
國立清華大學電機資訊學院資訊系統與應用研究所

碩士論文
Institute of Information Systems and Applications

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

運用深度學習方法最佳化沉浸式影片編碼設定

Optimizing Immersive Video Coding Configurations Using Deep
Learning Approaches

洪澤厚

Tse-Hou Hung

學號：108065534
Student ID:108065534

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 110年十一月
November, 2021

國
立
清
華
大
學

資
訊
系
統
與
應
用
研
究
所

碩
士
論
文

運
用
深
度
學
習
方
法
最
佳
化
沉
浸
式
影
片
編
碼
設
定

洪
澤
厚

109

致謝

碩士兩年多的生活是我人生中非常特別的一段經歷。感謝我的指導

老師徐正炘教授，在研究、生涯規劃、英文等方面給我很多指導及意

見，讓我受益良多。感謝許之凡學長，在我一開始做研究的時候教我

許多知識，也包容我做實驗時的粗心大意。感謝實驗室的朋友及學長

姊弟妹。感謝同期的吳丞浩、蔡旻翰、陳昭文，給我很多研究及生活

上的建議，還有吃了很多好吃的火鍋跟羊肉爐之類的。特別感謝吳丞

浩，剛進來的時候互相分享學到的東西，碩一的生活過的非常充實和

快樂。感謝樊慶玲學姊，教我很多研究上的知識，也不厭其煩的回答

我的各種問題。最後感謝我的家人及女朋友，在我低潮的時候給我支

持。感謝以上所有人，讓碩士生活成為我人生最特別的一段時光。

i

Abstract

Immersive video streaming technologies improve Virtual Reality (VR)
user experience by providing users with more intuitive ways to move in sim-
ulated worlds, e.g., with 6 Degree-of-Freedom (6DoF) interaction mode. A
naive method to achieve 6DoF is deploying cameras in numerous different
positions and orientations that may be required based on users’ movements,
which unfortunately is expensive, tedious, and inefficient. A better solution
for realizing 6DoF interactions is to synthesize target views on-the-fly from
a limited number of source views. While such view synthesis is enabled
by the recent Test Model for Immersive Video (TMIV) codec, TMIV dic-
tates manually-composed configurations, which cannot exercise the tradeoff
among video quality, decoding time, and bandwidth consumption. In this the-
sis, we study the limitations of TMIV and solve its configuration optimization
problem by searching for the optimal configuration in a huge configuration
space. We first identify the critical parameters of the TMIV configurations.
Then, we introduce two Neural Network (NN)-based algorithms from two
heterogeneous aspects: (i) a Convolutional Neural Network (CNN) algorithm
solving a regression problem and (ii) a Deep Reinforcement Learning (DRL)
algorithm solving a decision making problem, respectively. We conduct both
objective and subjective experiments to evaluate the CNN and DRL algo-
rithms on two diverse datasets: a perspective and an equirectangular projec-
tion dataset. The objective evaluations revealed that both algorithms signif-
icantly outperformed the default configurations. In particular, with the per-
spective (equirectangular) projection dataset, the proposed algorithms only
required 23% (95%) decoding time, streamed 23% (79%) of views, and im-
proved the utility by 73% (6%) on average. The subjective evaluations con-
firm that the proposed algorithms consume fewer resources while achieving
comparable Quality of Experience (QoE) than the default and the optimal
TMIV configurations.

ii

中文摘要

沉浸式視頻流技術通過為用戶提供更直觀的方式在模擬世界中移

動，例如使用六自由度 (6DoF)互動模式，改善了虛擬現實 (VR)用戶
體驗。實現 6DoF的一種簡單方法是根據用戶的移動在許多不同的位
置和方向部署攝像頭，不幸的是，這既昂貴又繁瑣且效率低下。實現

6DoF 交互的更好解決方案是從有限數量的源視圖中即時合成目標視
圖。雖然最近的沉浸式視頻測試模型 (TMIV)編解碼器支持這種視圖合
成，但 TMIV需要手動選擇編碼配置，無法在視頻品質、解碼時間和
頻寬消耗之間進行權衡。在本文中，我們研究了 TMIV的局限性，並
通過在巨大的搜尋空間中尋找最優配置來解決其配置優化問題。我們

首先確定 TMIV配置中的關鍵參數。然後，我們從兩個不同的方面介
紹了兩種基於神經網絡的算法針對兩種問題：(i)卷積神經網絡 (CNN)
算法解決回歸問題和 (ii) 深度強化學習 (DRL) 算法解決決策問題。
我們進行了客觀和主觀實驗，以在兩個不同的數據集上評估 CNN和
DRL算法：透視和等距柱狀投影數據集。客觀評估表明，這兩種算法
都顯著優於默認配置。對於透視（等距柱狀）投影數據集，所提出的

算法平均只需要23%（95%）個解碼時間，傳送23%（79%）的視圖，
並且將效用提高73%（6%）。主觀評估證實，與默認和最佳 TMIV配
置相比，所提出的算法消耗更少的資源，同時實現可比的體驗質量

(QoE)。

iii

Contents

致謝 i

Abstract ii

中文摘要 iii

1 Introduction 1
1.1 Contribution . 3
1.2 Limitation . 4
1.3 Organization . 4

2 Background 5
2.1 From 2D Video Toward 360◦ Video . 5
2.2 3D Representation for Realizing 6DoF Interaction 6
2.3 View Synthesis . 10
2.4 Recent Standard Activity . 11

3 Related Work 13
3.1 Immersive Video Streaming . 13
3.2 Machine Learning Algorithms for Optimizing Video Streaming 14
3.3 Machine Learning Algorithms for Optimizing Video Coding 15

4 Test Model of Immersive Video 16
4.1 Components . 16
4.2 Workflow . 18
4.3 Limitations . 18

5 The Configuration Optimization Problem 21
5.1 Problem Statement . 21
5.2 The Configuration Optimizer In the Immersive Video Codec 22

6 Machine-Learning-Based Configuration Optimizers 24
6.1 The input Preprocessing Procedure . 25
6.2 Output Post-Processing Procedure . 25
6.3 The Convolutional Neural Network (CNN) Algorithm 25
6.4 The Deep Reinforcement Learning (DRL) Algorithm 26
6.5 Training and Testing Datasets . 29
6.6 Training Procedure . 30

iv

7 Objective Evaluations 32
7.1 Experiment Setup . 32
7.2 Qualitative Evaluations . 33
7.3 Quantitative Evaluations . 34
7.4 Robustness Evaluation Results . 39

8 Subjective Evaluations 41
8.1 Experiment Setup . 41
8.2 Results and Analysis . 42

9 Summary of Our Findings 46

10 Use Case: Real Estate Virtual Tour 48
10.1 Usage Scenario . 48
10.2 System Overview . 49
10.3 Data Collection from the Photo-Realistic Simulator 49
10.4 Experiment Setup . 50
10.5 Results . 52

11 Conclusion and Future Work 55
11.1 Conclusion . 55
11.2 Future Work . 55

Bibliography 59

v

List of Figures

1.1 Three VR interaction modes, where the spheres represent the virtual worlds. 1

1.2 A sample process of view synthesis: two source views (top and bottom)

are used to synthesize a target view (middle). 2

2.1 Two light field video representations with: (a) 7- and (b) 4-dimensional

functions. 7

2.2 The example objects of: (a) point cloud and (b) mesh. 8

4.1 Overview of the TMIV codec. 17

4.2 Operations of the view selector in TMIV [74]. 17

4.3 The numbers of source views and their corresponding encoding size. . . . 19

4.4 The decoding time and the video quality for synthesizing one target view

with different configurations: (a) different numbers of source views and

(b) different numbers of passes. 19

5.1 The high-level architecture of immersive video streaming systems. 23

6.1 The preprocessing procedure for generating the inputs of the CNN algo-

rithm. 24

6.2 The network architecture of the CNN algorithm. The architecture com-

prises a convolutional and a fully-connected part. 26

6.3 The transition diagram of the configuration space. The circles and the

triangles represent states and actions, respectively. 27

6.4 The proposed DRL algorithm: (a) the agent observes the response of the

environment, integrates the observation, and takes an action based on the

observation and (b) the network architecture of the agent. 28

6.5 Sample video frames from: (a) Classroom (ERP), (b) Museum (ERP), (c)

Painter (PTP), and (d) Kitchen (PTP). 30

6.6 The training procedure of the DRL algorithm. We sampled the historical

trajectories from memory to train the DRL agent. 31

vi

7.1 The synthesized target views with the configurations generated by differ-

ent algorithms: (a) Kitchen, (b) and (c) Hijack, and (d) Museum. 34

7.2 The objective results from the training set with ERP video sequences: (a)

number of views, (b) video quality, (c) decoding time, and (d) optimal score. 35

7.3 The objective results from the testing set with ERP video sequences: (a)

number of views, (b) video quality, (c) decoding time, and (d) optimal score. 36

7.4 The objective results from the training set with PTP video sequences: (a)

number of views, (b) video quality, (c) decoding time, and (d) optimal score. 37

7.5 The objective results from the testing set with PTP video sequences: (a)

number of views, (b) video quality, (c) decoding time, and (d) optimal score. 38

7.6 The optimal scores from PTP video sequences for various QJ values:

(a) training set without retraining, (b) testing set without retraining, (c)

training set with retraining, and (d) testing set with retraining. 40

8.1 The environment setup for subjective evaluations. 42

8.2 The pairwise comparison matrix of the ERP video sequences. 43

8.3 The pairwise comparison matrices of: (a) experienced and (b) non-experienced

subjects. 43

8.4 The pairwise comparison matrix of the PTP video sequences. 44

9.1 Usage scenarios of our proposed algorithms for: (a) ERP video and (b)

PTP video sequences. 46

10.1 The usage scenario of a real-estate virtual tour. 48

10.2 System overview of our implementation. 49

10.3 Sample screen-shots from: (a) ArchVizInterior, (b) XoioBerlinFlat, (c)

LightroomInteriorDayLight, (d) RealisticRendering, and (e) office. 51

10.4 The camera placement. 52

10.5 The sampling area of target views. The positions of target views are sam-

pled from this area. The orientation of the target views is the same as the

source view s camera. 52

10.6 The ground truth and synthesized target views with the configurations

generated by different algorithms . 52

10.7 The results from the training set with five real-estate scenes: (a) number

of views, (b) video quality, (c) decoding time, and (d) optimal score. . . . 53

10.8 The results from the training set with five real-estate scenes: (a) number

of views, (b) video quality, (c) decoding time, and (d) optimal score. . . . 54

vii

11.1 The performance comparison of the default configuration and the redesigned

DRL algorithm: (a) training set and (b) testing set. 58

viii

List of Tables

2.1 Comparisons of 3D Representations . 9

6.1 Selected MPEG Video Sequences . 29

6.2 Sample Frames and Training/Testing Sets of Selected ERP Video Sequences 29

7.1 The Optimal Score from ERP Video Sequences for Various QJ Values . . 39

8.1 Basic Statistics of The Subjective Evaluations with ERP Video Sequences 42

8.2 The Results from Bradley-Terry (Top) and Plackett-Luce (Bottom) Mod-

els with ERP Video Sequences . 42

8.3 Basic Statistics of the Subjective Evaluations with PTP Video Sequences . 44

8.4 The Results from Bradley-Terry (Top) and Plackett-Luce (Bottom) Mod-

els for the PTP Video Sequences . 44

9.1 Summary of Recommendation . 46

11.1 The performance comparison of the default configuration and the redesigned

CNN algorithm. 57

ix

x

Chapter 1

Introduction

Virtual Reality (VR) technologies are thriving in various business sectors, including com-

puter games, the tourism industry, real estate, and occupational training. The global

VR market is predicted to reach 26.89 billion USD by 2022 at an annual growth rate

of 54% [93]. As VR technologies are maturing, how to improve the Quality of Expe-

rience (QoE) of VR applications by delivering high viewing quality has become a key

question for researchers and developers.

One critical factor affecting the QoE of VR technologies is the way in which users

move in VR worlds. There are three main interaction modes: 3 Degree-of-Freedom

(3DoF), 3DoF+, and 6DoF, which are illustrated in Fig. 1.1. 3DoF VR allows users to

change their orientations in three dimensions, which are represented by yaw ψ, pitch θ,

and roll ϕ. However, with 3DoF VR, when users change their positions, the views ren-

dered on their displays are not affected. To overcome this limitation, 3DoF+ VR supports

limited movements in three additional dimensions, represented by x, y, and z coordinates.

Users can move their positions to a certain extent when sitting on fixed chairs. 6DoF VR

further relaxes the restriction on movement. That is, users can not only change their ori-

entations but also move in VR worlds freely. These interaction modes can be supported

by various displays, of which 2D monitors and Head-Mounted-Displays (HMDs). Be-

tween them, 2D monitors are available virtually everywhere, while HMDs provide more

immersive experience.

3DoF 3DoF+ 6DoF

0
○

0
○

0
○

Figure 1.1: Three VR interaction modes, where the spheres represent the virtual worlds.

1

0.1

0.05

0

-0.05

-0.1

0.10.050-0.05-0.1

v0

v1

v2

v3

v4

v5

v6

v10

v9

v11 v13

v14

v12

Warping

Blending

Warping

Figure 1.2: A sample process of view synthesis: two source views (top and bottom) are
used to synthesize a target view (middle).

Today’s VR content is mostly in the format of 360◦ videos, which are typically con-

sumed with the 3DoF interaction mode. Moving toward 3DoF+ and 6DoF is no easy

task. A naive way to achieve it is capturing multiple source views of natural scenes us-

ing cameras in many positions, or pre-generating multiple source views in virtual scenes

using game engines. However, it is hard to include all possible positions of a scene.

Even if we do, the data size is tremendous, leading to staggering demands on network

bandwidth, storage space, and computational power. Moreover, in natural scenes, nearby

cameras may be visible in source views, which require non-trivial post-processing for re-

moval. Therefore, researchers and developers have recently been attracted to these open

challenges to realizing 3DoF+ and 6DoF.

Recently, MPEG has released several standards for different 3D data representations

to deliver 3DoF+ and 6DoF VR experience to users. Among the standards, Video-based

Point Cloud Compression (V-PCC) [65] and MPEG Immersive Video (MIV) [66] are

representative examples. V-PCC enables 3DoF+ and 6DoF VR experiences through com-

pressing and delivering 3D point clouds. A point cloud consists of multiple points, where

each point is described by the 3D coordinates and corresponding attributes. While V-PCC

mainly focuses on compressing individual objects, MIV is designed for synthesizing tar-

get views in nature or virtual scenes, as illustrated in Fig. 1.2. Specifically, MIV takes

multiple source views as the inputs, where each source view contains the texture, depth,

and camera parameters. In this thesis, we study the Test Model for Immersive Video

(TMIV) [74], which is a reference codec of MIV. The TMIV allows streaming systems to

synthesize target views tailored for the diverse and dynamic positions and orientations of

individuals.

Although the TMIV codec enables the 3DoF+ and 6DoF interaction modes, it does not

take the tradeoff between the video quality and the number of source views into consid-

eration. Specifically, the codec might transmit excessive source views to synthesize one

target view, where the number of the source views is specified in the configurations. The

2

default (pre-defined) configurations are inevitably not optimal for diverse and dynamic

scenes and camera parameters, including orientations and positions. Thus, the systems

might suffer from high bandwidth consumption and long computing time. One way to

cope with this problem is to request a subset of source views to synthesize the target view,

while maintaining the perceived quality of users. However, an ill-selected subset of source

views may result in numerous missing pixels and thus degraded QoE, which could drive

3DoF+ and 6DoF VR users away.

In this thesis, we treat the above tradeoff of the TMIV codec as a configuration opti-

mization problem. Our goal is to generate a configuration to maximize the perceived video

quality, minimize the decoding time, and minimize the bandwidth consumption by trans-

mitting an adequate number of source views to users. We study the optimization problem

from two perspectives: as a regression problem and as a decision making problem. We

then solve these two problems by two Neural Network (NN)-based algorithms: a Con-

volutional Neural Network (CNN)-based algorithm and a Deep Reinforcement Learning

(DRL)-based algorithm, respectively. The CNN algorithm directly takes the ground-truth

to train an inference model for predictions, while the DRL algorithm systematically trains

an agent to adapt to dynamic environments [19, 45, 69, 79].

The two proposed algorithms are trained to adaptively generate the optimal configu-

rations according to the video content, camera parameters, and user-specified utility func-

tions. We conducted objective and subjective experiments to evaluate our algorithms on

two datasets: an equirectangular projection dataset for HMDs and a perspective projection

dataset for 2D monitors. The experiment results show that our proposed algorithms out-

performed the default configurations provided by MPEG, which are the current practice.

We also offer design recommendations for immersive video streaming systems based on

our findings.

1.1 Contribution

This thesis makes the following contributions:

• We propose two NN-based algorithms1 to solve the configuration optimization prob-

lem of the TMIV codec. Our approach can be readily adapted to other usage sce-

narios and immersive video codecs.

• We have conducted extensive experiments with real datasets to evaluate the per-

formance of our algorithms. Our objective experiments show that the proposed

algorithms consume fewer resources than the default TMIV configurations. With

1We use NN-based and NN algorithms interchangeably throughout the article.

3

the perspective (equirectangular) projection dataset, our proposed algorithms only

require 23% (95%) decoding time, stream 23% (79%) of views, and improve the

utility by 73% (6%) on average, compared to the default configurations.

• We conducted a user study to subjectively evaluate the quality of the synthesized

view among different algorithms. A detailed analysis shows that the quality differ-

ence between our algorithms and the optimal configurations is insignificant.

1.2 Limitation

In this thesis, we use the current version of TMIV in our experiments. It may not be

possible to apply our implementation directly in the future codec. However, our work

shows the potential of optimizing the configuration of the 3D data representation codec by

using machine-learning-based algorithms. Approaches similar to ours are also applicable

to other current or future codecs that suffer from large configuration space.

1.3 Organization

The rest of this article is organized as follows. We survey the literature in Chapter 3.

Chapter 4 presents the TMIV codec. This is followed by the core research problem de-

scribed in Chapter 5. Chapter 6 details the designs of our proposed algorithms. We eval-

uate our algorithms using both objective and subjective metrics in Secs. 7 and 8. Chap-

ter 9 summarizes our findings and discusses the sample usage scenarios of our solution.

Moreover, we collect extra datasets by building a capturing system to further evaluate our

algorithm in Chapter 10. Chapter 11 concludes the thesis.

4

Chapter 2

Background

In this chapter, we introduce the background of our research. We first describe the con-

cepts from 2D video to 360◦ video. After that, various 3D representations that can be

utilized to realize 6DoF interactions are introduced. Besides data representation, we also

introduce the view synthesis technique, which is the essential component for realizing

6DoF interaction by using RGBD videos. Finally, we introduce recent standard activity

related to 6DoF VR.

2.1 From 2D Video Toward 360◦ Video

2D video has been very common in our daily life for many years. Nowadays, video-

related applications are everywhere, e.g., video streaming, conferencing, live streaming,

and gaming. Recently, due to the maturation of the technique of 360◦ video, the applica-

tion of 360◦ videos has started to come to the fore. It allows users to freely rotate their

head to watch videos from different angles, providing a more immersive experience for

users.

To apply 360◦ video to various video applications, there are several problems that

need to be addressed. One of the critical problems is how to reduce the data size of 360◦

video, because 360◦ video contains more information than traditional 2D video. It is hard

to transmit, store, or process 360◦ video if we do not compress it. To solve this problem,

several approaches have been proposed [27, 87, 88]. The most common solution is to

project 360◦ video into 2D video, utilizing a conventional video codec (e.g., h.264 and

h.265) to compress it. There are several projection formats, e.g., EquiRectangular Projec-

tion (ERP), CubeMap Projection (CMP), and pyramid projection. The projection format

affects the performance of the compression and the viewing experience. For instance,

CMP format decreases the data size by 25% compared to ERP format. However, CMP

format provides limited Field-of-View (FoV) for the user. Different projection formats

5

may be chosen according to the scenarios. Another solution focuses on utilizing infor-

mation in 360◦ video to compress it [33, 54, 83, 84]. Specifically, these works calculate

motion vectors on the sphere rather than on the projected 2D plane. In this way, the size

and position of objects on the sphere can be considered during the compression. Li et

al. [54] implemented their approach in an HEVC reference codec to conduct experiments.

The results showed that their approaches achieved a better compression rate compared to

the original HEVC reference codec.

Although 360 provides a more immersive experience compared to 2D video, it still

cannot provide a full immersive experience. Specifically, 360◦ video only records the

information in a single position, which means it can only can provide 3DoF interaction.

Users can rotate their head to see different views, but cannot walk or move around to see

views in other positions. More descriptive 3D representations are required to enable the

truly immersive experience of 6DoF applications.

2.2 3D Representation for Realizing 6DoF Interaction

To achieve 6DoF interaction, 3D data representation is required to represent the infor-

mation from the 3D world. There are various 3D data representations, which can be

classified into: (i) video- and (ii) volumetric-based representations [85]. The video-based

representation, e.g., multi-view RGBD videos and light field video, are videos captured

by cameras from several positions and orientations. The volumetric-based representa-

tion, e.g., 3D point cloud and mesh, are captured by or generated from Lidar and RGBD

cameras. It is composed of geometric components (points, polygons) and a texture com-

ponent. In this section, we introduce four data representations: multi-view RGBD video,

light field video, 3D point cloud, and mesh, and compare their pros and cons in various

aspects.

RGBD Video.
RGBD videos refer to multiple RGB and depth videos captured in different camera

positions with diverse orientations. RGBD videos can be used to support 6DoF video

streaming as follows. For a virtual camera that does not fall on any real camera posi-

tions, clients may synthesize their viewports using the RGBD videos from nearby real

cameras through the warping and blending pipeline. MPEG-I has developed the MPEG

Immersive Video (MIV) standard for realizing 6DoF video streaming with RGBD videos.

While capturing, compressing, streaming, and synthesizing RGBD videos are rather ma-

ture techniques with well-optimized standards and tools, RGBD videos still impose the

following limitations.

• RGBD videos are vulnerable to occlusions. When an area of the viewport is blocked

6

by obstacles in all captured RGBD videos, the resulting synthesized viewport will

contain holes.

• RGBD video cameras need to be carefully placed to avoid too many holes, which

dictates systematic placement algorithms. Besides, when holes appear, some error

concealment, hole filling, or inpainting algorithms are required.

• RGBD videos may not work well with directional lights, especially when the cam-

eras are sparse. In such cases, the synthesized viewports may suffer from artifacts

due to the blending of multiple warped videos with inconsistent lighting conditions.

Light Field Videos

(, !, ")

#$

%

&

(, !, ", ', *, %, t)

(a)

(, !)

(, !, ", #)

(", #)

(b)

Figure 2.1: Two light field video representations with: (a) 7- and (b) 4-dimensional func-
tions.

Light field videos aim to capture all the light rays at a scene, such as in an auditorium

or a baseball park. The most comprehensive light field videos represent light rays using

a 7-dimensional function L(x, y, z, ϕ, θ, , λ, t) [2], where (x, y, z) represents the viewing

position, (θ, ϕ) represents the viewing angles, λ represents the spectrum, and t repre-

sents the timestamp. Such light field videos may be an overkill for some applications

that do not need light rays of: (i) invisible wavelengths or (ii) temporal-domain changes.

Therefore, Marc et al. [55] propose a simplified 4-dimensional function L(x, y, u, v) to

represent light rays that go through the coordinates (x, y) on one plane and then (u, v)

on another plane. Fig. 2.1 shows the difference between the two popular representations

of light field videos. Recently, the MPEG-I group conducted various experiments to ex-

plore codecs for light field videos [61]. They considered an end-to-end system, which

consisted of capturing, formatting, compressing, and displaying components. They also

7

designed common test conditions for standardizing light field video codecs. Capturing

light field videos is inherently difficult because we have to place cameras in too many

positions. The captured setups can be classified into two classes: (i) structured and (ii)

unstructured. Among them, the structured setups [6, 17] can be further classified into

two subclasses: (i) camera array and (ii) microlens camera. Each camera array consists

of dense cameras shooting at different orientations, whereas a compact microlens cam-

era places a microlens array right in front of a regular image sensor to sense light rays

from different directions. The unstructured setups [1] employ mobile cameras to capture

content in many positions with diverse orientations, and then generate light field videos

from the captured videos. Both structured and unstructured setups have their limitations.

The structured setups suffer from higher hardware cost in building, installation, reloca-

tion, and maintenance. However, aggregating the captured videos into a light field video

is easier considering the systematic layouts of the cameras. In contrast, the unstructured

setups rely on good algorithms to generate high-quality light field videos.

(a) (b)

Figure 2.2: The example objects of: (a) point cloud and (b) mesh.

3D Point Cloud
Point cloud is a group of points in the 3D space. Each point consists of position

(x, y, z) and attribute, e.g., color and reflection information. There are two ways to gener-

ate a point cloud. One way is captured by Lidar or other sensors. Another way is generated

from multi-view RGB(D) images. Fig 2.2(a) shows an example of a point cloud object.

Since a point cloud is composed of several independent points, it is easy to be manipulated

or rendered. However, because a point cloud needs enough points to cover the surface of

objects or scenes, the data size of a point cloud is tremendous. To solve this problem,

more and more point cloud compression algorithms have been proposed. For instance,

the MPEG-I group is about to finalize point cloud compression standards [63, 64].

3D Mesh
A mesh is a representation consisting of several points, edges, faces, and textures.

Each point represents a position (x, y, z), and it connects to other points with edges. The

8

point and edge compose the faces, and texture represents the color of the face. Fig. 2.2(b)

shows an example of a mesh object. Meshes are widely used in various applications,

e.g., 3D modeling software, animation, video games, and computer-aided design. Be-

cause of the popularity of meshes, modern GPUs have been designed to support fast and

high-quality rendering of 3D meshes to support their applications. Although meshes are

popular and mature, it is hard for them to represent natural scenes. The raw data from var-

ious sensors, e.g., RGB(D) camera and Lidar, need to be processed by several algorithms

to become a mesh. These processes need a great deal of computing resources, which is

hard to achieve in real-time. The noise from the sensor may also decrease the quality of

the mesh.

Comparison

Table 2.1: Comparisons of 3D Representations

Easy to Large Mature Easy High Fast
Capture Data Codecs to Rendering Rendering

Size Manipulate Quality Speed
Most RGBD Light Field RGBD Point Cloud Light Field Light Field
Least Light Field Meshes Light Field Light Field Point Cloud RGBD

Table 2.1 qualitatively compares the 3D representations for 6DoF video streaming.

We consider the following aspects roughly from the sender to receiver.

• Easy to capture. Light field videos dictate recording all light rays in the scenes,

and thus are the most challenging to capture. RGBD videos can be captured by

consumer-graded RGB(D) cameras, such as smartphone cameras, and thus are the

least challenging to capture.

• Large data size. The largest representation is the light field video, while the small-

est is the 3D mesh.

• Mature codecs. RGBD videos can be compressed using common video codecs,

such as H.264, VP9, and those developed in the future. Therefore, RGBD videos

may leverage the well-optimized video codecs implemented in software or hard-

ware. Although the MPEG-I group has looked into 3D mesh and 3D point cloud

codecs [62], they have not yet proposed any light field video codecs.

• Easy to manipulate. 3D point clouds contain no connectivities, and thus are eas-

ier to manipulate than 3D meshes. Light field videos are the most challenging to

manipulate, because of the sheer amount of light rays that must remain mutually

consistent after manipulation.

9

• High rendering quality. The representation that delivers the highest rendering

quality is light field because of the extensive amount of light rays. On the other

hand, rendered results from 3D point clouds are most vulnerable to holes and

cracks.

• Fast rendering speed. Rendering viewports from light field videos only involve

selecting the required light rays, without heavy computations, which can be done

quickly. In contrast, different from 3D meshes and 3D point clouds, synthesizing

viewports from RGBD videos is not currently supported by commodity hardware

accelerators, and thus takes the longest time.

2.3 View Synthesis

View synthesis is a classic problem in the computer graphic area. Given single or multiple

images or videos, how to render the other view which is not included in the input is an

essential technique for realizing 6DoF interaction by using RGBD Videos.

The related research started in early 1990. Researchers started to study Image-Based

Rendering (IBR) approaches to reduce the computation demand for rendering views from

3D models [12, 13, 57]. They proposed or utilized various IBR methods (e.g., im-

age morphing, view interpolation, and light modeling) to render views from the cap-

tured image instead of the 3D model. In this way, the complex 3D model can be re-

placed by images, and the rendering time can also be independent of the scene com-

plexity. Following these works, several IBR view synthesis approaches started to spring

up [5, 11, 21, 35, 50, 53, 94]. These approaches improve on the original IBR approaches

in different ways. For instance, Gortler et al. [35] proposed a new method to capture and

represent 3D content. They improved on the original light modeling function by reducing

the dimension. Zitnick et al. [94] proposed a method to synthesize a view in a dynamic

scene. They utilized the view interpolation technique to synthesize high-quality views

from multiple videos from different viewpoints. Besides IBR approaches, similar meth-

ods which leverage depth maps have been proposed to realize three dimensional television

(3D TV) systems [14, 28, 68, 92]. This kind of approach is called Depth Image Based

Rendering (DIBR). Comparing to IBR approaches, DIBR requires both color and depth

images/videos to synthesize the view. It maps the pixels of multiple images/videos into

3D space by utilizing the depth value of each pixel, and projecting the pixel’s value into

the synthesized view. Then, the pixel values from different views are blended together

to produce the final results. Note that some of the IBR approaches also utilize depth in-

formation to synthesize the view. However, IBR approaches usually estimate the depth

information from input images/videos. DIBR assume that depth maps are provided. It

10

can be captured from depth sensors by estimating from a depth estimation algorithm.

In recent years, machine learning techniques have started to be applied in view syn-

thesis. The neural network model is used to replace the component of the traditional

IBR or DIBR approaches. For instance, Kalantari et al. [49] used a Convolutional Neural

Network (CNN) model to estimate depth and color information in the synthesis process.

Hedman et al. [38] used CNN to determine the weight of pixel blending with the best out-

put quality. Besides, the neural network model have also been used to convert the input to

new data representations for view synthesis [26, 59, 90]. In these representations, Muti-

Plane Images (MPI) is one of the most popular, which was proposed by Zhou et al. [90].

They trained a neural network model to convert input videos into MPI, which is composed

of multiple RGBA layers with different depths. Once MPI is produced, it can be utilized

to synthesize a range of views. Since MPI can produce high-quality synthesized results

and does not need to retrain the model according to the scene, there are several works

that designed more powerful view synthesis approaches based on MPI [4, 58, 82, 86].

These works focus on improving different aspects, e.g., rendering time, light reflection,

practicality, and robustness.

2.4 Recent Standard Activity

Since VR is becoming increasingly popular, how to make content run on applications

or devices from different manufacturers and companies has become a critical problem.

MPEG started to focus on developing standards for VR in 2015. To date, they have

defined several standards for various purposes [62].

The first VR standard proposed by MPEG is the Omnidirectional MediA Format

(OMAF) [20, 37], which is a standard for 360◦ video. MPEG released the first version of

OMAF in 2017, and the second version was released in 2020. For the first version, OMAF

defines the coordinate system, projection, encoding, and encapsulation format. OMAF

uses a right-hand coordinate system, and only includes rotation since it only considers

a single 360◦ video. Two kinds of 360◦ video projection are considered in OMAF: (i)

EquiRectangular Projection (ERP) and (ii) CubeMap projection (CMP). Besides the pro-

jection, OMAF also supports fisheye video. For the encoding and encapsulation format,

OMAF defines its file format based on the ISO Base Media File Format (ISOBMFF) and

Dynamic Adaptive Streaming over HTTP (DASH), which allows it to support viewport-

dependent streaming and tile streaming to stream 360◦ video more efficiently. OMAF also

defines three video profiles to provide different encoding settings for different streaming

modes and codecs. The second version of OMAF considers multiple 360◦ videos. It not

only defines the rotation of the coordinate system, but also defines position coordinates

11

for several viewpoints. In this way, OMAF can support user switching between various

360◦ videos to see what they are interested in.

Besides OMAF, MPEG has also developed other standards for 3D data representa-

tions in order to support the immersive application for 6DoF interaction. These standards

mainly focus on two data representations: 3D point cloud, and RGBD videos. For point

cloud, MPEG defines Video-based Point Cloud Compression (V-PCC) and Geometry-

based Point Cloud Compression (G-PCC) [36]. V-PCC and G-PCC utilize different ap-

proaches to compress a point cloud. V-PCC employs the projection technique to project

a 3D point cloud to 2D video, and compresses 2D video by using a conventional video

codec, e.g., H.264 and H.265. On the other hand, G-PCC compresses the point cloud

by using a geometric manner, such as voxelization and octree coding, to encode the ge-

ometric information. It also uses several hierarchical prediction algorithms to encode

the attributes of the point cloud. For RGBD videos, MPEG defined the MPEG Immersive

Video (MIV) standard to compress multi-view RGB-D videos [9]. MIV removes the inter-

view redundancy in RGB-D videos, and compresses the remaining area by employing a

conventional video codec.

12

Chapter 3

Related Work

We first introduce representative immersive video streaming systems. This is followed by

several NN algorithms for optimizing video streaming and coding.

3.1 Immersive Video Streaming

Prior studies on 3DoF+ and 6DoF VR can be classified into two groups: (i) discrete

source cameras, where users can only jump to the predefined camera positions and (ii)

continuous target (synthesized) cameras, where users can freely move within the virtual

worlds. The former group is also referred to as Multi-ViewPoint (MVP) 360◦ videos in the

literature. For example, Corbillon et al. [18] proposed an MVP 360◦ video streaming sys-

tem, and conducted some experiments to compare different design choices and streaming

strategies. Pang et al. [69] studied MVP 360◦ interactive video systems. They employed

multi-modal learning and DRL to make streaming decisions for high visual quality and

low response time.

The latter group is also referred to as 3DoF+/6DoF VR in research communities and

standardization bodies. Huang et al. [44] proposed to support 6DoF VR using a single

360◦ camera through image-based warping. Hosseini et al. [40] designed a streaming

framework to maximize the overall quality of streamed videos under limited bandwidth

in 3D tele-immersion systems. They consider a human visual system when designing the

adaptive streaming mechanisms to prioritize video streams. Ghosh et al. [34] designed a

rate adaptation algorithm for 360◦ tiled video streaming. They formulated the problem as

the QoE optimization problem under a given bandwidth limitation. Besides, MPEG has

been developing the TMIV reference codec [73, 74, 75] as a 3DoF+ video codec. There

are some immersive video streaming papers have adopted TMIV in their experiments.

Jeong et al. [46] proposed a tiled-based method to optimize immersive video streaming.

They employed TMIV as the 6DoF immersive video codec, and HEVC as the 2D codec

13

to evaluate their tile selection algorithm. In our work, we solve the configuration opti-

mization problem in the TMIV, which was not well studied previously.

Different view synthesis approaches using multiple source views have been presented

in the literature [5, 13, 49, 67, 81, 91]. View synthesis is the crux to support continuous

target cameras based on the positions and orientations of users. Our configuration opti-

mization algorithms are also applicable to view synthesis approaches other than TMIV.

Another key component affecting the view synthesis quality is the view selector, which

selects a subset of source views for synthesizing target views. To the best of our knowl-

edge, the existing view selection approaches are heuristic. For example, Dziembowski et

al. [23] solved the problem based on source and target camera parameters. In contrast, our

proposed algorithms consider the content of source views for optimal synthesized video

quality.

3.2 Machine Learning Algorithms for Optimizing Video

Streaming

Machine learning models have been applied to: (i) optimize video streaming over the In-

ternet and (ii) determine video coding parameters. For video streaming optimization, the

studies can be further classified into two groups. First, optimizing real-time interactive

streaming over RTP and UDP has been studied [15, 45]. For instance, Huang et al. [45]

proposed a rate control algorithm based on DRL. Their evaluation results revealed that

the proposed algorithm achieves high video quality, low sending bitrate, and low latency.

Second, optimizing on-demand video streaming over DASH (Dynamic Adaptive Stream-

ing over HTTP) has also been considered [3, 16, 31, 39, 56]. For example, Chiariotti et

al. [16] proposed an NN based Adaptive BitRate (ABR) algorithm [7] for DASH clients.

They formulated the problem using the Markov Decision Process (MDP) and employed

a Reinforcement Learning (RL) algorithm to solve it. Along the same lines, Gadaleta et

al. [31] also proposed an RL-based DASH ABR algorithm using deep Q-learning.

A few recent works have extended the above studies to support 360◦ video stream-

ing [30, 47, 69, 89], where videos are divided into tiles [27]. Pang et al. [69] employed

multimodal learning that capitalizes on different feature types. They trained their model

by using the video quality as the reward and the latency as the penalty. Fu et al. [30] also

proposed an RL-based ABR algorithm for 360◦ tiled video streaming. Their evaluation

results demonstrated that their approach improved the overall QoE. These NN algorithms

focus on the adaptation to the available bandwidth, while our proposed algorithms com-

pute the TMIV configurations.

14

3.3 Machine Learning Algorithms for Optimizing Video

Coding

For selecting video coding parameters, NN algorithms have also been adopted. Costero et

al. [19] and Hu et al. [43] took NN approaches to determine the quantization parameters

of H.265/HEVC [77]. Particularly, Hu et al. [43] proposed an RL algorithm to determine

the quantization parameters. They trained the agent using the Q-learning algorithm, while

considering a wide spectrum of features. Costero et al. [19] applied an RL algorithm to

adjust the quantization parameters in multiple-user scenarios. These studies [19, 42, 43]

are similar to our configuration optimization problem, as they all strive to find the optimal

coding parameters. However, none of them consider immersive video codecs, which often

have a huge configuration space. To the best of our knowledge, this is the first study that

focuses on the codec optimization problem for the immersive video codecs, particularly

TMIV. Hence, we cannot compare our algorithms against others in the literature.

15

Chapter 4

Test Model of Immersive Video

In this chapter, we provide a high-level overview of the TMIV codec [74]1.

4.1 Components

TMIV has two main entities: the encoder and decoder, which are shown in Fig. 4.1. The

TMIV encoder inputs multiple source views and outputs a bitstream composed of the

compressed texture, depth, and camera parameters. The TMIV decoder inputs the bit-

stream and outputs a target view. The TMIV encoder contains the following components:

• View optimizer chooses one or multiple views from the source views as basic

views based on the coverage of each view. All other source views are referred to as

additional views.

• The atlas constructor analyzes the basic and additional views, and removes re-

dundant (duplicated) regions from the additional views based on the basic views.

It then packs the basic views and the remaining additional views into rectangular

video frames, which are called atlases.

• The video encoder and metadata composer encode the atlas and the camera pa-

rameters of the source views into a bitstream for streaming. The camera parameters

include the position and orientation of a given camera.

The TMIV decoder contains the following components:

• The video decoder and metadata parser receive the bitstream and then decode

the atlas and source camera parameters.

1The version of TMIV we used in this thesis is TMIV v3.0.

16

• The occupancy map generator generates the occupancy map for each atlas. The

occupancy map indicates the pixels that carry useful information. Then, the map is

fed to the synthesizer.

• The view selector reconstructs the source views from the atlas and chooses views

for synthesis according to geometric metadata described by camera parameters.

Particularly, the selector gives the views that are closer to the target view higher

priority. The source view selection follows a manually-composed configuration

file.

• The synthesizer generates the target views using the source views selected by

the view selector. Specifically, it generates multiple synthesized views in multi-

ple passes (one view per pass) and merges the synthesized views at the end for

better video quality.

• The inpainter fills up the pixels that have no information. It uses the neighboring

pixels to interpolate/extrapolate the missing pixels.

View Optimizer

Atlas Constructor

Occupancy Map

Generator

View

Selector

Inpainter

Decoder

Viewport Position

& Orientation

Encoder

Source

Views (T+D)

Source Camera

Parameters List

Video

Decoder

Metadata

ParserVideo

Encoder

Metadata

Composer

Synthesizer

Bitstream Bitstream

Figure 4.1: Overview of the TMIV codec.

Figure 4.2: Operations of the view selector in TMIV [74].

17

We note that the above lists are by no means exhaustive. The TMIV codec contains

other components for various functionalities, e.g., multiplexing multiple views into a sin-

gle bitstream, which are not directly related to the codec configurations. These compo-

nents are not discussed for brevity; interested readers are referred to the standard docu-

ment [66, 74] for more details.

4.2 Workflow

TMIV can be invoked in two modes: (i) MIV and (ii) MIV view. The MIV mode runs

all components in both the encoder and decoder. The MIV view mode only executes

the components in the decoder, i.e., the atlas constructor does not remove the redundancy

across source views before packing them. The MIV mode is more suitable when selecting

the codec configurations or evaluating the performance of both the encoder and decoder.

In contrast, the MIV view mode is more suitable when only evaluating the decoder. To

evaluate the TMIV codec under realistic usage scenarios, we consider the MIV mode in

this thesis. Our methodology can be applied to the MIV view mode as well.

Fig. 4.2 presents the operations of the view selector and the view synthesizer in the

TMIV decoder, along with a sample configuration file. The view selector takes the pa-

rameters of the source and target cameras as inputs to calculate the geometric difference

between any pair of source and target views. It then selects the views closest to the target

views. After selecting a few source views for the current pass, the synthesizer synthesizes

the target view from the selected views. This process is repeated forN passes, whereN is

specified by the NumberOfPasses value in the configuration file. The NumberOfViewsPer-

Pass of pass n (n = 1, 2, . . . , N) is denoted by mn, which is a positive integer. We note

that the TMIV codec recommends having more views in the later passes, i.e., rn′ > mn,

∀n′ > n. In this way, the pixels with no information in earlier passes may be filled up

by some later passes [71]. After finishing all passes, the view synthesizer merges the

synthesized views to obtain the final target view.

4.3 Limitations

We conducted several pilot tests and identified a few key limitations of the TMIV codec [74,

74, 75]. We adopted Museum [48] as the test sequence, which consists of 24 source views

at 2048×2048 resolution. We selected seven source views to synthesize another view fol-

lowing the default TMIV parameters. Particularly, we synthesized a random video frame

using different configurations. The reconstructed video frame was compared against the

ground truth to get the video quality in WS-PSNR (Weighted-to-Spherically-Uniform

18

0 2 4 6 8
200

400

600

800

1000

1200

S
o

u
rc

e
V

ie
w

 S
iz

e
(K

B
)

Figure 4.3: The numbers of source views and their corresponding encoding size.

60 80 100 120 140 160

20

25

30

35

1V~3V

4V

5V 6V

7V

Decoding

(a)

200 300 400 500 600 700

30.8

30.9

31

31.1

31.2

31.3

1P 3P 7P

Decoding

(b)

Figure 4.4: The decoding time and the video quality for synthesizing one target view with
different configurations: (a) different numbers of source views and (b) different numbers
of passes.

PSNR) [78]2, which quantifies the distortion of the reconstructed video in the spherical

domain. We also recorded the decoding time3 on an Intel i9 workstation at 3.5 GHz and

the per-frame source view size, which is the sum of the size of all selected source views.

We report the sample results from view #21.

We conducted two experiments. First, we studied the implications of different num-

bers of source views. We set seven one-pass configuration files, which included 1, 2, . . . ,

and 7 source views, respectively. Fig. 4.3 reveals the per-frame source view size encoded

by the H.265/HEVC codec [77] with the default coding parameters. This result shows

that the source view size grows along with the number of source views4. Therefore, the

2We note that alternative quality metrics can be found in the literature, such as MPEG Comment Test
Condition [48], which can also be adopted by our methodology. That is, researchers and engineers who
prefer to use another quality metric or a weighted sum of multiple quality metrics are free to do so, because
our purpose algorithms are general and can work with different quality metrics.

3The decoding time reported in this thesis is the CPU time.
4When the number of views is increased from 5 to 6, one more basic view with higher coverage of pixels

is selected. Hence, more redundant portions of source views are removed, which leads to a smaller source
view size. This, however, does not affect the overall trend.

19

network bandwidth consumption increases when selecting more source views. In fact, ex-

cessive bandwidth consumption is observed when streaming 7 source views: a total size

of 1.1 MB per frame, or a bitrate of 264 Mbps at 30 FPS (frame per second) based on

paper-and-pencil calculations. We also plot the relation between video quality and decod-

ing time with 1–7 source views (V) in Fig. 4.4(a). We observe two trends: (i) the video

quality grows with more source views, and (ii) the video quality dramatically jumps from

3 to 4 views, and then from 6 to 7 views. The two jumps are due to the two basic views

that are selected by the view selector. In particular, once the view selector selects more

basic views, the video quality increases because the basic views cover more pixels and

are transmitted in their entirety. In summary, these experiments reveal the importance of

carefully choosing the number of source views.

Next, we study the implications of different numbers of passes (P). Particularly, we

use seven source views to synthesize the target view and vary the number of passes among

1, 3 and 7. In the three-pass test, the first pass contains a source view and the second and

third passes contain four and seven source views, respectively. In the seven-pass test, the

first pass contains a source view and every pass adds one more source view. Fig. 4.4(b)

reports the relationship between the video quality and decoding time. As the figure shows,

the decoding time and the number of passes are positively correlated because the decoding

time increases as the involved source views increase. However, increasing the number of

passes without adding more source views does not significantly increase the video quality.

These experiments reveal the importance of carefully choosing the number of passes.

We conclude that TMIV configuration files need to be intelligently prepared and dy-

namically adapted to strive for the best tradeoff among:

• The video quality of the synthesized target views, which highly depends on the

number of the selected source views.

• The decoding time, which increases when more source views are selected for view

synthesis.

• The network bandwidth consumption, which highly depends on the number of

selected source views that are streamed to the decoder side.

We aimed to solve the above configuration optimization problem by introducing a new

component, a configuration optimizer, to find the optimal configuration for the TMIV

codec, as presented in the rest of this thesis.

20

Chapter 5

The Configuration Optimization
Problem

In this chapter, we first define the configuration optimization problem. We then place the

configuration optimizer algorithms in the big picture.

5.1 Problem Statement

Problem (Configuration Optimization). We are given: (i) V source views, where each

view v (v = 1, 2, . . . , V) consists of texture (Tv) and depth (Dv) and (ii) V corresponding

source camera parameters, where each camera of view v is described by position (Pv) and

orientation (Ov). We consider users with diverse and changing target views described by

a time-series of target camera parameters (PT and OT). Find the optimal f ∗ from all F

possible TMIV configurations to maximize a user-defined utility function U(·). That is:

f ∗ = argmaxf∈F U(f), where the utility function U(·) may depend on several factors,

including but not limited to video quality, decoding time, and bandwidth consumption.

We strive to make the above problem as general as possible. First, we adopt a con-

figuration template to specify the search space of all F possible configurations. The con-

figuration template defines the adjustable parameters with feasible ranges. For a concrete

discussion, we focus on two essential parameters of TMIV: (i) the number of passes N

and (ii) the number of views per pass mn, n = 1, 2, . . . , N ; other parameters can also be

added to the configuration templates if needed. Second, the utility function U(·) can be

defined for different usage scenarios. For instance, video quality may dominate the view-

ing experience in high-end systems1, while longer decoding time could negatively affect

1High-end systems, such as virtual tours in museums, aim to maximize the video quality to provide a
truly immersive experience for users.

21

the frame rate on consumer-grade systems2. Therefore, we decided to support arbitrary

utility functions without assuming any mathematical properties. For concrete discussion,

we consider a utility function that is a decreasing function of the decoding time and an

increasing function of the video quality. Concretely, we write it as:

U(·) = QT −QJ

YT
, (5.1)

where YT is the decoding time, QT is the video quality of the synthesized target view, and

QJ is the requested video quality. In our experiments, we set QJ to 20 dB in the video

quality (WS-PSNR or PSNR) if not otherwise specified. QJ is essentially the threshold,

which can be derived by server approaches, such as Just-Noticeable-Difference (JND)

quality [32] or some QoE methods [51]. We note that the decoding time is correlated

with the number of source views, where more source views lead to more network traffic.

Hence, our proposed utility function indirectly considers the transmission time and band-

width consumption. Last, we emphasize that Eq. (5.1) is merely a sample utility function

to facilitate our discussions. Other utility functions can be adopted for different usage

scenarios, as our proposed algorithms do not rely on any specific properties of the utility

function.

5.2 The Configuration Optimizer In the Immersive Video

Codec

We illustrate the role of the configuration optimizer in the immersive video codec in

Fig. 5.1. When the user’s head rotations and movements are captured by the HMD sen-

sors, the target camera parameters are estimated and sent to the server side. The proposed

configuration optimizer dynamically computes the configurations based on the received

target camera parameters and sends the optimal configurations to the (local) TMIV en-

coder and the (remote) TMIV decoder. Then, the TMIV encoder selectively sends the

required source views to the TMIV decoder following the configurations, which conserve

the network bandwidth compared to sending all source views (1 in the figure). Based

on the configuration, target camera parameters, and the selected source views, the TMIV

decoder synthesizes the target view (2). Finally, the target view is rendered to the user

(3) based on the optimal configuration. By doing so, the decoding time and the resulting

target view are optimized.

Several system-level decisions are crucial in real usage scenarios, although they are

2Consumer-grade systems, such as commodity HMDs, aim to deliver sufficient frame rates for a basic
viewing experience to users.

22

beyond the scope of this thesis. For example, the execution frequency of the configuration

optimizer may affect the system performance. The choice of the frequency depends on

the degrees of user movement and target usage scenarios. For example, a lower frequency

may be adopted when the user’s positions and orientations change slowly; otherwise, a

higher frequency is preferred. We list some system-level design challenges in Chapter 11

as future tasks.

Configuration

Template

Compression

Components

Video

Encoder

TMIV Encoder

Configuration

Optimizer

Sender
Camera Parameter

Receiver

Internet

Source

View
Source Camera

Parameter

Optimized

Template

Target

Camera

Parameter

Renderer

Video Decoder

TMIV Decoder

HMD

Receiver
Camera Parameter

Sender

Target

Camera

Parameter

Optimal

Target

View

1

2

3

Figure 5.1: The high-level architecture of immersive video streaming systems.

23

Chapter 6

Machine-Learning-Based Configuration
Optimizers

The goal of the configuration optimizer is to find the optimal configuration f ∗ to syn-

thesize the target view with the optimal utility (e.g., Eq. (5.1)). However, solving the

configuration optimization problem is not an easy task because of the potentially huge

configuration space F which depends on the textures, depths, and camera parameters of

the source views (TV , DV , and CV , respectively) and the camera parameters of the target

view (CT).

In this chapter, we treat the configuration optimization problem as: (i) a regression

problem and (ii) a decision making problem, and solve them using two representative NN

algorithms: the CNN and DRL algorithms for predicting a configuration f approximating

the optimal configuration f ∗. Rather than directly predicting (or deciding) how many

views are required in each pass, the proposed algorithms output the number of extra views

required in each pass to ensure that the number of source views increases monotonically

across passes.

𝑇௏, 𝐷୚𝑃୚, 𝑂୚

𝑃୘, 𝑂୘

Diff. Map Gen.

Integrated inputs
256x256x(7+7+(21+21))

Figure 6.1: The preprocessing procedure for generating the inputs of the CNN algorithm.

24

6.1 The input Preprocessing Procedure

The input data of both NN algorithms are composed of TV , DV , CV , and CT . Because the

source views’ texture and depth resolutions (TV and DV) vary dramatically, we resized

both TV andDV to the same resolution of 256×256 for consistency. Although the images

might be slightly distorted because the ordinary resolution of the images is not square, the

relative spatial information is still preserved. Moreover, we converted TV into grayscale

to reduce the input dimensions. We also tried to convert the depth value in DV to real

distance according to the MPEG document [22], but the performance of the resulting

models was no better than the original depth values. We embed the camera parameters,

CV and CT , in the inputs. We note that the camera parameters include camera positions

P and orientations O. Firstly, we subtract CT from CV . Then, the results are fed into

a map generator. The map generator duplicates the results for 256 × 256 times to form

a two-dimensional map with a size of 256 × 256 × (21 + 21). Finally, we integrate the

generated map with the textures and depths of the source views. Fig. 6.1 summarizes the

preprocessing procedure for generating inputs. The resulting inputs contain: (i) two maps

with 256 × 256 × 7 resolution for the texture and depth, respectively; and (ii) two maps

with 256× 256× 21 resolution for the camera positions and orientations, respectively (3

dimensions for each source view).

6.2 Output Post-Processing Procedure

Assume the output of the model is a vectorE, whereE = (e1, e2, ..., eN) andN represents

the number of passes. The required number of views for each pass mn(n = 1, ..., N) is

calculated by

mn =


0, en = 0;

0, rj = 0 and j < n;
n∑

i=1

ei, otherwise.

(6.1)

We setN = 3 in our experiments if not otherwise specified, because optimal configuration

f ∗ tends to use fewer than three passes in our pilot tests.

6.3 The Convolutional Neural Network (CNN) Algorithm

As the configuration f can be seen as a vector composed of positive integers, we can treat

the configuration optimization problem as a regression problem. We then design a CNN

regression algorithm to extract the features and predict the optimal configuration f ∗.

25

25
6x

25
6x

56

32
,7

68

51
2

51
2 N

12
8x

12
8x

12
8

12
8x

12
8x

12
8

64
x6

4x
25

6

64
x6

4x
25

6

32
x3

2x
51

2

32
x3

2x
51

2

16
x1

6x
51

2

16
x1

6x
51

2

8x
8x

51
2

8x
8x

51
2

51
2

CNN-based Regression Model
In

pu
t

Fl
at

te
n

FC
 B

LK

FC
 B

LK

FC
 L

ay
er

8x
8

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

8x
8

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

4x
4

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

4x
4

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

4x
4

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

FC
 B

LK

Figure 6.2: The network architecture of the CNN algorithm. The architecture comprises
a convolutional and a fully-connected part.

Network Architecture. A CNN regression model is adopted to predict how many

extra views should be added for each pass. The detailed network architecture is illustrated

in Fig. 6.2. A convolutional network is used to extract features from the inputs, and a

fully-connected network is used to infer the results from the extracted features. In the

figure, the Conv. BKL represents a convolutional block that comprises a convolutional

layer and a ReLU activation layer sequentially; a FC BKL represents a fully-connected

block that is similar to the Conv. BKL, but the convolutional layer is replaced with a

fully-connected layer. Every rectangle represents a hidden tensor, and the tensor size is

given in the rectangle. We set the stride of the convolutional layers to 2 when the kernel

size is 8 × 8 or 4 × 4 to integrate features without losing information; otherwise, we set

the stride to 1. A sigmoid layer is added at the end of the model to ensure the model

output is bounded. The number of parameters of our CNN model is 38,186,755. After

rounding the output, the results are the required extra views in each pass, represented as

an N dimensional vector.

We adopt Mean Squared Error (MSE) as the loss function to train the CNN regression

model, which can be written as:

lossCNN =
N∑

n=1

(en − e∗n)2, (6.2)

where e∗n is the number of extra views in the pass n, which can be obtained from f ∗.

6.4 The Deep Reinforcement Learning (DRL) Algorithm

To treat the configuration optimization problem as a decision making problem, we start

with the definition of the configuration space.

Configuration Space. The configuration space comprises configuration states and

actions. Fig. 6.3 shows the transition diagram of the configuration space. In the figure,

a circle represents a certain configuration state s = (N,mn, TV , DV , CV , CT), which

corresponds to f in the configuration optimization problem. We omit TV ,DV ,CV , andCT

26

0, ∅

1, 1

1, 2

State 𝑠

Action 𝑎

𝑠∗

2, 1,3

2, 1,2

+0 denotes terminate state

+1

+2

+0

+1

+2

+0

Figure 6.3: The transition diagram of the configuration space. The circles and the triangles
represent states and actions, respectively.

in the figure for brevity. The first and second elements of the pair in each circle represent

N = |mn| and mn, respectively. The action of the configuration space is defined by the

number of extra views to reach the next state, which is represented by a triangle in the

figure.

Based on the configuration space, we can reformulate the configuration optimization

problem into a search problem for the optimal state. We note that the optimal state can be

any state in the space except the initial state s0 = (0,Ø). Once the utility value of each

state is estimated, the optimal configuration for synthesizing the target view can readily

be obtained. Unfortunately, calculating the utility value for every state is time-consuming,

and thus is not practical for an immersive video streaming system. To solve this problem,

we adopt DRL to efficiently approximate the utility value for every state. Specifically, a

DRL agent starts at the initial state s0 and chooses the most valuable action according to

its observations to move towards the optimal state s∗.

Network Architecture. Fig. 6.4(a) illustrates our proposed DRL agent. The observa-

tion of the DRL agent comprises mn, TV , DV , CV , and CT . Similar to the preprocessing

procedure described in Sec. 6.1, we additionally extend mn by the map generator and

embed all maps by concatenation. The observations are then fed into the agent network.

The agent network selects the best action based on the gained knowledge from the histor-

ical and current observations. Via the design of the states, the agent either continues to

the next state or stops at the current state (choosing the +0 action). Our experiments end

once the agent stops at a state and the corresponding vectormn is the decision made by the

DRL agent. The detailed architecture of the agent network is illustrated in Fig. 6.4(b). We

intentionally keep the network architecture of the DRL agent similar to the NN algorithm

to make a fair comparison.

Training the DRL Agent. We adopt Deep Q-learning (a.k.a. Deep Q-Network,

DQN) to train the DRL agent so that the trained network can take the most valuable

27

𝑇௏, 𝐷୚

𝑃୚, 𝑂୚

𝑃୘, 𝑂୘

Diff.

Agent

𝑟௡

+1

+2

+0

Map Gen.

Observation
256x256x(14+42+3)

(a)

25
6x

25
6x

59

32
,7

68

51
2

51
2

#s
ou

rc
e

vi
ew

s
+1

12
8x

12
8x

12
8

12
8x

12
8x

12
8

64
x6

4x
25

6

64
x6

4x
25

6

32
x3

2x
51

2

32
x3

2x
51

2

16
x1

6x
51

2

16
x1

6x
51

2

8x
8x

51
2

8x
8x

51
2

51
2

Agent

O
bs

er
va

tio
n

Fl
at

te
n

FC
 B

LK

FC
 B

LK

FC
 L

ay
er

8x
8

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

8x
8

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

4x
4

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

4x
4

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

4x
4

C
on

v.
 B

LK

3x
3

C
on

v.
 B

LK

FC
 B

LK

(b)

Figure 6.4: The proposed DRL algorithm: (a) the agent observes the response of the
environment, integrates the observation, and takes an action based on the observation and
(b) the network architecture of the agent.

action according to the observations. The DQN algorithm can be written as:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, At+1)−Q(St, At)], (6.3)

where St, At are the sets of possible states and actions at step t, Rt+1 is the immediate

reward when performing action a, α is the learning rate, and γ is the discount factor. In our

experiments, the immediate reward is set to be the difference of the utility values between

a state and its immediate followed state, and the discount factor is set to one. Following

the DQN approach, we employ two networks, namely the prediction and target networks

to approximate the Q function. We adopt the following loss function:

lossDRL = (r + γmax
a′

Q(s′, a′;w−
i)−Q(s, a;wi))

2, (6.4)

to update the weights of the prediction and target networks. In this equation,Q(s, a;wi) is

inferred by the prediction network andQ(s′, a′;w−
i) is inferred by the target network. The

target network is updated using the weights of the prediction network every m training

iterations.

28

Table 6.1: Selected MPEG Video Sequences

Sequence Projection Resolution Cameras No. Frames
Classroom ERP 4096x2048 24 300

Hijack ERP 4096x4096 10 300
Museum ERP 2048x2048 15 120
Kitchen PTP 1920x1080 25 97
Painter PTP 2048x1088 16 300

Frog PTP 1920x1080 13 300
Fencing PTP 1920x1080 10 250
Street PTP 1920x1088 9 250

Carpark PTP 1920x1088 9 250
Hall PTP 1920x1088 9 500

Table 6.2: Sample Frames and Training/Testing Sets of Selected ERP Video Sequences

Sequence Frame # No. Views
for Train.

No. Views
for Test.

Classroom 50, 100, 150,
200, 250 3 5

Hijack 20, 40, 60,
80, 100 8 5

Museum 50, 100, 150,
200, 250 17 5

6.5 Training and Testing Datasets

We selected ten video sequences from MPEG [48] for the experiments, which are sum-

marized in Table 6.1. Three of them are in Equirectangular Projection (ERP) [88] and the

other seven are in PerspecTive Projection (PTP). Fig. 6.5 illustrates several sample video

frames from the sequences.

To produce the training and testing sets, the following data processing procedure was

applied. First, we randomly selected seven cameras from each video sequence to serve

as the source views. Then, the TMIV encoder encoded the selected source views and the

corresponding metadata into multiple altases. After that, we adopted the H.265/HEVC

codec to compress/decompress the altases. For the compression process, we set QP to 30.

Finally, the TMIV decoder decoded and rendered the target view with the position and

orientation of a specific target view. We set the number of passes up to three and calcu-

lated the video quality of the target view, decoding time, and utility function values for all

mn combinations to form our training and testing sets. Note that we only took five sample

frames at an equal frame interval from each video sequence for the experiments, because

running all video frames through the TMIV reference software takes a prohibitively long

time. Since we only had three ERP video sequences, we could not further divide them

into the training and testing sets. Nevertheless, we employed different user positions and

orientations in the training and testing sets for fair comparisons. In particular, we selected

29

all the non-source-view cameras as the target views in the training set, and selected ran-

dom camera parameters from MPEG [48] in the testing set. Table 6.2 summarizes the

sampled frames and training/testing sets of the three ERP video sequences. We note that

the orientations of the testing set in the Classroom and Hijack video sequences were set to

zero to match the sample distributions of the camera orientations in the training dataset.

For the PTP video sequences, we used different video sequences, camera positions,

and camera orientations in the training and testing sets. That is, we tested the performance

of our algorithms on totally new, i.e., untrained, video sequences. We selected all the

non-source-view cameras as the target view to generate data. To evaluate the ability of

the proposed model for handling the untrained data, we adopted leave-one-out strategy to

train and evaluate the proposed model. Specifically, we trained seven individual models.

For each model, we assigned six video sequences as the training set and the remaining

one as the testing set.

(a) (b)

(c) (d)

Figure 6.5: Sample video frames from: (a) Classroom (ERP), (b) Museum (ERP), (c)
Painter (PTP), and (d) Kitchen (PTP).

6.6 Training Procedure

We trained the CNN regression model on a workstation with an Intel Xeon E5-2680 v3

CPU, 188 GB RAM, and four NVIDIA GeForce GTX 1080 Ti GPUs. The neural net-

work was implemented in Python 3.7.6 and TensorFlow 1.14.0. We employed the Adam

30

𝑎

Memory 𝑠, 𝑎, 𝑟, 𝑠ᇱ

Training

Configuration
State Space

Observation

Agent

Figure 6.6: The training procedure of the DRL algorithm. We sampled the historical
trajectories from memory to train the DRL agent.

optimizer [52] and set the learning rate at 10−5. The CNN model took about three hours

to converge.

We trained the DRL agent on a workstation with an Intel Core i7-6850K CPU, 64

GB RAM, and an NVIDIA GeForce GTX 1080 GPU. The networks were implemented

in Python 3.5.2 and TensorFlow 1.4.0. Adam optimizer [52] was adopted to update the

network, and the learning rate was set to 10−4. Fig. 6.6 illustrates the training procedure

to update the prediction and the target networks. The weights of both networks were

randomly initialized. The agent uses the ϵ-greedy policy to balance the exploitation and

exploration degrees. That is, in each step, the agent chooses an action a: (i) according

to its observation or (ii) randomly. Then, the agent takes action a to reach the next state

s′. The trajectory—consisting of the current state s, the selected action a, the immediate

reward R, and the next state s′—of the agent is stored in memory for training the predic-

tion network until 300, 000 steps (that is, 300, 000 trajectories) are stored. The immediate

reward R is set to the utility difference between the state s and the state s′. In our ex-

periments, the memory is a First-In-First-Out (FIFO) queue, and we set the queue size to

1,000. The ϵ of the ϵ-greedy policy was set to 0.5 for the first 100, 000 steps, 0.7 between

100, 000 and 200, 000 steps, and 0.9 at 200, 000+ steps to force the agent to explore the

configuration space more aggressively when the training just started. We trained the pre-

diction network once every ten steps after 1,000 steps. For each training round, a data

batch with 32 trajectories was randomly sampled from the memory. The target network

was updated once again when the prediction network was trained 500 times. The DRL

model took about two days to converge.

31

Chapter 7

Objective Evaluations

In this chapter, we conduct objective experiments to evaluate the proposed configuration

optimization algorithms.

7.1 Experiment Setup

We ran the experiments on a workstation with an Intel Core i9 CPU at 3.5 GHz and 32

GB RAM. We install the TMIV v3.0 [74] and H.265/HEVC [60] reference software on it.

We implemented our proposed algorithms in Python to generate configurations for TMIV.

We introduce two baselines for comparison:

• Default (DEF). The default configurations in TMIV [74] represent the current

practice. If the default configuration requires more than seven views, we set the

requested view to seven. Namely, we set mn = [2, 4, 7] in DEF for consistency of

the experiments.

• Optimal (OPT). We found the optimal configuration (the highest utility) using

exhaustive search as the performance upper bound.

We measured the following performance metrics:

• Number of required views to be streamed for synthesizing the target views, which

directly affects the network bandwidth consumption.

• Video quality in WS-PSNR [78] and PSNR for ERP and PTP videos, respectively.

To calculate the WS-PSNR (or PSNR), for target views that fall on cameras, we

took the source views from those cameras as the full-quality references. Other-

wise, we synthesized the full-quality references using all cameras (as high as 24

cameras) as the input and added only one more camera in each pass (as high as 24

32

passes). Intuitively, this is the most time-consuming configuration that generates

the synthesized target view with the best video quality.

• Decoding time of the TMIV decoder. The TMIV encoder may be executed in

advance for on-demand service or on powerful servers for live services. Hence, we

focus on the decoding time of the TMIV decoder, which imposes direct impacts

on the latency and the frame rate for users. The TMIV reference software does

not synthesize multiple passes in parallel, although the design permits that. To

better understand the decoding time in properly-optimized TMIV software, such

as Fleureau et al. [29], we assume all TMIV passes are concurrently executed and

report the maximal decoding time across all passes as the decoding time.

• Utility of the resulting configuration. Eq. (5.1) indicates the balance between the

video quality and the decoding time. In addition to absolute utility function values,

we also define optimal score as the ratio of the utility achieved by an algorithm

to that of OPT. The utilities of algorithms and OPT are shifted by a value which

is calculated by the smaller value between the minimal utility in each experiment

setup and zero.

• Inference time is the running time for generating a configuration based on proposed

algorithms.

In each experiment, we compared four algorithms: DEF, CNN, DRL, and OPT. To

get statistically meaningful results, we retrained the NN models in the CNN and DRL

algorithms four times. We present the average results from these independently trained

models with 95% confidence intervals whenever applicable. Moreover, to show the ro-

bustness of our algorithms, we conducted experiments to evaluate the performance under

different QJ values in the utility function.

7.2 Qualitative Evaluations

Fig. 7.1 shows several samples of synthesized target views from different algorithms.

As shown in Figs. 7.1(a) and 7.1(b), most of the synthesized target views are visually

similar to one another. There is only a tiny distortion in the result of the CNN and DRL

algorithms. We highlight the distortion part with white rectangles in figures, which are

still not obvious. The CNN and DRL algorithms sometimes generate noticeable distortion

because the number of source views for synthesizing the target view is insufficient. We

show some examples in the ERP dataset in Fig. 7.1(c) and 7.1(d). As the ERP video

sequences cover a larger space than the PTP videos, their optimal configurations are more

challenging to choose.

33

DEF CNN DRL OPT

(a)

DEF CNN DRL OPT

(b)

DEF CNN DRL OPT

(c)

DEF CNN DRL OPT

(d)

Figure 7.1: The synthesized target views with the configurations generated by different
algorithms: (a) Kitchen, (b) and (c) Hijack, and (d) Museum.

7.3 Quantitative Evaluations

The ERP video sequences. We report the results from the ERP video sequences in

Figs. 7.2 and 7.3. The results from the training set are shown in Fig. 7.2. In particular,

Fig. 7.2(a) gives the average number of required views. The DEF algorithm requires more

views to synthesize the target view, because the DEF algorithm opts for more source views

to be conservative. Specifically, the default configurations require seven, five, and seven

views for Classroom, Hijack, and Museum, respectively. The DRL algorithm requires

fewer views than the DEF algorithm, because the agent intelligently stops at configura-

tion states with the most valuable states. The CNN algorithm needs the least number of

views, which however leads to some quality degradation, as shown in Fig. 7.2(b). The

OPT algorithm requires slightly more views than the CNN algorithm. Nonetheless, OPT

34

0

2

4

6

DEF CNN DRL OPT
Algorithm

A
ve

ra
g

e
 R

e
q

u
ir
e

d
 V

ie
w

s

(a)

0

10

20

30

DEF CNN DRL OPT
Algorithm

A
ve

ra
g

e
 W

S
−

P
S

N
R

 (
d

B
)

(b)

0

50

100

150

DEF CNN DRL OPT
Algorithm

A
ve

ra
g

e
 D

e
c
o

d
in

g
 T

im
e

 (
s
)

(c)

87%86% 95%
0.00

0.25

0.50

0.75

1.00

DEF CNN DRL
Algorithm

O
p

ti
m

a
l
S

c
o

re

(d)

Figure 7.2: The objective results from the training set with ERP video sequences: (a)
number of views, (b) video quality, (c) decoding time, and (d) optimal score.

checks the whole search space, which takes a prohibitively long time. Fig. 7.2(b) reports

WS-PSNR values of the synthesized target views achieved by individual algorithms. This

figure shows that all algorithms, except CNN, achieved similar synthesized video quality.

Fig. 7.2(c) shows the decoding time for synthesizing the target views. We notice that the

absolute values of the decoding time of the unoptimized TMIV reference software are less

important. Therefore, we compare the relative difference among algorithms. We observe

that the decoding time and the number of streamed views are in direct proportion because

more source views means more computations. Next, we present the utility function in

Fig. 7.2(d). The DRL algorithm achieves the highest optimal score, while the CNN al-

gorithm also outperforms the DEF algorithm. Overall, our NN algorithms significantly

outperform the DEF algorithm in the training set and the DRL algorithm performs the

best among all algorithms.

Fig. 7.3 reports the results from the testing set. Fig. 7.3(a) shows the number of re-

quired views, which shows a similar trend as in the training set. Specifically, the DEF

and CNN algorithms streamed the most and the least numbers of views, respectively. Our

CNN algorithm led to small variance, as indicated by its confidence interval. However,

the number of views required by the DRL algorithms were quite diverse. This may be

35

0

2

4

6

DEF CNN DRL OPT
Algorithm

A
ve

ra
g

e
 R

e
q

u
ir
e

d
 V

ie
w

s

(a)

0

10

20

DEF CNN DRL OPT
Algorithm

A
ve

ra
g

e
 W

S
−

P
S

N
R

 (
d

B
)

(b)

0

50

100

150

200

250

DEF CNN DRL OPT
Algorithm

A
ve

ra
g

e
 D

e
c
o

d
in

g
 T

im
e

 (
s
)

(c)

90%94% 96%
0.00

0.25

0.50

0.75

1.00

DEF CNN DRL
Algorithm

O
p

ti
m

a
l
S

c
o

re

(d)

Figure 7.3: The objective results from the testing set with ERP video sequences: (a)
number of views, (b) video quality, (c) decoding time, and (d) optimal score.

attributed to the fact that the DRL agent was more conservative while selecting the views.

Fig. 7.3(b) gives the WS-PSNR values, which reveal that all the considered algorithms

resulted in similar WS-PSNR. Compared to the training set in Fig. 7.2(b), the WS-PSNR

values from the testing set were a few (3.3) dB lower on average, due to the dynamic

camera parameters. We give the decoding time of view synthesizer in Fig. 7.3(c), which

shows the same trend as in Fig. 7.2(c). Fig. 7.3(d) reports the optimal scores. The DRL

algorithm still significantly outperformed the DEF and CNN algorithms. The CNN al-

gorithm suffers from unstable video quality; therefore, its optimal score is slightly lower

than that of the DEF algorithm. Overall, the difference in video quality among the consid-

ered algorithms is insignificant. Our proposed CNN and DRL algorithms require fewer

views than the DEF algorithm. The DRL algorithm has better performance than other

algorithms.

Summarizing the results, with the ERP video sequences, our DRL algorithm per-

formed well for various user positions and orientations. On the other hand, the CNN

algorithm resulted in inferior performance when facing new user positions and orienta-

tions.

PTP video sequences. We report the results from the PTP video sequences in Figs. 7.4

36

0

2

4

6

DEF CNN DRL OPT
Algorithm

A
ve

ra
g
e
 R

e
q
u
ir
e
d
 V

ie
w

s

(a)

0

10

20

30

DEF CNN DRL OPT
Algorithm

A
ve

ra
g
e
 W

S
−

P
S

N
R

 (
d
B

)

(b)

0

2

4

6

DEF CNN DRL OPT
Algorithm

A
ve

ra
g
e
 D

e
c
o
d
in

g
 T

im
e
 (

s
)

(c)

24% 96% 99%
0.00

0.25

0.50

0.75

1.00

DEF CNN DRL
Algorithm

O
p

ti
m

a
l
S

c
o

re

(d)

Figure 7.4: The objective results from the training set with PTP video sequences: (a)
number of views, (b) video quality, (c) decoding time, and (d) optimal score.

and 7.5. The results from the training set are shown in Fig. 7.4. In particular, Fig. 7.4(a)

shows the number of required views, where the DRL and CNN algorithms require fewer

views than the DEF algorithm. They also performed well in video quality as shown

in Fig. 7.4(b), comparable to that of the baselines. In Fig. 7.4(c), the DRL and CNN

algorithms took less decoding time than the DEF algorithm. Last, Fig. 7.4(d) shows that

the DRL and CNN algorithms achieved optimal scores of 99% and 96%, respectively.

Overall, we observe that the performance of the DRL and the CNN algorithm is very close

to OPT. Moreover, they significantly outperformed the DEF algorithm in the training set.

Fig. 7.5 reports the results from the testing set. Similar to Fig. 7.4, the DRL and

CNN algorithms outperformed the DEF algorithm in all aspects. We note that the DRL

algorithm led to a lower optimal score than the CNN algorithm, as shown in Fig. 7.5(d).

In addition, the performance of the DRL algorithm had higher variance compared to the

training set. We suspect that this is because the DRL agent cannot infer the state values

well due to the insufficient explorations. As we know, the performance of RL algorithms

is closely related to the exploration of the state space. Due to the diversity of video

content and the limited number of video sequences, the DRL algorithm had difficulty

predicting the accurate values of unseen states. Nevertheless, once the states were well

37

0

2

4

6

DEF CNN DRL OPT
Algorithm

A
ve

ra
g
e
 R

e
q
u
ir
e
d
 V

ie
w

s

(a)

0

10

20

30

DEF CNN DRL OPT
Algorithm

A
ve

ra
g
e
 W

S
−

P
S

N
R

 (
d
B

)

(b)

0

2

4

6

DEF CNN DRL OPT
Algorithm

A
ve

ra
g
e
 D

e
c
o
d
in

g
 T

im
e
 (

s
)

(c)

24% 94% 81%
0.00

0.25

0.50

0.75

1.00

DEF CNN DRL
Algorithm

O
p

ti
m

a
l
S

c
o

re

(d)

Figure 7.5: The objective results from the testing set with PTP video sequences: (a)
number of views, (b) video quality, (c) decoding time, and (d) optimal score.

explored, the DRL algorithm could generate near-optimal configurations as we showed in

the training datasets. Overall, the CNN and DRL algorithms significantly outperformed

the DEF algorithm, and the performance of DRL shows higher variance in the testing set.

Summarizing the results, with the PTP video sequences, the CNN and DRL algorithms

performed well for various video sequences and user positions and orientations. The CNN

algorithm led to more stable performance with new video sequences.

Inference Time. For the CNN algorithm, the average and standard deviation of the

inference time are 0.037 and 0.002 seconds, respectively. For the DRL algorithm, we

recorded the time of taking actions to reach the optimal state. We computed the aver-

age and standard deviation of the inference time, which are 0.051 and 0.002 seconds,

respectively. The difference is because the CNN algorithm directly generates the TMIV

configurations, while the DRL algorithm takes at least two actions to obtain them. Nev-

ertheless, the time to obtain the optimal configurations by our proposed algorithms is

negligible, which showed their practicality.

38

7.4 Robustness Evaluation Results

Robustness. To understand the robustness of our proposed algorithms, we first consider

the performance under various QJ values without retraining the models1. Specifically,

we vary QJ ∈ {20, 22, 24, 26}, while the original model was trained with QJ = 20.

We report the overall results from all three ERP video sequences and sample the PTP

results from the PoznanStreet video sequence in the following. of the ERP and PTP video

sequences, without retraining, are shown in Table 7.1 as well as Figs. 7.6(a) and 7.6(b),

respectively. The upper half of the table and the figures reveal that our algorithms achieve

similar optimal scores (always above 0.8) under different QJ values in the training and

testing sets. We next retrained our models with different QJ values. The results from

the retrained models are presented in Table 7.1 as well as Figs. 7.6(c) and 7.6(d). The

bottom half of the table and the figures show that the performance of our algorithms is

even better after being retrained with specific QJ values. This is not surprising though.

Summarizing the results, our algorithms work well with different parameter values even

without retraining the model. The algorithms perform even better once the additional

retraining process is done.

Table 7.1: The Optimal Score from ERP Video Sequences for Various QJ Values

QJ

Without Retraining
CNN DRL
Training Testing Training Testing

20 0.86 0.88 0.96 0.97
22 0.85 0.86 0.98 0.98
24 0.83 0.85 0.98 0.98
26 0.82 0.84 0.99 0.99

QJ

With Retraining
CNN DRL
Training Testing Training Testing

20 0.86 0.88 0.96 0.97
22 0.85 0.86 0.85 0.85
24 0.83 0.85 0.97 0.92
26 0.82 0.88 0.98 0.81

1Different from earlier experiments, where we report the average performance across four training ses-
sions (see Sec 7.1), we report the results from the best training session here for meaningful comparison
against the results without retraining.

39

20 22 24 26

0

0.2

0.4

0.6

0.8

1

(a)

20 22 24 26

0

0.2

0.4

0.6

0.8

1

(b)

20 22 24 26

0

0.2

0.4

0.6

0.8

1

(c)

20 22 24 26

0

0.2

0.4

0.6

0.8

1

(d)

Figure 7.6: The optimal scores from PTP video sequences for various QJ values: (a)
training set without retraining, (b) testing set without retraining, (c) training set with re-
training, and (d) testing set with retraining.

40

Chapter 8

Subjective Evaluations

In this chapter, we conduct subjective experiments to evaluate the synthesized target

views resulting from individual algorithms.

8.1 Experiment Setup

Fig. 8.1 shows the environment setup for the subjective evaluations with the ERP video

sequences. We asked each subject to sit on a swivel chair in her/his most comfortable sit-

ting posture. The subject was allowed to freely move her/his upper-body, including her/his

head, during the experiments. The synthesized target views were rendered to the subject

via an HTC VIVE [41] tethered to an Intel i7 workstation running the Unity engine. We

randomly selected six target camera parameters from each video sequence. Among them,

three and three camera parameters were selected from the training and testing sets, re-

spectively. Each experiment session included 18 experiment rounds, and the order of the

experiment rounds was random. In each experiment round, the synthesized target views

generated from the four algorithms (two NN-based algorithms and two baselines) were

shown to the subjects in a random order. For the PTP video sequences, we asked each

subject to observe synthesized target views on a 27” 2D monitor. We randomly chose four

camera parameters from the testing set. Each experiment session included 28 experiment

rounds. The PTP video sequences were the same and the order of the experiment rounds

and target views were also random.

Subjects were asked to carefully observe the shown target views and rank the video

quality of the views. They could switch among the four views until they were confident

with their decisions on the ranking. Once the ranking among the four views was provided

by each subject, it could not be changed. To avoid fatigue, subjects were allowed to

take a short break after each round. All the events in the experiments were recorded. To

41

Work

Figure 8.1: The environment setup for subjective evaluations.

Table 8.1: Basic Statistics of The Sub-
jective Evaluations with ERP Video Se-
quences

DEF CNN DRL OPT
No. Observ.

Round
2.7

(1.7)
3.1

(1.9)
3.1

(2.0)
3.3

(2.2)
No. Time
Observ.

5.2
(3.0)

4.8
(3.1)

5.0
(3.0)

6.3
(5.5)

Table 8.2: The Results from Bradley-Terry
(Top) and Plackett-Luce (Bottom) Models
with ERP Video Sequences

DEF CNN DRL OPT
Coefficient 0.00 -0.10 -0.07 0.08
p-value N/A 0.16 0.30 0.24
Coefficient 0.00 -0.07 -0.05 0.09
p-value N/A 0.45 0.58 0.31

ensure reliability, if the average observation time of each target view was shorter than

two seconds, that subject was considered as an outlier. In our evaluations, we found no

outliers.

8.2 Results and Analysis

ERP video sequences. We recruited 23 subjects from college and graduate students, and

14 of whom were males. Only 11 subjects had previous HMD experience. All subjects

had 20/20 corrected vision or no myopia. The average and standard deviation of their ages

are 21.7 and 2.5 years, respectively. Table 8.1 presents the basic statistics. The numbers in

this table denote the average values, and the numbers in the parentheses denote the stan-

dard deviations, respectively. On average, the subjects observe all target views about three

times before ranking them. Each observation takes more than five seconds. Furthermore,

subjects spend a similar amount of time on target views from different algorithms.

For detailed analysis, we first performed rank-breaking to separate a ranking into six

pairwise comparisons. That is, if a subject ranked views as A>B>C, the ranking was

separated into three pairwise comparisons, A>B, B>C, and A>C. Fig. 8.2 reports the

pairwise comparison matrix. The values at row A and column B denote the proportion

of the subjects that ranked the target view generated by algorithm A as having a higher

42

(227) (210) (193)

(187) (219) (184)

(204) (195) (201)

(221) (230) (213)

55% 51% 47%

45% 53% 44%

49% 47% 49%

53% 56% 51%

DEF

CNN

DRL

OPT

DEF CNN DRL OPT
Algorithm (Loser)

A
lg

o
ri

th
m

 (
W

in
n
e
r)

44

46

48

50

52

54

56
Count (%)

Figure 8.2: The pairwise comparison matrix of the ERP video sequences.

QoE than the view generated by algorithm B. Across all pairs, the proportions ranged

between 44% and 56%. The pairwise comparisons show no obvious superior algorithm.

Furthermore, we interviewed the subjects after they finished the questionnaires. They

reported that the QoE of the four target views was hard to rank. The results validate that

our proposed CNN and DRL algorithms achieve similar perceived video quality, while

conserving network bandwidth and computational power as reported in Chapter 7.

(113) (102) (95)

(85) (105) (88)

(96) (93) (96)

(103) (110) (102)

57% 52% 48%

43% 53% 44%

48% 47% 48%

52% 56% 52%

DEF

CNN

DRL

OPT

DEF CNN DRL OPT
Algorithm (Loser)

A
lg

o
ri

th
m

 (
W

in
n

e
r)

44

48

52

56

Count (%)

(a)

(114) (108) (98)

(102) (114) (96)

(108) (102) (105)

(118) (120) (111)

53% 50% 45%

47% 53% 44%

50% 47% 49%

55% 56% 51%

DEF

CNN

DRL

OPT

DEF CNN DRL OPT
Algorithm (Loser)

A
lg

o
ri

th
m

 (
W

in
n

e
r)

44

46

48

50

52

54

56
Count (%)

(b)

Figure 8.3: The pairwise comparison matrices of: (a) experienced and (b) non-
experienced subjects.

Next, we modeled the pairwise comparisons and the ranking results using the Bradley-

Terry [10] and Plackett-Luce [70] models. According to the coefficients of the modeled

results, we explored the QoE among the investigated algorithms. Table 8.2 gives the mod-

eled results of the Bradley-Terry and Plackett-Luce models. The estimated coefficients of

both models ranged between -0.1 to 0.09, and the corresponding p-values of the coef-

43

ficients were greater than 0.15. That is, there was no significant superior relationship

among the investigated algorithms. We further explored the probability that each algo-

rithm was ranked first by the Plackett-Luce model. The probability was 0.25, 0.24, 0.24,

and 0.27 for the DEF, the CNN, the DRL, and the OPT algorithms, respectively. The

results confirm that all the algorithms delivered similar QoE to subjects.

Last, we separated the subjects into two groups: experienced and non-experienced

subjects. The pairwise comparison matrices are shown in Fig. 8.3. We also ran the results

through the Bradley-Terry and Plackett-Luce models, and observed no significance among

the investigated algorithms in any group.

Table 8.3: Basic Statistics of the Subjective
Evaluations with PTP Video Sequences

DEF CNN DRL OPT
No. Observ.

Round
11.8
(9.8)

13.9
(12.5)

12.5
(11.9)

14.5
(13.6)

No. Time
Observ.

0.88
(0.44)

0.85
(0.47)

0.89
(0.55)

1.22
(1.37)

Table 8.4: The Results from Bradley-Terry
(Top) and Plackett-Luce (Bottom) Models
for the PTP Video Sequences

DEF CNN DRL OPT
Coefficient 0.00 -0.003 0.04 0.10
p-value N/A 0.96 0.52 0.06
Coefficient 0.00 0.07 0.02 0.16
p-value N/A 0.34 0.76 0.02

(314) (327) (303)

(330) (317) (295)

(317) (327) (323)

(341) (349) (321)

49% 51% 47%

51% 49% 46%

49% 51% 50%

53% 54% 50%

DEF

CNN

DRL

OPT

DEF CNN DRL OPT
Algorithm (Loser)

A
lg

o
ri

th
m

 (
W

in
n

e
r)

46

48

50

52

54
Count (%)

Figure 8.4: The pairwise comparison matrix of the PTP video sequences.

PTP video sequences. We recruited 23 subjects from college and graduate students,

and 15 of whom were male. All subjects had 20/20 corrected vision or no myopia. The

average and standard deviation of the subjects’ ages are 22.13 and 2.12 years, respectively.

Table 8.3 presents the basic statistics. On average, the subjects observed all target views

more than ten times before ranking them. Each observation took about 1 second. This

indicates that difference between the synthesized target views was not obvious, as subjects

needed to switch among them for ranking. The same is true for the ERP video sequences;

the subjects did not spend significant time on target views from any specific algorithm.

Note that the observation and switch times for the PTP video sequences are higher than

44

those for the ERP video sequences. This may be attributed to the fact that subjects could

switch the video frames on the 2D display without rotating their heads.

Fig. 8.4 reports the pairwise comparison matrix. Across all pairs, the proportions

ranged between 46% and 54%. The pairwise comparisons showed no obvious superior

algorithm. The results for the PTP video sequences are the same, most subjects reflected

that it was hard to rank the quality of the four target views because they were too similar.

Table 8.4 gives the modeled results of the Bradley-Terry and Plackett-Luce models.

The estimated coefficient of both models ranges between -0.003 to 0.16, and the differ-

ence between the DEF, the CNN, and the DRL algorithms are insignificant. Although the

OPT algorithm is statistically superior to the DEF algorithm, the difference in the quality

of these two algorithms is minor and can be neglected. We further explored the proba-

bility that each algorithm was ranked first by the Plackett-Luce model. The probability

is 0.23, 0.25, 0.24, and 0.28 for the DEF, the CNN, the DRL, and the OPT algorithms,

respectively. The results confirm that all the algorithms delivered similar QoE to subjects.

45

Chapter 9

Summary of Our Findings

Table 9.1: Summary of Recommendation

Type Dataset Rec. Compared to DEF
No.

of Views
Video

Quality
Decoding

Time
Utility
Value

ERP Training (Seen Camera Parameters) DRL 79% 100% 89% 9%
Testing (New Camera Parameters) DRL 79% 101% 100% 2%

PTP
Training (Seen Video Sequences
and Camera Parameters) DRL 23% 98% 22% 75%

Testing (New Video Sequences
and Camera Parameters) CNN 24% 98% 23% 70%

Time

Deployment

Server

DRL Model

New Camera

Parameters Coming

DRL Model

Retrain DRL Model

New DRL

Model

Deploy

New Model

Training

Server
2

21

1

(a)

Retrain

CNN Model
Time

DRL

Model
CNN Model

Retrain

DRL Model

New DRL

ModelDeployment

Server

Training

Server

New CNN

Model

…
1 2 3

New Video Sequences/

Camera Parameters Coming

Deploy New

DRL Model
1

Deploy New

CNN Model
2 3

(b)

Figure 9.1: Usage scenarios of our proposed algorithms for: (a) ERP video and (b) PTP
video sequences.

Our evaluations reveal that our algorithms require fewer source views and fewer com-

putational resources to deliver comparable video quality compared to the baseline algo-

46

rithms. Table 9.1 depicts our recommendation and performance improvement in different

settings. We chose the recommended algorithms according to their utility values. For ERP

video sequences, we suggest using DRL on both the training and testing sets. It achieves

9% and 2% improvement on the utility values compared with the DEF algorithm, respec-

tively. For PTP video sequences, we suggest using DRL on the training set, and using

CNN on the testing set. The DRL algorithm achieves 75% improvement on utility value,

and the CNN algorithm achieves 70% improvement on utility value. Although our algo-

rithms may lead to a minor drop in video quality, it can reduce the number of views and

decoding time significantly.

Our proposed algorithms can be adopted in larger immersive video streaming services

deployed in the future. Fig. 9.1 shows a sample scenario: an Over-The-Top (OTT) service

for immersive videos. For ERP video sequences in Fig. 9.1(a), the service provider can

train and deploy the DRL algorithm to reduce the bandwidth and computational resource

consumption. For PTP video sequences in Fig. 9.1(b), the DRL algorithm can be used

once all video sequences have been considered in the previous training phase. When

new immersive video sequences arrive, the CNN model can be applied to achieve better

performance on these new video sequences and camera parameters. At the same time, the

CNN and DRL models start to be retrained on a training server. The new CNN and DRL

models are deployed whenever they are ready. Note that the DRL model takes longer to

be trained.

47

Chapter 10

Use Case: Real Estate Virtual Tour

Besides conducting experiments on datasets from MPEG, we also evaluated the perfor-

mance of our algorithms in real applications. In this chapter, we apply our algorithms in

the application of real estate virtual tours, and compare the performance of our algorithms

and the baseline.

10.1 Usage Scenario

Capture Video

Sequences from Scene

TMIV

Encoder

Video

Encoder

Metadata

atlases

Video sequences

and camera parameter

Storage or

Transmission

Video

Decoder TMIV

Decoder

Metadata

atlases

user's

pose

user's

viewport

Provide 6DoF

Virtual Tour Experience

Figure 10.1: The usage scenario of a real-estate virtual tour.

We adopt real-estate as a use case, where HMD viewers can remotely walk around a

house on the market; they can also visit the house at different times, e.g., to check if a

room may suffer from excessive sun exposure in the late afternoon. Fig. 10.1 illustrates

the usage scenario. First, several cameras capture video from various positions and ro-

tations in a real-estate scene. The video sequence is compressed by TMIV encoder and

video encoder, and is sent to a remote client or stored in the storage device. After that,

the compressed video sequence is decoded by the video decoder and TMIV decoder. The

48

view synthesizer in the TMIV decoder renders the user’s viewport according to the user’s

position and orientation to provide a 6DoF virtual tour experience.

10.2 System Overview

Capture Video Sequences
Configuration

Optimizer

TMIV

Encoder

TMIV

Decoder

Video

Encoder

Video

Decoder

User Trace

Optimal

Configuration
Optimal

Configuration

Target View

Texture/Depth video and

camera parameter

Texture/Depth video and

camera parameter

atlases

Metadata

Figure 10.2: System overview of our implementation.

Fig. 10.2 shows the overview of our implementation for experiments. For captur-

ing video sequences, we implemented a system based on Airsim [76] to capture video

sequences from real-estate scenes. Airsim is a drone simulator based on Unreal En-

gine [24], which allows the user to create a virtual drone or vehicle with cameras in

virtual scenes. After capturing video sequences, our configuration optimizer takes video

sequences and camera parameters of source views and the target view as the inputs, and

outputs the optimal configuration to TMIV codec. Finally, we ran TMIV and video codec

to compress/de-compress the video sequences with configuration generated by the opti-

mizer, and generated the target view according to the user trace.

10.3 Data Collection from the Photo-Realistic Simulator

Capturing high-quality video sequences and ground truth is not an easy task. In a real

scene, multiple cameras have to be placed in various positions of the scene to capture

RGB-D information, which is expensive and time-consuming. On the other hand, captur-

ing video sequences from a virtual scene is relatively easier. It requires placing multiple

virtual cameras by setting the camera parameters of each camera.

To capture video sequences from the virtual scene, 3D creation software and a game

engine are utilized. Most 3D creation software already has an entire 3D pipeline (e.g.,

modeling, animation, and rendering), which can save much effort for implementing basic

functions. For instance, some video sequences provided by MPEG [48] utilize blender [8],

which is an open-source 3D creation software. Other similar software can also be utilized

to support capturing. In our implementation, we chose Airsim in our system because of

49

the following advantages: (i) Airsim provides Python API and documentation to help us

build the system more easily. (ii) Airsim is a drone simulator based on Unreal Engine,

which can simulate real environments physically. It is helpful when we want to conduct

experiments considered real-world situations. (iii) For future experiments, how to stream

sensor data from the capturing device to the remote server/client is a critical problem. Our

implementation of Airsim can be applied to AirsimN [80], which is a network simulator

for Airsim. With AirsimN, we can conduct experiments considered the network-related

problem.

In our system, we use the computer vision mode of Airsim, capturing RGB and depth

images by setting the camera parameters of the virtual cameras. We set the camera posi-

tion and rotation, image resolution, and Field-of-View (FoV) according to the experiment

setup, and set other parameters as the default value. After capturing data from Airsim,

we carried out the following procedure to ensure that the data could be utilized by the

MIV codec: (i) We calculated the focal length (xF , yF) and principal point (xP , yP) for

the MIV codec from resolution and FoV, where xF = yF = width/(2 ∗ tan(FoV/2) and

xP = width/2, yP = height/2. (ii) Because the coordinate systems of Airsim and MIV

are different1, we converted the coordinate of the data from Airsim to the MIV coordinate

system by inverting y, z, pitch, and yaw. (iii) The format of the depth value required

by the MIV codec is normalized disparity format [72]. To meet the requirement of the

MIV codec, we captured the depth value by using the DepthPlanar format in Airsim,

and converted the depth value by using the following equation to normalize the disparity

format:

v =

1
Z
− 1

Zfar

1
Znear

− 1
Zfar

× vmax (10.1)

where v is the depth value in the normalized disparity format, Z is the depth value cap-

tured from Airsim, Zfar and Znear are the maximal and minimal depth values captured

from Airsim, and vmax is the maximal binary value (65535 in case of 16-bits depth maps).

Fig 10.3 shows the sample frame of capturing results. Our system can produce video se-

quences by capturing photo-realistic textures and accurate depth and can generate meta-

data needed by the MIV codec.

10.4 Experiment Setup

We captured source views from five real-estate scenes from Unreal Engine marketplace [25].

Fig. 10.3 shows sample screen-shots from the scenes. For each scene, we manually chose

1Airsim adopts the NED coordinate system, where +X is North, +Y is East and +Z is Down. MIV
adopts the OMAF coordinate system, where +X is forward, +Y is left, +Z is up.

50

(a) (b)

(c) (d) (e)

Figure 10.3: Sample screen-shots from: (a) ArchVizInterior, (b) XoioBerlinFlat, (c)
LightroomInteriorDayLight, (d) RealisticRendering, and (e) office.

a relatively representative direction which is supposed to have diverse features as our

shooting target, and we placed 7 cameras with fixed camera placement, as shown in

Fig 10.4. The resolution and FoV of the camera is 1024x1024 and 90◦, respectively.

After capturing video sequences, we ran TMIV to synthesize the target views for each

scene to produce training and testing data for the configuration optimizers. We ran TMIV

with the procedure similar to that shown in Sec. 6.5. The difference is the position and

orientation of synthesized target views. We sampled 200 positions of target views for each

view from the area surrounding the cameras. The sampling area is shown in Fig. 10.5.

For the configuration optimizer, we used the model structure and parameters in Chapter 6,

and the leave-one-out strategy was also adopted in training. Specifically, we trained five

individual models. For each model, we assigned four video sequences as the training set

and the remaining one as the testing set.

We evaluated the experiment results by using the baselines and metrics described in

Sec. 7.1. However, in this chapter, we calculate the video quality metric by using video

captured from Airsim as the ground truth rather than using the synthesized results from

TMIV.

51

Figure 10.4: The camera placement.

Figure 10.5: The sampling area of tar-
get views. The positions of target views
are sampled from this area. The orien-
tation of the target views is the same as
the source view s camera.

10.5 Results

Ground Truth DEF CNN DRL OPT

(a)

Ground Truth DEF CNN DRL OPT

(b)

Figure 10.6: The ground truth and synthesized target views with the configurations gen-
erated by different algorithms

Fig 10.6 shows the ground truth and samples of the synthesized target views with the

configurations generated by different algorithms. For most of the target views, there is

no significant difference between each algorithm. However, the synthesized results may

have minor distortion on the specific area of target views. For instance, in Fig. 10.6(b),

there is some distortion in the red rectangular area. The reason for this distortion is that

the algorithm may choose too few source views to cover the entire area of the target view.

We report the results from the training set in Fig. 10.7. In Fig 10.7(a), CNN and DRL

52

require fewer source views compared to DEF. CNN use fewer views than DRL. At the

same time, the CNN and DRL algorithms achieve higher PSNR than DEF in Fig 10.7(b),

but the difference of PSNR between algorithms is not obvious. For decoding time, CNN

and DRL algorithms use less decoding time than DEF in Fig. 10.7(c). The CNN algo-

rithm achieves lower decoding time than the DRL algorithm. Finally, in Fig. 10.7(d), the

CNN and DRL algorithms achieve higher optimal scores than DEF. Overall, the results

in the training set show that our CNN and DRL algorithms use less computing and space

resources to achieve similar viewing quality.

We report the results from the testing set in Fig. 10.8. The results for the testing set

are similar to the results for the training set. The difference is the variance in Fig. 10.8(b)

and 10.8(c) which is higher than the results for training set. Nonetheless, our algorithms

still achieve higher optimal scores and fewer required views. Overall, the results for the

testing set show the same conclusion as the results for the training set.

In our experiments, the results show that our algorithms achieve performance im-

provement similar to the previous results on the MPEG dataset. It shows that our algo-

rithms are also applicable in real applications and scenarios.

DEF CNN DRL OPT
Algorithm

0
1
2
3
4
5
6
7

Av
er
ag

e
R
eq

ui
re
d
Vi
ew

s

(a)

DEF CNN DRL OPT
Algorithm

0
5
10
15
20
25
30
35

Av
er
ag
e
PS

N
R

(b)

DEF CNN DRL OPT
Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

Av
er
ag

e
D
ec
od

in
g
Ti
m
e

(c)

DEF CNN DRL
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

O
pt
im
al
 S
co
re

(d)

Figure 10.7: The results from the training set with five real-estate scenes: (a) number of
views, (b) video quality, (c) decoding time, and (d) optimal score.

53

DEF CNN DRL OPT
Algorithm

0
1
2
3
4
5
6
7

Av
er
ag

e
R
eq

ui
re
d
Vi
ew

s

(a)

DEF CNN DRL OPT
Algorithm

0
5
10
15
20
25
30
35

Av
er
ag
e
PS

N
R

(b)

DEF CNN DRL OPT
Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

Av
er
ag

e
D
ec
od

in
g
Ti
m
e

(c)

DEF CNN DRL
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

O
pt
im
al
 S
co
re

(d)

Figure 10.8: The results from the training set with five real-estate scenes: (a) number of
views, (b) video quality, (c) decoding time, and (d) optimal score.

54

Chapter 11

Conclusion and Future Work

11.1 Conclusion

While 3DoF video streaming systems are becoming increasingly popular, enhancing the

3DoF systems into immersive streaming systems to support 3DoF+/6DoF remains an

open issue. The MPEG-I group has proposed the TMIV codec for the emerging immersive

video streaming systems, which can synthesize target views in arbitrary positions and

orientations. Unfortunately, the TMIV codec dictates that the users manually specify

configurations for view synthesis, which may lead to suboptimal results in terms of video

quality, decoding time, and bandwidth consumption.

In this thesis, we propose two NN configuration optimization algorithms: the CNN

and DRL algorithms, to solve the configuration optimization problem from two different

perspectives. Our proposed algorithms work with a user-specified utility function and

compute the best configurations for the TMIV codec. We adopt real video sequences from

MPEG and evaluate our algorithms with both objective and subjective experiments. Our

algorithms significantly reduce resource consumption and deliver similar video quality,

compared to the default TMIV configurations. We also give recommendations for using

NN algorithms in different scenarios. For ERP video sequences, we suggest using the

DRL algorithm on both learned and new camera parameters. For PTP video sequences,

we suggest using the DRL algorithm on learned video sequences and camera parameters,

and use the CNN algorithm on the new ones.

11.2 Future Work

Our work is among the pioneering studies trying to optimize the TMIV configurations.

We believe it can stimulate future research in immersive video streaming. Nevertheless,

before our algorithms can be applied in end-to-end streaming systems, several system-

55

level challenges need to be addressed. We list sample challenges below:

• Inference frequency: The invocation frequency of the configuration optimizer can

be manually determined by users. In dynamic environments, an adaptation algo-

rithm for the inference frequency is needed for higher and more stable user experi-

ence.

• Generalization: We have demonstrated that our NN-based algorithms can handle

different video sequences. A practical system, however, needs to operate smoothly

under diverse and dynamic network and system conditions. Therefore, the perfor-

mance of such a system is affected by the available bandwidth, computational capa-

bility, and background application workload. These network and system statistics

can also be fed into future (enhanced) NN models for better prediction performance.

• Scalability: High scalability is needed for a commercially-viable immersive video

streaming service. Traditional approaches, such as hierarchical and distributed ar-

chitectures, media-aware traffic and computational scheduling, load balance and

migration, are all possible approaches to optimize such end-to-end systems.

Besides, the prediction performance of our algorithms can be improved by collect-

ing more datasets with various video sequences and camera parameters or by employing

future model structure and training approaches. The hard-constrained optimization can

also be considered to support specific usage scenarios, e.g., video streaming with low

bandwidth constrains.

We will also conduct extra experiments to explore the models’ performance under

different training designs. The experiment results are shown in the following paragraphs.

Limiting the Prediction Space of the CNN Algorithm. In our original design, our

CNN algorithm predicted a vector of integers that represent a specific combination of the

number of passes and the number of views per pass. Since there is no limitation for the

value of the output vector’s elements, the CNN algorithm may predict a configuration

that is invalid for the TMIV codec, i.e., it may choose a number of views bigger than

the total number of views. To overcome this possible drawback, in this section, we limit

the number of prediction options by redesigning the output layer of the CNN algorithms.

Specifically, we map each valid combination of the number of passes and the number of

views per pass to an integer, and convert the integer to binary format. Our CNN algorithm

predicts the binary of the integer to generate the optimal configuration. In this way, our

CNN algorithm can only choose the valid configuration for TMIV.

The performance of redesigning the CNN algorithm1 is shown in Table 11.1. After

we limit the prediction space of the CNN algorithm, our algorithm can achieve lower re-
1We used datasets collected from chapter 10 to conduct the experiments. For the training set, we used

56

quired views, lower decoding time, and comparable video quality compared to the default

configuration of TMIV. However, the optimal score of the CNN algorithm is lower than

the default configuration. Overall, the experiment results show that our redesigned CNN

algorithm can avoid invalid prediction results, but the performance is not as good as that

of the original design.

Table 11.1: The performance comparison of the default configuration
and the redesigned CNN algorithm.

Training Testing
DEF CNN DEF CNN

Required Views 7 (0) 3.25 (0.44) 7 (0) 2.99 (0.141)
Video Quality 31.87 (2.19) 31.58 (2.84) 33.46 (1.05) 32.76 (1.71)

Decoding Time 2.55 (0.19) 1.96 (0.35) 2.09 (0.05) 1.73 (0.14)
Optimal Score 4.63 (0.67) 4.51 (0.93) 6.45 (0.54) 6.11 (0.83)

Training the DRL Algorithm by Using Different Reward Functions. In our original

design of the DRL algorithm, the reward function was a user-defined utility function.

The user of our algorithm can design their own utility function according to the usage

scenarios. In this section, we use video quality as our utility function to retrain our DRL

agent. We conducted the experiments because: (i) We wanted to know whether our DRL

algorithm would work when we changed the utility function, and (ii) Since the optimal

video quality usually happens when the number of passes is big, we chose video quality

as the utility function to evaluate the DRL algorithm under the long path of action.

Fig. 11.1 shows the performance of the redesigning DRL algorithm2. The DRL algo-

rithm achieves better video quality in the both training and testing sets. The improvement

is small since the quality difference between different configurations is not big. The re-

sults show that our algorithm can still work under different utility functions.

the following video sequences: ArchVizInterior, XoioBerlinFlat, LightroomInteriorDayLight, and Realisti-
cRendering. For the testing set, we used the following video sequence: office.

2We used datasets collected from chapter 10 to conduct the experiments. For the training set, we used
the following video sequences: ArchVizInterior, XoioBerlinFlat, LightroomInteriorDayLight, and Realisti-
cRendering. For the testing set, we used the following video sequence: office.

57

DEF DRL
Algorithm

0

5

10

15

20

25

30

35

Av
er
ag

e
PS

N
R

(a)

DEF DRL
Algorithm

0

5

10

15

20

25

30

35

Av
er
ag

e
PS

N
R

(b)

Figure 11.1: The performance comparison of the default configuration and the redesigned
DRL algorithm: (a) training set and (b) testing set.

58

Bibliography

[1] D. Abe, L. Marc, and D. Fredo. Unstructured Light Fields. Computer Graphics

Forum, 31:305–314, May 2012.

[2] E. Adelson and J. Bergen. The Plenoptic Function and the Elements of Early Vision,

volume 2, chapter Models for Concurrency, pages 3–20. Computational Models of

Visual Processing. Cambridge, MA: MIT Press (1991), 1991.

[3] S. Altamimi and S. Shirmohammadi. QoE-Fair DASH Video Streaming Using

Server-Side Reinforcement Learning. ACM Transacrions on Multimedia Comput-

ing, Communications, and Applications, 16(2s):68:1–68:21, 2020.

[4] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. Matryodshka: Real-

Time 6DoF Video View Synthesis Using Multi-Sphere Images. In Proc. of European

Conference on Computer Vision, pages 441–459, 2020.

[5] S. Avidan and A. Shashua. Novel View Synthesis in Tensor Space. In Proc. of IEEE

International Conference on Computer Vision and Pattern Recognition (CVPR’97),

pages 1034–1040, 1997.

[6] W. Bennett, J. Neel, V. Vaibhav, T. Eino-Ville, A. Emilio, B. Adam, A. Andrew,

H. Mark, and L. Marc. High Performance Imaging Using Large Camera Arrays. In

Proc. of ACM Special Interest Group on Computer Graphics and Interactive Tech-

niques Conference (SIGGRAPH’05), page 765–776, 2005.

[7] A. Bentaleb, B. Taani, A. Begen, C. Timmerer, and R. Zimmermann. A Survey on

Bitrate Adaptation Schemes for Streaming Media over HTTP. IEEE Communica-

tions Surveys Tutorials, 21(1):562–585, 2019.

[8] blender. blender. 2021. Retrieved September 30, 2021 from https://www.

blender.org/.

[9] J. Boyce, R. Doré, A. Dziembowski, J. Fleureau, J. Jung, B. Kroon, B. Salahieh,

V. K. M. Vadakital, and L. Yu. MPEG Immersive Video Coding Standard. IEEE

Proceedings of the IEEE, 109(9):1521–1536, 2021.

59

[10] Y. Chang, K. Chen, C. Wu, C. Ho, and C. Lei. Online Game QoE Evaluation Using

Paired Comparisons. In Proc. of IEEE International Workshop Technical Committee

on Communications Quality and Reliability (CQR’10), pages 1–6, 2010.

[11] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth Synthe-

sis and Local Warps for Plausible Image-Based Navigation. ACM Transactions on

Graphics (TOG), 32(3):1–12, 2013.

[12] S. Chen. Quicktime VR: An Image-Based Approach to Virtual Environment Nav-

igation. In Proc. of conference on Computer graphics and interactive techniques,

pages 29–38, 1995.

[13] S. Chen and L. Williams. View Interpolation for Image Synthesis. In Proc. of

ACM Annual Conference on Computer Graphics and Interactive Techniques (SIG-

GRAPH’93), pages 279–288, 1993.

[14] W. Chen, Y. Chang, S. Lin, L. Ding, and L. Chen. Efficient Depth Image Based

Rendering with Edge Dependent Depth Filter and Interpolation. In Proc. of IEEE

International Conference on Multimedia and Expo, pages 1314–1317, 2005.

[15] B. Cheng, J. Yang, S. Wang, and J. Chen. Adaptive Video Transmission Con-

trol System Based on Reinforcement Learning Approach over Heterogeneous Net-

works. IEEE Transactions on Automation Science and Engineering, 12(3):1104–

1113, 2015.

[16] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard. Online Learning Adaptation

Strategy for DASH Clients. In Proc. of ACM International Conference on Multime-

dia Systems (MMSys’16), pages 8:1–8:12, 2016.

[17] C. Conti, L. Soares, and P. Nunes. Dense Light Field Coding: A Survey. IEEE

Access, 8:49244–49284, March 2020.

[18] X. Corbillon, F. Simone, G. Simon, and P. Frossard. Dynamic Adaptive Streaming

for Multi-viewpoint Omnidirectional Videos. In Proc. of ACM International Con-

ference on Multimedia Systems Conference (MMSys’18), pages 237–249, 2018.

[19] L. Costero, A. Iranfar, M. Zapater, F. Igual, K. Olcoz, and D. Atienza. MAMUT:

Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User Video

Transcoding. In Proc. of IEEE Design, Automation Test in Europe Conference Ex-

hibition (DATE’19), pages 558–563, 2019.

[20] I. Curcio, K. Kammachi-Sreedhar, and S. Mate. Multi-Viewpoint and Overlays in

the MPEG OMAF Standard. ITU Journal: ICT Discoveries, 3(1):17–24, 2020.

60

[21] P. Debevec, C. Taylor, and J. Malik. Modeling and Rendering Architecture from

Photographs: A Hybrid Geometry-and Image-Based Approach. In Proc. of confer-

ence on Computer graphics and interactive techniques, pages 11–20, 1996.

[22] R. Doré and G. Lafruit. Updated Call for Test Materials for 3DoF+ Vi-

sual. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG2018/N17617, 2018.

[23] A. Dziembowski, J. Samelak, and M. Domański. View Selection for Virtual View

Synthesis in Free Navigation Systems. In Proc. of IEEE International Conference

on Signals and Electronic Systems (ICSES’18), pages 83–87, 2018.

[24] EPIC Games. Unreal Engine. 2021. Retrieved August 29, 2021 from https:

//www.unrealengine.com/en-US/.

[25] EPIC Games. Unreal Engine Marketplace. 2021. Retrieved August 29, 2021 from

https://www.unrealengine.com/marketplace/en-US/store.

[26] A. Eslami, J. Rezende, F. Besse, F. Viola, A. Morcos, M. Garnelo, A. Ruderman,

A. Rusu, I. Danihelka, K. Gregor, et al. Neural Scene Representation and Rendering.

Science, 360(6394):1204–1210, 2018.

[27] C. Fan, W. Lo, Y. Pai, and C. Hsu. A Survey on 360° Video Streaming: Acquisition,

Transmission, and Display. ACM Computing Surveys, 52(4):71:1–71:36, 2019.

[28] C. Fehn. Depth-Image-Based Rendering (DIBR), Compression, and Transmission

for a New Approach on 3D-TV. In Proc. SPIE 5291, Stereoscopic Displays and

Virtual Reality Systems XI, pages 93–104, 2004.

[29] J. Fleureau, B. Chupeau, F. Thudor, G. Briand, T. Tapie, and R. Doré. An Immersive

Video Experience with Real-Time View Synthesis Leveraging the Upcoming MIV

Distribution Standard. In Proc. of IEEE International Conference on Multimedia &

Expo Workshops (ICMEW), pages 1–2, 2020.

[30] J. Fu, X. Chen, Z. Zhang, S. Wu, and Z. Chen. 360SRL: A Sequential Reinforcement

Learning Approach for ABR Tile-Based 360 Video Streaming. In Proc. of IEEE In-

ternational Conference on Multimedia and Expo (ICME’19), pages 290–295, 2019.

[31] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella. D-DASH: A Deep Q-Learning

Framework for DASH Video Streaming. IEEE Transactions on Cognitive Commu-

nications and Networking, 3(4):703–718, 2017.

[32] G. Gescheider. Psychophysics: the Fundamentals. Psychology Press, 2013.

61

[33] R. Ghaznavi-Youvalari and A. Aminlou. Geometry-Based Motion Vector Scaling

for Omnidirectional Video Coding. In Proc. of IEEE International Symposium on

Multimedia (ISM), pages 127–130, 2018.

[34] A. Ghosh, V. Aggarwal, and F. Qian. A rate adaptation algorithm for tile-Based

360-degree video streaming. arXiv preprint arXiv:1704.08215, 2017.

[35] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The Lumigraph. In Proc. of

conference on Computer graphics and interactive techniques, pages 43–54, 1996.

[36] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai. An

Overview of Ongoing Point Cloud Compression Standardization Activities: Video-

Based (V-PCC) and Geometry-Based (G-PCC). APSIPA Transactions on Signal and

Information Processing, 9(0):e13, 2020.

[37] M. Hannuksela, Y. Wang, and A. Hourunranta. An Overview of the OMAF Standard

for 360 Video. In Proc. of IEEE Data compression conference (DCC), pages 418–

427, 2019.

[38] P. Hedman, J. Philip, T. Price, J. Frahm, G. Drettakis, and G. Brostow. Deep Blend-

ing for Free-Viewpoint Image-Based Rendering. ACM Transactions on Graphics

(TOG), 37(6):1–15, 2018.

[39] J. Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. Turck. A learning-Based algo-

rithm for improved bandwidth-awareness of adaptive streaming clients. In Proc. of

IFIP/IEEE International Symposium on Integrated Network Management (IM’15),

pages 131–138, 2015.

[40] M. Hosseini, G. Kurillo, S. Etesami, and J. Yu. Towards coordinated bandwidth

adaptations for hundred-scale 3D tele-immersive systems. Springer Multimedia Sys-

tems, 23(4):421–434, 2017.

[41] HTC VIVE. HTC VIVE. 2019. Retrieved April 21, 2020 from https://www.

vive.com/tw/product/vive.

[42] J. Hu, W. Peng, and C. Chung. HEVC/H.265 Coding Unit Split Decision Using

Deep Reinforcement Learning. In Proc. of IEEE International Symposium on Intel-

ligent Signal Processing and Communication Systems (ISPACS’17), pages 570–575,

2017.

[43] J. Hu, W. Peng, and C. Chung. Reinforcement Learning for HEVC/H.265 Intra-

Frame Rate Control. In Proc. of IEEE International Symposium on Circuits and

Systems (ISCAS’18), pages 1–5, 2018.

62

[44] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-DOF VR Videos with A Single 360-

Camera. In Proc. of IEEE Virtual Reality Conference (VR’17), pages 37–44, 2017.

[45] T. Huang, R. Zhang, C. Zhou, and L. Sun. QARC: Video Quality Aware Rate Con-

trol for Real-Time Video Streaming Based on Deep Reinforcement Learning. In

Proc. of ACM International Conference on Multimedia (MM’18), pages 1208–1216,

2018.

[46] J. Jeong, S. Lee, I. Ryu, T. Le, and E. Ryu. Towards Viewport-Dependent 6DoF 360

Video Tiled Streaming for Virtual Reality Systems. In Proc. of ACM International

Conference on Multimedia (MM’20), page 3687–3695, 2020.

[47] X. Jiang, Y. Chiang, Y. Zhao, and Y. Ji. Plato: Learning-Based Adaptive Streaming

of 360-Degree Videos. In Proc. of IEEE Conference on Local Computer Networks

(LCN’18), pages 393–400, 2018.

[48] J. Jung, B. Kroon, and J. Boyce. Common Test Conditions for Immersive

Video. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG/N18563, 2019.

[49] N. Kalantari, T. Wang, and R. Ramamoorthi. Learning-Based view synthesis for

light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.

[50] T. Kanade, P. Rander, and P. Narayanan. Virtualized Reality: Constructing Virtual

Worlds from Real Scenes. IEEE multimedia, 4(1):34–47, 1997.

[51] L. Kapov, M. Varela, T. Hoßfeld, and K. Chen. A Survey of Emerging Concepts

and Challenges for QoE Management of Multimedia Services. ACM Transacrions

on Multimedia Computing, Communications,and Application, 14(2s):29:1–29:29,

2018.

[52] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proc. of

International Conference on Learning Representationsnce Track (poster), 2015.

[53] M. Levoy and P. Hanrahan. Light Field Rendering. In Proc. of conference on Com-

puter graphics and interactive techniques, pages 31–42, 1996.

[54] L. Li, Z. Li, X. Ma, H. Yang, and H. Li. Advanced Spherical Motion Model and Lo-

cal Padding for 360° Video Compression. IEEE Transactions on Image Processing,

28(5):2342–2356, 2019.

63

[55] L. Marc and H. Pat. Light Field Rendering. In Proc. of ACM Special Interest Group

on Computer Graphics and Interactive Techniques Conference (SIGGRAPH’96),

pages 31–42, 1996.

[56] C. Maxim, L. Steven, F. Jeroen, and D. Filip. Design and Evaluation of a Self-

Learning HTTP Adaptive Video Streaming Client. IEEE Communications Letters,

18(4):716–719, 2014.

[57] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering Sys-

tem. In Proc. of conference on Computer graphics and interactive techniques, pages

39–46, 1995.

[58] B. Mildenhall, P. Srinivasan, R. Ortiz-Cayon, N. Kalantari, R. Ramamoorthi, R. Ng,

and A. Kar. Local Light Field Fusion: Practical View Synthesis with Prescriptive

Sampling Guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

[59] B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi, and R. Ng.

Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis. In Proc.

of European conference on computer vision, pages 405–421, 2020.

[60] MPEG. HM 16.16. 2019. Retrieved April 21, 2020 from https://hevc.hhi.

fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.16/.

[61] MPEG. Activity Report on Dense Light Fields. International Organization for Stan-

dardization Meeting Document ISO/IEC JTC1/SC29/WG11MPEG2020/N19493,

2020.

[62] MPEG. MPEG roadmap. International Organization for Standardization Meeting

Document ISO/IEC JTC1/SC29/WG11 MPEG/w19514, 2020.

[63] MPEG. Text of ISO/IEC 23090-9 DIS Geometry-Based PCC. International

Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11

MPEG2020/N19088, 2020.

[64] MPEG. Text of ISO/IEC DIS 23090-5 Video-Based Point Cloud Compres-

sion. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG2020/N18670, 2020.

[65] MPEG. Text of ISO/IEC FDIS 23090-5 Visual Volumetric Video-Based Coding and

Video-Based Point Cloud Compression. International Organization for Standardiza-

tion Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/w19579, 2020.

64

[66] MPEG. Text of ISO/IEC DIS 23090-12 MPEG Immersive Video. International

Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11

MPEG/w20003, 2021.

[67] K. Mueller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. View Synthesis

for Advanced 3D Video Systems. Springer EURASIP Journal on image and video

processing, 2008(0):1–11, 2009.

[68] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle, K. Muller, and

T. Wiegand. Depth Image-Based Rendering with Advanced Texture Synthesis for

3-D Video. IEEE Transactions on Multimedia, 13(3):453–465, 2011.

[69] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun. Towards Low Latency Multi-

viewpoint 360° Interactive Video: A Multimodal Deep Reinforcement Learning

Approach. In Proc. of IEEE Conference on Computer Communications (INFO-

COM’19), pages 991–999, 2019.

[70] R. Placket. The Analysis of Permutations. Journal of the Royal Statistical Society.

Series C (Applied Statistics), 24(2):193–202, 1975.

[71] B. Salahieh, S. Bhatia, and J. Boyce. Multi-Pass Add-on Tool for Coherent and

Complete View Synthesis (US Patent 2019/0320164 A1), 2019.

[72] B. Salahieh, B. Kroon, J. Jung, and M. Domański. Test Model for Immersive

Video. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG2017/N16730, 2017.

[73] B. Salahieh, B. Kroon, J. Jung, and M. Domański. Test Model 2 for Immersive

Video. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG/N18577, 2019.

[74] B. Salahieh, B. Kroon, J. Jung, and M. Domański. Test Model 3 for Immersive

Video. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG/N18795, 2019.

[75] B. Salahieh, B. Kroon, J. Jung, and M. Domański. Test Model for Immersive

Video. International Organization for Standardization Meeting Document ISO/IEC

JTC1/SC29/WG11 MPEG/N18470, 2019.

[76] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-Fidelity Visual and Phys-

ical Simulation for Autonomous Vehicles. In Proc. of Field and Service Robotics,

pages 621–635, 2018.

65

[77] G. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the High Efficiency

Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for

Video Technology, 22(12):1649–1668, 2012.

[78] Y. Sun, A. Lu, and L. Yu. Weighted-to-Spherically-Uniform Quality Evaluation for

Omnidirectional Video. IEEE Signal Processing Letters, 24(9):1408–1412, 2017.

[79] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. A Bradford

Book, 2 edition, 2018.

[80] S. Tang, C. Hsu, Z. Tian, and X. Su. An Aerodynamic, Computer Vision, and Net-

work Simulator for Networked Drone Applications. In Proc. of ACM International

Conference on Mobile Computing and Networking (MobiCom’21) Poster Session,

pages 0–0, 2022.

[81] D. Tian, P. Lai, P. Lopez, and C. Gomila. View Synthesis Techniques for 3D

Video. In Proc. of SPIE Conference on Applications of Digital Image Processing

(ADIP’09), pages 74430T:1–74430T:11, 2009.

[82] R. Tucker and N. Snavely. Single-View View Synthesis with Multiplane Images. In

Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 551–560, 2020.

[83] B. Vishwanath, T. Nanjundaswamy, and K. Rose. Rotational motion model for

temporal prediction in 360 video coding. In Proc. of IEEE International Workshop

on Multimedia Signal Processing (MMSP), pages 1–6, 2017.

[84] Y. Wang, D. Liu, S. Ma, F. Wu, and W. Gao. Spherical Coordinates Transform-

Based Motion Model for Panoramic Video Coding. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 9(1):98–109, 2019.

[85] M. Wien, J. Boyce, T. Stockhammer, and W. Peng. Standardization Status of Im-

mersive Video Coding. IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, 9(1):5–17, 2019.

[86] S. Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S. Suwajanakorn. Nex: Real-

Time View Synthesis with Neural Basis Expansion. In Proc. of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages 8534–8543, 2021.

[87] M. Xu, C. Li, S. Zhang, and P. Le Callet. State-of-the-art in 360 Video/Image

Processing: Perception, Assessment and Compression. IEEE Journal of Selected

Topics in Signal Processing, 14(1):5–26, 2020.

66

[88] A. Yaqoob, T. Bi, and G.-M. Muntean. A Survey on Adaptive 360° Video Streaming:

Solutions, Challenges and Opportunities. IEEE Communications Surveys Tutorials,

22(4):2801–2838, 2020.

[89] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li. DRL360: 360-degree Video

Streaming with Deep Reinforcement Learning. In Proc. of IEEE Conference on

Computer Communications (INFOCOM’19), pages 1252–1260, 2019.

[90] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo Magnification: Learn-

ing View Synthesis Using Multiplane Images. arXiv preprint arXiv:1805.09817,

2018.

[91] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo Magnification:

Learning View Synthesis Using Multiplane Images. ACM Transactions on Graphics

(TOG), 37(4), 2018.

[92] S. Zinger, L. Do, and P. de With. Free-Viewpoint Depth Image Based Rendering.

Elsevier Journal of visual communication and image representation, 21(5-6):533–

541, 2010.

[93] ZION Market Research. Virtual Reality (VR) Market by Hardware and Software

for (Consumer, Commercial, Enterprise, Medical, Aerospace and Defense, Auto-

motive, Energy and Others): Global Industry Perspective, Comprehensive Analysis

and Forecast, 2016–2022. 2018. Retrieved April 21, 2020 from https://www.

zionmarketresearch.com/report/virtual-reality-market.

[94] L. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-Quality Video

View Interpolation Using a Layered Representation. ACM Transactions on Graphics

(TOG), 23(3):600–608, 2004.

67

