. [43] proposed PointNet, a neural network model that can directly

take point clouds as input for classification and segmentation. This work is a milestone for

the NN-based point cloud applications. Before meeting PointNet, research communities

relied on heavy computational operation, 3D CNN. PointNet gave researchers a com-

pleted new direction to design a neural network for point cloud related applications with

lower computational overhead and better performance. Tons of papers based on PointNet

have been published in the literature to solve the classification and segmentation problem

for point clouds [6, 28, 30, 31, 42, 50, 54, 68, 69, 71].

Besides classification and segmentation, there are other popular analytics of point

clouds in the literature. Gilani et al. [18] proposed a deep neural network model for

3D facial landmark identification. After that, several neural network models have been

proposed to solve the 3D face recognition problem [17, 25, 52]. For object detection

on LiDAR point clouds, Cheng et al. [12] proposed a projection-based object detection

neural network model. The authors projected the LiDAR point clouds into two planes,

front view and bird eye biew. They combined the features extracted from two projected

view and RGB channel with multi-layer deep fusion convolutional neural network. On

the other hand, instead of projecting LiDAR point clouds into 2D planes, Yan et al. [66]

attempted with 3D sparse convolutions to extract the features.

2.4 Performance Benchmarks

To get a better view of the performance comparison among different algorithms or codecs,

a comprehensive benchmark will always be one of the solutions. A benchmark usually in-

cludes or defines the following components: (i) datasets, (ii) sample algorithms or codecs,

and (iii) performance metrics. The purpose of designing a benchmark is to evaluate dif-

ferent algorithms or codecs with identical pipeline under exactly the same environment,

so that the benchmarking results are meaningful and valuable.

Alves et al. [5] proposed a complete benchmark to evaluate the performance of the

light field image codecs. The authors broke down the whole procedure of consuming a

light field image into three stages and evaluated the coding results in two different as-

pects. Bernardo et al. [8] designed a benchmark for assessing the objective quality of

different image codecs, which encode and decode on the object plane for digital holog-

raphy. Doumanoglou et al. [16] adopted a comprehensive benchmarking on 3D meshes

codecs for immersive interactive real-time streaming like teleconferencing. The authors

parsed the whole pipeline and marked out several metrics that helped them to analyze the

performance at each point during the pipeline.
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Chapter 3

Related Work

Performance comparison of various PCC algorithms has been attempted in both stan-

dardization and research communities. In the former community, MPEG has published

the Common Test Condition (CTC) document [36, 37] to define the test procedures for

several usage scenarios of PCC algorithms. The test procedures specify: (i) predefined

coding parameters for G-PCC [38] and V-PCC [39], (ii) object, avatar, and scene datasets,

and (iii) several objective quality metrics. Although the CTC document focuses on MPEG

PCC algorithms, it can serve as the starting point of benchmarking other PCC algorithms.

Some papers [4, 41, 58] evaluated the performance of MPEG G-PCC and V-PCC

codecs under diverse settings. In particular, van der Hooft et al. [58] employed objective

and subjective metrics to quantify the user-perceived quality of 6 Degree-of-Freedom

(6DoF) point cloud streaming. Through a user study, they derived the implication of each

network metric on the user-perceived quality of rendered 2D views. Perry et al. [41]

also carried out a user study to analyze the performance of MPEG G-PCC and V-PCC

codecs. In addition to subjective metrics, they adopted several objective ones. Using

the user study results, they identified the objective metric having the highest correlation

with the subjective scores. Similarly, Alexiou et al. [4] developed a Web-based point

cloud renderer used to collect subjective quality scores. They conducted a user study to

understand the impacts of diverse coding parameters on user-perceived quality. Unlike the

above studies[4, 41, 58], the current thesis considers a broad spectrum of PCC algorithms

spanning the SP- and NN-based ones. Moreover, we strive to include as many quality

metrics as possible.

Torlig et al. [56] developed a renderer for point clouds and conducted a user study

using objects and avatars. They then investigated the correlation between every pair of

objective and subjective metrics. Similar to our work, they also included additional: (i)

objective metrics and (ii) PCC algorithms beyond the ones in the CTC document [36, 37].

They, however, did not design a general and extensible benchmark platform, like our PCC

9



Arena, nor make the platform open-source.
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Chapter 4

Point Cloud Compression Algorithms

We introduce representative PCC algorithms in this section.

4.1 General Architecture

Our discussion focuses on the PCC encoder structure, as the decoder structure can be

derived from the encoder. Fig. 4.1 shows that the encoder comprises three components:

pre-process, redundancy elimination, and entropy code. Each component contains mul-

tiple potential coding tools, which can be classified into SP-only, NN-only, and general

ones. The pre-process component strives to turn point clouds into representations that

are more suitable for redundancy elimination, such as the scale, normalization, and par-

titioning tools. Among them, the scale and normalization tools ensure the comparable

point cloud scale within the same or among different datasets. The partition tool divides

each input point cloud into smaller blocks, then sent to the redundancy elimination com-

ponent. The purpose of partition is to reduce the searching space for the NN-based PCC

algorithms. The pre-processed point clouds comprise coordinates and optional attributes.

Coordinates are the geometry positions in the Cartesian coordinate system. Attributes

carry additional information, such as colors, normals, and reflectance.

The redundancy elimination component is the crux of PCC algorithms, which applies

different coding tools to the coordinates and attributes. These tools can further be clas-

sified into transform, quantization, and integrated tools. Among the transform tools for

coordinates, the projection tool transforms each 3D point cloud to multiple 2D images,

which can be readily compressed using existing 2D image codecs. Specialized data struc-

tures such as K-D trees and octrees can also be seen as transform tools. As a quantization

tool, voxelization turns point clouds with diverse point densities into 3D grids, called

voxels, trading lower output quality for less information to compress. More recently, NN

architectures have become popular integrated tools that directly eliminate redundancy.
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For instance, Convolutional AutoEncoder (Conv. AE) [34] and Convolutional Variational

AutoEncoder (Conv. VAE) [27] have been applied to deal with the point cloud coordi-

nates. Conv. AE uses multiple convolutional layers to extract the features automatically

with unsupervised learning. Compared to AE, VAE searches for the mapping between the

input dataset and a Gaussian distribution rather than the output dataset. Therefore, VAE

is expected to better generalize to unseen datasets.

Some transform tools are more suitable for attributes like colors. For example, Region-

Adaptive Hierarchical Transform (RAHT) [14] and prediction [38] are widely adopted for

redundancy elimination of attributes. The RAHT and prediction tools also utilize special-

ized data structures, like the aforementioned K-D trees and octrees, to predict, e.g., the

color of a given point (or block) from the neighboring ones. The transformed data are

then quantized using scalar or vector quantization tools. NN architectures can also handle

the attributes as integrated tools. However, to our best knowledge, only Conv. AE [34]

has been adopted for removing the redundancy of attributes [3, 46] at the time of writing.

The entropy code component further removes the redundancy in the outputs of the

redundancy elimination component. Arithmetic code is a popular lossless entropy cod-

ing tool, which can be used in both SP- and NN-based PCC algorithms. For NN-based

PCC algorithms, the entropy bottleneck layer [7] is widely used to compress the output

tensors from earlier NN layers into a bitstream. The entropy bottleneck layer estimates

the entropy of the input tensor from the previous layer. It then uses the estimated entropy

to transform the input tensor into a more compact string. The length of the transformed

string can be readily controlled thanks to the design of the entropy bottleneck.

In the rest of this section, we introduce seven PCC algorithms, starting with the SP-

based algorithms, followed by the NN-based ones. The selected PCC algorithms are

summarized in Table 4.1.

Table 4.1: Key Coding Tools Adopted by Representative PCC Algorithms

Cate. Algorithm Coord. Color Partition Voxeli-
zation

Conv.
(V)AE

Entropy
Bottleneck

Entropy
Code

SP
Draco [53] 3 3 3 3

G-PCC [38] 3 3 3 3

V-PCC [39] 3 3 3

NN

GeoCNN [45] 3 3 3 3 3

GeoCNNv2 [47] 3 3 3 3 3 3

PCGCv1 [61] 3 3 3 3 3 3

PCGCv2 [60] 3 3 3 3
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4.2 SP-Based PCC Algorithms

Draco. Draco [53] is an open-source project from Google. It aims to improve the perfor-

mance of 3D graphics applications through compression. Draco is initially designed for

web page renderers in a browser, but it is later extended for native applications. Draco

supports both lossy and lossless compression modes for coordinates and attributes. Its

quantizer allows users to specify different bit depths for coordinates and individual at-

tributes. After quantization, Draco encodes the coordinates with K-D trees and applies

predictive coding tools to the attributes. This is followed by several entropy coding tools

using both static and dynamic codebooks.

G-PCC and V-PCC. MPEG classifies the usage scenarios of PCC algorithms into

three categories [49]: static point clouds, dynamically acquired point clouds, and point

cloud videos. They propose two codecs accordingly: (i) G-PCC [38], which takes advan-

tage of geometric data structures such as octrees for compressing static and dynamic point

clouds, and (ii) V-PCC [39], which leverages mature 2D video compression tools for point

cloud videos. G-PCC supports both lossy and lossless compression modes for coordinates

and attributes. It contains three modules: voxelization, octree transformation, and entropy

coding. The voxelization module quantizes the coordinates from floating-point numbers

to integers with a scaling parameter, and it also optionally merges the duplicate points.

The octree of the resulting voxels is then built and finally encoded using several entropy

coding tools, such as the arithmetic code. V-PCC stores each point cloud frame into three

2D video frames: occupancy map, geometry image, and attribute image. The encoder

consists of two steps: 3D projection and 2D video compression. The former step projects

each point cloud on multiple 2D planes in different directions, which can be considered

as a form of partitioning. The projected results are called patches, which are packed into a

2D canvas. A sequence of 2D canvases is then aggregated into a 2D video. V-PCC sends

the 2D video to a conventional 2D video codec. H.265 is probably a good choice because

it can prevent motion vector search across the boundaries of patches. More details on the

V-PCC and G-PCC algorithms can be found in their standard documents [38, 39].

4.3 NN-Based PCC Algorithms

GeoCNNv1. GeoCNNv1 [45] is a pioneering NN-based algorithm taking lossy voxeliza-

tion as a pre-processing tool for manageable complexity and better performance. GeoC-

NNv1 consists of two 3D convolutional layers and an entropy bottleneck layer. Its loss

function is a weighted sum of the focal loss [32] and the extracted feature size. The focal

loss aims to get a biased model toward more complicated point clouds for better overall
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performance across the dataset. The extracted feature size is in the unit of bits per oc-

cupied voxel (bpov). GeoCNNv1 only supports lossy compression on coordinates. For

rate control, users are encouraged to train NN models with different loss function param-

eters λ, which can be used to trade off the extracted feature size (rate) and the focal loss

(quality).

GeoCNNv2. GeoCNNv2 [47] improves GeoCNNv1 in several aspects: a deeper neu-

ral network, optimized focal loss parameters, and a fine-tuned decoding process. The

key enhancement is to adopt VAE [26] instead of AE [22]. It is reported that GeoC-

NNv2 can handle larger point clouds and achieve better rate-distortion performance with

a shorter training time. GeoCNNv2 employs the same rate control mechanism as GeoC-

NNv1. While GeoCNNv2 only deals with geometry data, the same authors also proposed

a Folding-Based Coding (FBC) algorithm [46] to compress attributes, like colors. To our

best knowledge, FBC is the very first attempt to compress point cloud attributes using

NNs. We, however, have not been able to integrate FBC with GeoCNNv2. Thus, we do

not consider FBC in the rest of this thesis.

PCGCv1. Similar to GeoCNNv2, VAE is adopted in PCGCv1 [61], which incor-

porates multiple 3D convolutional blocks and Voxception-ResNet (VRN) [9] for better

coding efficiency. VRN combines ResNet [21] and Inception [51] by stacking several

ResNet blocks following the Inception-style. ResNet [21] aims to solve the vanishing

gradient problem, while Inception [51] helps feature extraction in different scopes by in-

creasing the width of the NNs. PCGCv1 employs several pre-processing tools, including

scaling and partitioning. Particularly, PCGCv1 partitions each point cloud into blocks

and compresses the blocks individually at the encoder. The encoder utilizes the entropy

bottleneck before performing entropy coding. At the decoder, the decoded blocks are

reassembled into the final point cloud. PCGCv1 only compresses coordinates. The rate

control approach of PCGCv1 is similar to that of GeoCNNv1: models with different λ

values are trained.

PCGCv2. PCGCv2 [60] is an extension of PCGCv1 with two significant enhance-

ments. First, the authors create a multiscale NN based on PCGCv1, which can extract

and combine local features in a hierarchical way to get higher-quality output point clouds.

Second, sparse convolution is adopted to cope with heterogeneous spareness levels of dif-

ferent point clouds and reduce inference time and memory usage. According to their

evaluation results [60], PCGCv2 outperforms PCGCv1 in both quality and running time.

PCGCv2 only compresses coordinates and employs the same rate control mechanism as

PCGCv1.
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Chapter 5

PCC Arena: Architecture and
Implementations

After introducing the representative PCC algorithms we implemented into PCC Arena,

we now give an overview and implementation details of PCC Arena in this section.

5.1 Architecture

PCC Algorithm

DecoderEncoder

PCC Algorithm

DecoderEncoderPre-Processing

Input Point CloudInput Point CloudInput Point Cloud Output Point CloudOutput Point CloudOutput Point Cloud

Performance

Evaluator

PCC Algorithm

DecoderEncoder

DatasetsDatasetsDatasets

Post-Processing

BinaryBinaryBinary

Figure 5.1: High-level architecture of the PCC Arena.

Fig. 5.1 reveals the high-level architecture of our proposed benchmark platform: PCC

Arena. The encoder takes an input point cloud and generates a compressed binary rep-

resentation, which may be saved as a file or streamed over a network. The decoder re-

constructs an output point cloud from the compressed binary representation. The input

point clouds are selected from one of the PCC Arena datasets. Individual PCC algorithms

may require some optional pre- and post-processing steps. Examples of pre-processing
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steps include point cloud scaling and partitioning, while the post-processing steps are

essentially their inverse functions. The PCC algorithms allow users to make a trade-off

between the bitrate and quality through different coding parameters. As mentioned above,

each PCC algorithm has its own rate control method. For each: (i) input point cloud, (ii)

PCC algorithm, and (iii) set of coding parameters, we get an output point cloud, which is

analyzed by a performance evaluator along with the input point cloud and the compressed

binary representation, in order to compute the results of various performance metrics. We

also develop a suite of scripts to automate the quantitative comparison across various

PCC algorithms under different bitrates. Moreover, the output point clouds are stored and

optionally rendered into 2D images for subjective tests.

5.2 Implementations

PCC Arena is implemented mainly in Python 3 using several common Python packages

for file I/O, logging, etc. We use Anaconda to provide portable Python environments

and libraries in versions dictated by individual PCC algorithms. We strive to follow the

settings reported by the authors of individual PCC algorithms. Scripts for getting the

environments ready are provided to help engineers and researchers pick up the speed.

We define base classes for PCC algorithms and performance metrics as AlgorithmBase

and MetricBase, respectively. Both default and virtual functions are defined in the base

classes, and we have implemented all the subclasses for the considered PCC algorithms

and performance metrics in PCC Arena. In addition to the Python classes, configurations

related to PCC algorithms (referred to as alg cfg) and datasets (referred to as ds cfg) are

given as YAML files. These YAML files can be easily augmented or created by engineers

and researchers.

We provide a top-level script as the entry point for running all the pre-defined exper-

iments, summarized in Procedure 1. The script loops over all PCC algorithms, coding

parameters, and point cloud datasets at lines 1, 4, and 5, respectively. The script first

creates a PCC algorithm instance in line 2 for each PCC algorithm to facilitate encoding

point clouds and decoding coded bitstreams. Each algorithm comes with a sample config

file (alg cfg), which defines how this PCC algorithm controls the encoding bitrate. To

speed up the benchmarking process, we configure parallel executions using, e.g., thread

pools or GPU queues in line 7. A dataset-dependent config file (ds cfg) specifies the

path to the point clouds and settings, e.g., the point cloud resolutions and whether the

point clouds contain attributes, like colors. For each input point cloud, it is encoded,

decoded, and evaluated between lines 8–13.

17



Procedure 1 Top-level Evaluation Script
1: for alg in all considered algorithms do
2: Initialize an instance of class alg
3: Load the corresponding alg cfg

4: for rate defined in alg cfg do
5: for ds in all considered datasets do
6: Load ds cfg

7: Apply parallel-execution cmd. in alg cfg

8: for pc in ds do
9: Execute en/decoding commands built from alg cfg, rate, and

ds cfg on pc
10: Initialize an evaluator eval
11: for met in all considered metrics do
12: Calculate met with eval

13: Save met results in log files

5.3 Extensions

PCC Arena is modularized and extensible in three dimensions: PCC algorithms, point

cloud datasets, and performance metrics. To add a new PCC algorithm into PCC Arena,

programmers have to prepare: (i) a new PCC algorithm class and (ii) a corresponding

configuration file. For the PCC algorithm class, two virtual functions need to be im-

plemented: make encode cmd() and make decode cmd(). These two functions put the

parameters, such as input file path, into encode and decode commands. The configuration

file stores the algorithm-specific parameters, including the coding parameters for rate con-

trol. Users can change those parameters based on their experiment requirements. To add a

new dataset into PCC Arena, programmers must add a new dictionary into the dataset con-

figuration file. This dictionary records the dataset-specific parameters, such as point cloud

filenames and dataset metadata. To add a new performance metric, programmers need to

define a subclass of MetricBase. For this new metric, a virtual function evaluate

needs to be implemented, which returns the evaluation results as a human-readable string.

In our experience, most PCC algorithms can be readily integrated into PCC Arena

via straightforward wrapper classes in Python. A few PCC algorithms require modifica-

tion on the source code before being interfaced with PCC Arena. Typical modifications

include: (i) separating encoding/decoding commands from the testing scripts and (ii) ex-

tracting the hard-coded values into parameters. Based on our experience, it took an engi-

neer up to 1 hour to finish such modifications for a new PCC algorithm. Incorporating new

datasets and performance metrics takes much less time compared to PCC algorithms.
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Chapter 6

Point Cloud Datasets

We now present the default point cloud datasets of PCC Arena in this section.

6.1 Dataset Selection

Table 6.1: Point Cloud Datasets

CAPOD [40] MN40 [64] SNC [11] 8i [15] SNCC [11] 8iC [15]
Dataset Source 3D Mesh 3D Mesh 3D Mesh 3D Point Cloud 3D Mesh 3D Point Cloud
Data Type Coordinate Coordinate Coordinate Coordinate Coord. with Color Coord. with Color
Content Type Object + Avatar Object Object Avatar Object Avatar
Classes 15 40 55 - 55 -
Models 180 12,308 51,094 1,200 51,094 1,200
Train/Val/Test - 0.8/0/0.2 0.7/0.1/0.2 - 0.7/0.1/0.2 -
Format obj off obj + mtl ply obj + mtl ply
Adoption - [43],[44],[67] [43],[67],[65] [47],[61],[60] - -

Public 3D model datasets can be roughly classified along two dimensions: (i) data

format: 3D meshes versus 3D point clouds and (ii) content type: objects, avatars, or

scenes. We consider both meshes and point clouds as dataset sources, but we only focus

on objects and avatars in this thesis1. We select six datasets, as summarized in Table 6.1.

Fig. 6.1 gives sample point clouds from them. We introduce the selected datasets below.

CAPOD. The CAnonically Posed 3D Objects Dataset (CAPOD) contains canonically

posed 3D models [40]. That is, these models were pre-processed with several tools, in-

cluding normalization, rotation alignment, and semantic alignment. CAPOD contains 180

models uniformly distributed across 15 classes.

MN40. ModelNet is a large 3D Computer Aided Design (CAD) dataset [64]. Model-

Net contains 151,128 models across 660 classes. We adopt one of its subsets: ModelNet40

1We do plan to maintain and grow PCC Arena. For example, collecting datasets for real 3D scenes is on
our roadmap. We hope to attract more engineers and researchers to join us.
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Figure 6.1: Sample point clouds generated from MN40 (left), SNC (middle), and CAPOD
(right). Each point cloud consists of 500k points.

(MN40), which contains 40 classes2.

SNC. ShapeNet is a large 3D model repository with more than 3,000,000 models,

where some of the models are labeled and classified into 3,135 classes [11]. Models in

ShapeNet come with several annotations, such as rigid hierarchical alignments, parts, and

key points. We adopt a subset of ShapeNet, called ShapeNetCore (SNC). SNC contains

51,094 models across 55 classes, such as table, airplane, and guitar.

SNCC. We also consider the colored version of SNC, which is referred to as ShapeNet-

CoreColor (SNCC). The numbers of classes and models are identical to those of SNC.

8iC. The MPEG CTC document [37] provides multiple point clouds contributed by

different research teams. 8iC dataset consists of 4 colored avatar point cloud sequences

built from 14 RGBD video clips.

8i. We also consider the coordinate-only version of 8iC, which is referred to as 8i.

6.2 Dataset Generation

Most selected datasets (except 8iC/8i) are 3D mesh datasets. We employ CloudCom-

pare [13] to convert these 3D meshes into 3D point clouds, where each point is composed

of coordinates and attributes. Coordinates are represented as x, y, and z. Attributes

include colors and normals, represented as red, green, blue and nx, ny, nz, respec-

2We skip three point clouds in MN40, because they are 2D instead of 3D models.
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tively. More precisely, for each 3D mesh object, we generate 500k random points using

SAMPLE MESH() in CloudCompare, which randomly samples points using interpola-

tions on the faces of each triangle. We use 500k because it was reported to be the min-

imum number of points for acceptable rendered quality [10]. Engineers and researchers,

however, may modify our scripts to vary the number of points. If the mesh contains

colors, we sample colors using interpolation whenever necessary. We derive normals of

individual points using OCTREE NORMALS() in CloudCompare using an automatically

chosen radius to establish a quadric plane from the neighbors found on the octree. The

normals are needed when quantifying some performance metrics. Last, we normalize all

the point clouds to [0,1024] along the three axes to fairly compare the PCC algorithms

across different datasets. Note that PCC Arena does not ship the point cloud datasets

directly; instead, Python scripts for downloading and converting datasets are included.

Our selected datasets are diverse: 8iC/8i was directly captured from the real world,

while others were sampled from mesh datasets. These mesh datasets contain objects

with flat surfaces and basic geometry structures, which may be easier to compress. We

acknowledge that our selected datasets were created by third parties who have applied

normalization, alignment, and rotations, which make them different from raw point clouds

collected from LiDAR or RGBD cameras. These, however, are not serious concerns, as

new datasets can be readily integrated with PCC Arena, as explained in Sec. 5.3.
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Chapter 7

Performance Metrics

In this section, we define the default performance metrics included in PCC Arena. These

metrics can be classified into: (i) non-visual, (ii) 3D visual, and (iii) 2D visual metrics.

7.1 Non-visual Metrics

We first define the non-visual metrics, which are crucial to understanding the efficiency

of the PCC algorithms. Let Pr and Pt be the reference and target point clouds, which are

two sets of input and output points. We use p to denote a point in a point cloud in the rest

of the thesis. The bitrate is defined in bpp (bits-per-point), which is essentially the binary

size over the number of points in the reference point cloud (i.e., |Pr|). The running time

refers to the sum of the encoding and decoding time. The encoding and decoding times

are also recorded individually.

7.2 3D Visual Metrics: Coordinates

We next define the 3D visual metrics for coordinates as follows.

• Asymmetric Chamfer Distance from P1 to P2 (ACD):

ACD(P1,P2) =
1

|P1|
∑
p∈P1

min
p′∈P2

‖p− p′‖22 , (7.1)

which is a directional metric from point cloud P1 to point cloud P2. Based on this,

we define ACDrt = ACD(Pr,Pt) and ACDtr = ACD(Pt,Pr).

• Chamfer Distance (CD):

CD =
1

2
(ACDrt + ACDtr), (7.2)
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which is a bidirectional metric, defined based on ACD.

• CD Peak Signal-to-Noise Ratio (CD-PSNR):

CD-PSNR = 10 log10
M2

r

CD
, (7.3)

where Mr is the maximal distance between any two points in Pr [35].

• Hausdorff Distance (HD):

HD = max(max
p∈Pr

(min
p′∈Pt
‖p− p′‖22),

max
p′∈Pt

(min
p∈Pr
‖p− p′‖22)), (7.4)

which essentially is the maximum distance among all pairs of the nearest points.

HD is bidirectional and reflects on the worst-case distance.

Note that, although our CD-PSNR definition employs CD in its denominator, there exist

two alternative definitions with the denominator being: (i) the maximum of ACDrt and

ACDtr, and (ii) ACDrt in the literature [35, 55]. Each of these definitions comes with a

different intuition. The maximum of ACDrt and ACDtr finds the largest distance between

both directions. ACDrt follows the traditional 2D image PSNR definition and concentrates

on the direction from the reference to the target. We choose bidirectional CD to cope with

artifacts due to points deviating from the majority of the points in either reference or target

point clouds. We refer to these points as outliers in the rest of this thesis. The defined

metrics have diverse properties. For instance, HD shows the largest error (often caused by

outliers) and skips all other pairs. On the other hand, CD reveals the average error among

all pairs and may overlook the sporadic outliers. Both HD and CD are the distances of

two point clouds, which have nonlinear relation with human-perceived quality, as we will

show in the user study (Chapter 9). CD-PSNR is in the dB scale to better capture the

visual quality [55].

The above quality metrics are defined with the point-to-point distance, i.e., ‖p− p′‖2.
We also generalize the quality metrics with the point-to-plane distance [55]:

(p− p′) ·Np, (7.5)

where Np is the normal vector of the plane of Pr that contains p. The point-to-plane

distance finds the more relevant points in the reference point cloud using normals. We

refer to the point-to-plane quality metrics as: ACDrt
p, ACDtr

p, CDp, CD-PSNRp, and HDp.
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7.3 3D Visual Metrics: With Colors

We also define several colored metrics.

• Luminance Color PSNR (L-CPSNR):

L-CPSNR = 10 log10
M2

L-MSE(Pr,Pt)
, (7.6)

where M is the maximum value of the luminance. In ITU-R BT.709 [24], M is set

to 1. L-MSE stands for Mean Square Error (MSE) of luminance values across all

pairs of the nearest points.

• Viola et al.’s QoE (VQoE):

VQoE = α · CD + (1− α) ·HY
L2
, (7.7)

where α is the weight to combine the coordinate and color components: CD and

HY
L2

. Here, HY
L2

is the L2 distance of histograms of luminance values between Pr

and Pt. Yes. That is true. We adopt the empirically chosen α value of 0.6597 [59]

as the default value in PCC Arena.

7.4 2D Visual Metrics

Point clouds may be consumed differently, including being rendered into 2D images,

which need a different set of visual metrics. Several aspects, however, could affect the

visual quality of rendered 2D images, including the angles, distances, lighting, and ren-

dering engines. By default, PCC Arena renders six 2D images along x, y, and z axes, i.e.,

left, right, front, back, top, and down views. It renders the point clouds using the Open3D

library [70] with the default lighting setting. The library automatically sets the camera

distance and Field-of-View (FoV) to fit the point cloud to the rendered image frame. With

the six rendered 2D images, we compute their image quality using PSNR and Structural

Similarity (SSIM) [62], comparing the rendered image from the reference and target point

clouds. We then report the average values across six rendered 2D images if not otherwise

specified. We notice that the number of rendered images and the rendering settings can

be readily adjusted by engineers and researchers to better suit their needs, thanks to the

open-source nature of PCC Arena.
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Chapter 8

Objective Comparison Results

PCC Arena enables easy comparison among different PCC algorithms using common

metrics and datasets. We compare the performance of seven PCC algorithms using six

datasets. All the NN-based PCC algorithms are evaluated using their pre-trained models

if they are publicly available. Otherwise, we train the models closely following the in-

structions proposed in the individual papers. For example, GeoCNNv1 and GeoCNNv2

were trained with the MN40 dataset, while PCGCv1 and PCGCv2 were trained with the

SNC dataset. We use the testing sets in the comparison for datasets with predefined test-

ing sets (see Table 6.1); otherwise, we use the whole datasets. All training and testing

were done on a workstation with two Intel Xeon 6234 3.3 GHz CPUs, four Nvidia GTX

1080Ti GPUs, and 256 GB RAM.

8.1 Point-to-point versus point-to-plane

We first report the difference between the point-to-point (p2pt) and the point-to-plane

(p2pl) quality metrics. Fig. 8.1 shows sample results at 0.5 bpp from the CAPOD dataset.

We choose 0.5 bpp because it is within the practical range of the rate control algorithms

of all considered PCC algorithms. However, like rate control algorithms of traditional

2D codecs, it is not possible to precisely encode each point cloud at 0.5 bpp. Hence, we

perform piece-wise linear interpolation to find approximations whenever needed1. Among

all quality metrics, the higher value of CD-PSNR/CD-PSNRp, the better quality is, while

the lower value of the ACD-related metrics and HD/HDp, the better quality is. While

the p2pt and p2pl values of ACDtr are comparable, those values of ACDrt occasionally

show significant differences. For example, w.r.t. ACDrt, GeoCNNv1 has much worse

p2pt performance than p2pl one. This is because GeoCNNv1 outputs a point cloud in a

similar shape, although each output point deviates from its input coordinates. Other than

1The same approximation approach is adopted throughout this section.
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Figure 8.1: Quality comparisons between point-to-point (p2pt) and point-to-plane (p2pl)
quality metrics. Sample results from the CAPOD dataset at 0.5 bpp are shown with met-
rics: (a) ACDrt & ACDrt

p, (b) ACDtr & ACDtr
p, (c) CD & CDp, (d) CD-PSNR & CD-PSNRp,

and (e) HD & HDp.
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ACDrt, the trend of the p2pt and p2pl quality metrics is quite similar. Because the p2pl

quality metrics are more relevant to the visual quality [55], we only report the p2pl quality

metrics in the rest of the section for brevity.

8.2 Coding Efficiency with only Coordinates
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Figure 8.2: R-D curves of different PCC algorithms. Sample results from the CAPOD
dataset are shown with metrics: (a) ACDrt

p, (b) ACDtr
p, and (c) CDp.

We plot sample Rate-Distortion (R-D) curves from the CAPOD dataset in Fig. 8.2.

The Draco R-D curve at low bitrates is not shown in this figure because it is much larger

than other curves. A deeper look at its inferior performance at low bitrates indicates that

Draco does not merge duplicated points in each voxel2. Fig. 8.2(a) reveals that GeoC-

NNv2 outperforms other PCC algorithms in ACDrt
p, which implies that the output point

clouds from GeoCNNv2 are the closest one to the input point clouds, compared to other

2Draco is specifically designed to avoid merging duplicated points, see https://github.com/
google/draco/issues/591#issuecomment-703820616.
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(a)

(b)

(c)

Figure 8.3: A sample point cloud from the CAPOD dataset showing the outlier
points/blocks: (a) input, (b) GeoCNNv2, and (c) PCGCv1. The blue (lighter) points
belong to the input point cloud, and the red (darker) points belong to the output point
cloud.
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Figure 8.4: R-D curves of different PCC algorithms. Sample results from the CAPOD
dataset are shown with metrics: (a) CD-PSNRp and (b) HDp.

PCC algorithms. Fig. 8.2(b) shows that GeoCNNv2 and PCGCv1 suffer from unstable

coding efficiency w.r.t. ACDtr
p when the bitrate increases from 0.5 to 1 bpp. A closer

investigation on the different coding efficiency w.r.t. the two ACD metrics depicts that

the root cause may be attributed to unexpected artifacts, as illustrated in Fig. 8.3. More

precisely, although most output point clouds are of rather good quality, a few of them

suffer from outlier points (or blocks), which leads to very high ACDtr
p. In all the results

from the CAPOD dataset, we found that 24 point clouds (≈ 0.56%) are affected by such

artifacts. This problem only occurs infrequently in GeoCNNv2 and PCGCv1 throughout

our experiments. This may be partially attributed to the partition tool adopted by these

two PCC algorithms, which fails to handle some rare blocks. Last, Fig. 8.2(c) plots the

R-D curves in CDp, which demonstrates consistent trends as ACDrt
p in Fig. 8.2(a).

We also plot the R-D curves of CD-PSNRp and HDp in Fig. 8.4. Fig. 8.4(a) reports

CD-PSNRp, which represents the average case, while Fig. 8.4(b) shows HDp, which fo-

cuses on the worst case. Generally, V-PCC, GeoCNNv2, and PCGCv2 slightly outper-

form other PCC algorithms. However, all three of them and two NN-based PCC algo-

rithms suffer from fluctuating R-D performance in HDp, as shown in Fig. 8.4(b), when the

bitrate increases from 0.3 to 1.4 bpp. Compared to SP-based PCC algorithms, NN-based

ones generally result in higher HDp values. The SP-based V-PCC also leads to higher

HDp values, which may be attributed to its 2D projection approach that may be less effec-

tive to objects with simpler geometry. The inferior performance of Draco at lower bitrates

is caused by very low quantization granularity, which is how Draco controls the bitrate.

Finer granularity may be a solution to cope with such limitations of Draco and other sim-
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ilar SP-based PCC algorithms. Last, G-PCC outperforms other PCC algorithms in HDp

at all bitrates. More specifically, G-PCC may not be the winner in any single metric, but

it does pretty well everywhere. This may not be too surprising as G-PCC is designed for

compressing objects using conventional transformation, quantization, and entropy coding

tools.

Next, we consider all datasets and plot the overall quality of different PCC algorithms

at 0.5 bpp in Fig. 8.5. Three major observations are made on this figure. First, all PCC al-

gorithms perform quite well on the 8i dataset compared to other datasets. This is because

of the rather simple geometry of the avatars in the 8i dataset, which in turn makes the 8i

dataset easier to compress. Second, Draco and G-PCC achieve more stable performance

across all investigated datasets, compared to other PCC algorithms. This demonstrates

a crucial strength of the traditional SP-based approach compared to the data-driven NN-

based PCC algorithms. A similar trend can also be observed by the lower Hausdorff

distances of Draco and G-PCC. Third, all the NN-based PCC algorithms perform reason-

ably well on the unseen object classes in the testing sets and even unseen datasets. More

concretely, GeoCNNv1 and GeoCNNv2 were trained with MN40, while PCGCv1 and

PCGCv2 were trained with SNC. The figures show that the four NN-based PCC algo-

rithms can generalize to new datasets. This may be attributed to either the model design

or the partition tool. For instance, the partitioned blocks are less class-specific, which

allows NN-based PCC algorithms to capitalize the knowledge learned from other object

classes on compressing a target object class.

8.3 Coding Efficiency with Colors

We report sample R-D curves from the SNCC dataset in Fig. 8.6. We note that only three

PCC algorithms can handle colored point clouds. As shown in Fig. 8.6(a), Draco achieves

the best R-D performance across most bitrates, while G-PCC and V-PCC deliver similar

R-D performance. Another observation is that the R-D curve of Draco is an increasing

function with non-trivial slopes. On the other hand, both G-PCC and V-PCC reveal very

little, if any, L-CPSNR improvement on the bitrate. The difference is because: (i) we

adopt the rate control on the coordinates only in G-PCC, while (2) we rely on changing

2D image QP values for rate control in V-PCC, which is less effective. Fig. 8.6(b) gives

the results in VQoE: lower VQoE indicates higher quality. This figure also shows that

Draco allows effective VQoE control, while V-PCC fails to control its VQoE at higher

bitrates. When the bitrate is lower than 5 bpp, G-PCC achieves the lowest VQoE. In

contrast, when the bitrate is over 5 bpp, Draco delivers the best quality in both L-CPSNR

and VQoE.
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Figure 8.5: Overall quality achieved by the PCC algorithms on different datasets. Sample
results at 0.5 bpp are shown with metrics: (a) ACDrt

p, (b) ACDtr
p, (c) CDp, (d) CD-PSNRp,

and (e) HDp.
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Figure 8.6: R-D curves from different PCC algorithms. Sample results from the SNCC
dataset are shown with color metrics: (a) L-CPSNR and (b) VQoE.

8.4 Running Time of PCC Algorithms
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Figure 8.7: Average encoding and decoding times from the CAPOD dataset: (a) encoding
and (b) decoding time.

We measure and report the running time of different PCC algorithms using 100 ran-

dom point clouds from each of the coordinate-only PCC algorithms. We plot the average

encoding and decoding time from the CAPOD dataset in Fig. 8.7. The figure shows that

Draco has the shortest encoding and decoding time followed by G-PCC. However, none

of them are able to decode in real-time, say at 30 frame-per-second. Generally, NN-

based PCC algorithms suffer from longer encoding and decoding times. GeoCNNv1 and

GeoCNNv2 are the two slowest algorithms among all PCC algorithms: as high as 8602
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Figure 8.8: Overall average encoding and decoding times achieved by the PCC algorithms
on different datasets. Sample results at 0.5 bpp are shown: (a) encoding and (b) decoding
time. The horizontal line indicates 33ms.

s encoding time and 2496 s decoding time are observed. Next, we plot the running time

of different PCC algorithms among different datasets at 0.5 bpp in Fig. 8.8 along with

95% confidence intervals. This figure shows that the encoding and decoding times are not

affected by different datasets. Notice that we do not report the running times of colored

point clouds because they are consistent with coordinate-only point clouds reported in

Figs. 8.7 and 8.8.

8.5 Coding Efficiency with 2D Visual Quality

We report the sample R-D curves of rendered 2D images from the CAPOD dataset among

different PCC algorithms in Fig. 8.9. We make the following observations. First, V-

PCC and GeoCNNv2 outperform other PCC algorithms in terms of PSNR and SSIM.

Except for the lowest bitrate, G-PCC is also quite competitive: among the two leading

PCC algorithms. The overall trend of the rate-distortion curves of the PCC algorithms is

similar between the 3D and 2D visual metrics.

We next report the overall quality achieved by different PCC algorithms on different

datasets at 0.5 bpp in Fig. 8.10. This figure leads to similar observations as in its coun-

terpart on 3D visual quality metrics. For instance, the SP-based PCC algorithms achieve

more robust performance across different datasets than the NN-based PCC algorithms.

Most PCC algorithms have a notable performance gain on the 8i dataset compared to

other datasets. The lower quality of the non avatar objects shows that the current PCC al-

gorithms may not be general enough for arbitrary object classes. Last, we mention that the

2D visual quality of colored point clouds is not reported because most 2D visual quality
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Figure 8.9: R-D curves of different PCC algorithms. Sample results from the CAPOD
dataset are shown with 2D visual quality metrics: (a) PSNR and (b) SSIM.
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Figure 8.10: Overall quality achieved by the PCC algorithms on different datasets. Sam-
ple results at 0.5 bpp are shown with 2D visual quality metrics: (a) PSNR and (b) SSIM.
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metrics, e.g., PSNR, focus on the luminance component.
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Chapter 9

Subjective Comparison Results

9.1 User Study Setup

We conducted a user study by a Web-based questionnaire, which consists of two parts.

The first part is about perceived image quality. For a randomly selected input point cloud,

we first encoded and decoded it using all considered PCC algorithms. We then rotated

each output point cloud and rendered the image sequence into an animated gif file using

the Open3D library [70]. We showed the gif files of all output point clouds from different

PCC algorithms in random order on a Web page. Each subject can view all the gif files as

long as s/he wishes and ranked them on image quality by dragging the gif files. Fig. 9.1

shows a screenshot of our Web page built on Qualtrics [2]. After submitting the ranks of

the output point clouds, we moved on to another random input point cloud. The second

part is about perceived point cloud similarity. With a similar procedure as the first part,

subjects ranked the rendered images on similarity to the input point clouds, also shown

on the Web page. Each subject answered 32 questions in total, on top of the demographic

questions at the beginning.

The 16 randomly chosen point clouds were uniformly distributed among: (i) coordinate-

only objects, (ii) colored objects, (iii) coordinate-only avatars, and (iv) colored avatars.

We chose 16 point clouds to limit the time for each subject spent on our questionnaire so

as to avoid fatigue. All four objects were selected from the chair class from the CAPOD,

SNC, and SNCC datasets. We encoded each point cloud at 0.5 bpp; for PCC algorithms

that cannot precisely achieve 0.5 bpp, we used the output point cloud closest to 0.5 bpp.

We found that the average deviation is 0.203 bpp, and the worst-case deviation is 0.496

bpp1. We recruited 47 subjects through our social networks. Most of our subjects are

college students and their friends. 72% of the subjects are 20 to 29 years old, 63.8% are

1We acknowledge that the bitrate deviation is non-trivial. However, what we present in this thesis is a
methodology of carrying out similar user studies.
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Figure 9.1: Sample Web page used in our online user study.
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male, and none are color blinded. During our user study between May 21 and 30, 2021,

a typical subject spent 20-30 minutes completing the online questionnaire. More specif-

ically, the average time is 24.63 minutes, and the maximal time is 48.15 minutes. We

carefully checked if any subject should be filtered out due to unusually short completion

time. None of the subjects were filtered out.

9.2 Coordinate-only Objects
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Figure 9.2: Image quality comparison using coordinate-only objects: (a) pairwise com-
parison matrix, (b) image quality scores of individual point clouds, and (c) overall image
quality scores.

We start by analyzing the ranks of the output point clouds in image quality. We first

compute the pairwise comparison matrix by counting how frequently a PCC algorithm
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Figure 9.3: Point cloud similarity comparison using coordinate-only objects: (a) pairwise
comparison matrix, (b) image quality scores of individual point clouds, and (c) overall
image quality scores.
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outperforms another PCC algorithm. We refer to the former algorithm as the winner and

the latter as the loser. Fig. 9.2(a) presents the pairwise comparison matrix, in which

each cell gives the frequency for the winner (y-axis) outperforms the loser (x-axis), and

the number in the parentheses provides the number of occurrences. This figure shows

that V-PCC outperforms GeoCNNv1 by a small margin trailed by other PCC algorithms.

GeoCNNv2 leads to the worst subjective image quality.

Multiple methods may be applied to the user-provided ranks into scalar scores to

compare the performance of PCC algorithms. For example, we may combine the Analysis

of Variance (ANOVA) with the Tukey Multiple Pairwise-Comparisons test or Pairwise t-

test [1]. However, such method requires additional effort to integrate all pairwise results

and thus is rather indirect. Therefore, we employ the Plackett-Luce model [57] to analyze

the ranks provided by subjects and use the resulting model coefficients as the image quality

scores. If not otherwise specified, we normalize the scores between 0 and 1. Fig. 9.2(b)

plots the resulting scores of individual point clouds from all considered PCC algorithms,

along with their corresponding bitrates. Note that some point clouds deviate from the

target 0.5 bpp quite a bit, e.g., V-PCC encodes one of the chairs at about 1 bpp. This is

because of the limitation of the VCC algorithms’ rate control logic. The trend of the scores

in this figure is consistent with pairwise results in Fig. 9.2(a). Last, we present the overall

image quality scores across all considered objects in Fig. 9.2(c). This figure reveals that

the subjects prefer V-PCC and GeoCNNv1, while GeoCNNv2 does not perform well in

image quality. A closer look indicates that this may be caused by non-trivial artifacts,

e.g., cracks and outlier points (blocks), in the output point clouds from GeoCNNv2.

Next, we analyze the ranks of the output point clouds in point cloud similarity. We

present the results in Fig. 9.3. We notice that the ranks and scores are very similar to those

in image quality reported in Fig. 9.2. Most NN-based PCC algorithms, except GeoC-

NNv1, do not perform well. We check the gif files and found that GeoCNNv2, PCGCv1,

and PCGCv2 suffer from different degrees of cracking artifacts. Last, we notice that the

selected point clouds are all from the chair class. Therefore, the subjective ranks and

scores may be more applicable to this specific object class. This, however, is not a serious

concern, as we strive to demonstrate a complete methodology to derive subjective ranks

and scores for any set of point clouds; interested readers may adopt our methodology in

their usage scenarios.

9.3 Coordinate-only Avatars

Applying the same analysis methodology, we report the subjective image quality results

in Fig. 9.4 and the subjective point cloud similarity results in Fig. 9.5, respectively. Com-
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Figure 9.4: Image quality comparison using coordinate-only avatars: (a) pairwise com-
parison matrix, (b) image quality scores of individual point clouds, and (c) overall image
quality scores.
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Figure 9.5: Point cloud similarity comparison using coordinate-only avatars: (a) pairwise
comparison matrix, (b) image quality scores of individual point clouds, and (c) overall
image quality scores.
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pared to the results on objects, we observe quite different patterns on avatars. First,

PCGCv1 and PCGCv2 are in the leading positions, trailed by V-PCC and GeoCNNv1.

Second, GeoCNNv2 delivers much better subjective image quality than Draco, which is

just the opposite of the results on objects. Third, Figs. 9.4(a) and 9.5(a) depict that the

winning percentages are very close to 50% in most cases, which indicates that subjects

may have a hard time seeing the difference among output point clouds from different PCC

algorithms. In fact, this was also mentioned by a few subjects in our post-interviews. A

deeper look into the gif files confirms the above conjecture: too many rendered avatars

have visually similar, if not identical, quality and similarity. Last, the scores achieved by

each PCC algorithm on different point clouds differ a lot. This can be observed by the

samples widely spread along the y-axis in Figs. 9.4(b) and 9.5(b). We believe this may

be due to: (i) the close ranks/scores across the PCC algorithms and (ii) the catastrophic

quality drops that rarely happen to some combinations of the point cloud and the PCC

algorithm. The latter cause is trickier to handle because it only happens to very few point

clouds, even within the same avatar class.

9.4 Colored Objects and Avatars

We also analyze the subjective test results on colored objects and avatars. We give their

pairwise comparison matrices in Fig. 9.6. The four combinations between colored ob-

ject/avatar and image quality/similarity (as shown in the four subfigures) depict a very

similar trend. We observe that V-PCC delivers the highest image quality and similar-

ity, followed by G-PCC, and Draco suffers from the worst image quality and similarity.

Furthermore, the similarity between the output point clouds from G-PCC and V-PCC is

hard to differentiate. We omit the derivation of scores because there are only three PCC

algorithms.

9.5 Correlation with Objective Metrics

We calculate and give the correlation coefficients and p-values between the subjective

scores and individual objective metrics in Table 9.1. The results are quite different on

object and avatar point clouds. Specifically, we observe significant correlations between

the subjective scores and most objective metrics with avatar point clouds, while no signif-

icant correlation is found with object point clouds. With object point clouds, NN-based

PCC algorithms generate non-trivial cracking artifacts and outlier points (blocks), which

impose negative impacts on the subjective and objective quality at diverse levels. While

some objective metrics are easy to omit these artifacts, human eyes are very good at de-
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Figure 9.6: Pairwise comparison matrices for colored objects (a), (b) and avatars (c), (d)
in image quality (a), (c) and point cloud similarity (b), (d).
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tecting them. On the other hand, all the avatar point clouds have significant subjective

quality/similarity differences among different PCC algorithms, which may be easier to be

captured by objective metrics. Specifically, CDp and VQoE are the two objective metrics

that show more significant correlations with subjective scores.
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Chapter 10

Future NN-based PCC Algorithms

In this thesis, we compare four NN-based PCC algorithms. We find that NN-based PCC

algorithms have the potentials to save bitrates while maintaining good point cloud quality.

Nonetheless, the existing NN-based PCC algorithms still have some limitations. Our key

observations on the NN-based PCC algorithms are listed below:

• The considered NN-based PCC algorithms are not data-dependent. At the be-

ginning of our quantitative study, we expected that the training and testing datasets

would affect the performance of the NN-based PCC algorithms. Surprisingly, the

NN-based PCC algorithms work reasonably well on unseen datasets. This may be

attributed to the homogeneity of the object classes in the considered datasets. In ad-

dition, some NN-based PCC algorithms (GeoCNNv2 and PCGCv1) partition each

point cloud into blocks, which could contribute to the generality of the trained NN

models.

• The considered NN-based PCC algorithms perform very well on 8i datasets.
While the considered NN-based PCC algorithms were trained with object datasets,

they work remarkably well on the 8i dataset, which contains avatars only. This is

good news for engineers and researchers working on 3D immersive teleconferenc-

ing, as they can also leverage PCC algorithms trained with (non-trivial) objects.

• NN-based PCC algorithms are not stable, generating outlier points (blocks) in
some cases. In most cases, the NN-based PCC algorithms produce point clouds

with similar quality to the SP-based ones. However, catastrophic quality drops

due to cracking artifacts or outlier points (blocks) do occasionally happen. We

are not 100% sure about the root cause, but this needs to be addressed in future

NN-based PCC algorithms. For example, error-concealment-like crack filling ap-

proaches need to be done at the decoder side even though no packet is lost.
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• The latest NN-based PCC algorithm, PCGCv2, has a much lower running time
than other NN-based PCC algorithms. The lower running time can be credited to

its innovative NN framework, better model structure design, etc. This is a positive

sign showing that although encoding a point cloud with an NN-based PCC algo-

rithm is still far from real-time, sooner or later, researchers will further reduce the

running time for real-time usage scenarios.

• NN-based PCC algorithms for compressing attributes like colors are worth
further research. At the time of writing, to the best of our knowledge, there are

only two papers [3, 46] on this topic with some preliminary results. We believe

there exists a large room to explore in this direction.
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Chapter 11

Conclusion and Future Work

11.1 Concluding Remark

In this thesis, we present an open-source, modularized benchmark platform, PCC Arena,

to compare the performance of PCC algorithms using a wide spectrum of datasets and

performance metrics. PCC Arena is, to our best knowledge, the first extensible platform

for engineers and researchers to evaluate novel PCC algorithms using custom datasets

and performance metrics. To demonstrate the practicality of PCC Arena, we used it to

carry out an extensive comparison of seven PCC algorithms. These PCC algorithms span

across the traditional SP-based ones and the emerging NN-based ones. We reported and

discussed the results using both objective and subjective performance metrics. While the

list of our considered PCC algorithms is not exhaustive, our presented methodology and

our benchmark platform can be readily adopted by the engineering and research commu-

nities to evaluate the future PCC algorithms. Our comparison reveals the great potential

of NN-based PCC algorithms, e.g., through partitioning input point clouds into blocks,

they are less sensitive to unseen object classes nor datasets. However, we also observe

that NN-based PCC algorithms may suffer from catastrophic quality drops due to outlier

points (blocks) and cracking artifacts. In summary, our user study reveals that there is

still room for developing new objective QoE metrics that work for diverse point clouds.

These novel findings will help the research community to develop better NN-based PCC

algorithms in the near future.

11.2 Future Work

In our future work, we plan to extend PCC Arena to offer the option for users to manip-

ulate the input point cloud datasets, including alignment, rotation, and scaling automati-

cally. This will expand the range and variety of the acceptable point cloud datasets and
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evaluate the PCC algorithms under different usage scenarios or emulating different appli-

cations. In view of the similar characteristics between point cloud and mesh, we consider

adding a feature to compare mesh compression algorithms. Another aspect worth further

investigation is considering some applications-wise performance metrics or developing

a metrics for certain usage scenarios. Currently, the performance metrics are indepen-

dent of the usage scenarios of the end users who consume the point clouds. It may be

an interesting and valuable topic in the point cloud compression and evaluation research

field.
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