
������������� rId3 ������

Download and Rate Allocation 
of Internet-of-Things Analytics 
at Gateways in Smart Cities
在智慧城市閘道器上之物聯網分析程式容器下載與頻寬分配研究

Yu-Jung Wang
Advisor: Cheng-Hsin Hsu
Networking Multimedia Systems Lab 
CS Dept. National Tsing-Hua University



Outline

Introduction

Background
Image
Download
Problem

System
Architecture

Rate
Allocation
Problem

Evaluation

Conclusion

Dynamic Programing
(1-ε)-Approximation

Greedy

2



Background
Image
Download
Algorithm

System
Architecture

Rate
Allocation
Algorithm

Evaluation

Conclusion

Dynamic Programing
(1-ε)-Approximation

Greedy

Introduction

3



Internet of Things (IoT) is getting popular 

SUBTITLESUBTITLE

15.41 17.68 20.35
23.14

26.66
30.73

35.82
42.62

51.11

62.12

75.44

�

��

��

��

��

��

	�


�

��

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Io
T

 co
nn

ec
te

d 
de

vi
ce

s (
in

 b
ill

io
ns

)

Year

4



Smart City

5

IoT Devices

IoT Analytics

Cloud Servers

Gateway Gateway



Problems of Sending All Data to Cloud

• Excessive Internet access cost

• Degraded QoS due to network congestion

• Heavy burden of computing resource

6



Smart City

7

IoT Devices

IoT Analytics

Cloud Servers

Gateway Gateway



Dynamically Deploy IoT Analytics to Gateways

Advantages:
l Reducing work load of cloud servers
l Reducing upload bandwidth consumption
l Better utilizing download bandwidth of access links

8

68,238 Bytes 6 Bytes”Person”

68,238 Bytes



9

Data Center 
Servers

Gateways

Hetero.
Access
Links

IoT Devices

Short-Range
WLANs

IoT Analytics 
Containers Deploy IoT Analytics 

Containers

Raw Data
Processed Data

Dynamically Deploy IoT Analytics to Gateways



Research Problems

Image
Download
Problem

Rate 
Allocation
Problem

selects additional IoT analytics 
to deploy on a gateway to 
save as much upload 
bandwidth as possible

allocates the upload bandwidth 
among IoT analytics on both 
the data center servers and 
gateways to maximize the 
overall QoS level 10



Contributions

Rate 
Allocation
Problem

Image 
download 
problem

Achieve as high 
as 1 weighted 

QoS level in the 
scale of [0,1]

We deploy as many IoT 

analytics containers on 
the gateway as possible.

Our heuristic algorithms 

saves as much upload 
bandwidth as the optimal 

algorithm while achieving 
similar QoS levels.

Our proposed algorithm 
outperforms the two baseline 
algorithms 

1. by 23% and 37% in 
weighted QoS levels,

2. by 168% and 74% in 
utilization of upload bandwidth.

11



Image
Download
Algorithm

System
Architecture

Rate
Allocation
Algorithm

Evaluation

Conclusion

Dynamic Programing
(1-ε)-Approximation

Greedy

Introduction

Background

12



Edge Computing

13

Far-end

Near-end

Front-end

Edge Computing

Cloud Servers

Gateways/
Edge Servers

Edge Devices

Cloud Servers

Gateways

IoT Devices

IoT



Container Images

Pack IoT analytics into container images can

l Easily package heterogeneous environments

l Make IoT analytics be easily and Rapidly deployed

Container engine and management tools:

l Docker

l Kubernetes

14



Docker

15

Operating System

Libraries

Environment Variables

Codes

Base Image

Image layers
Operating System
Libraries
Environment Variables
Codes
Base Image

Container 
Image



Layer Dependency

16

People Counting Plate Recognition
Object Detector Object Detector

OpenCV 3 OpenCV 2
TensorFlow 1.13 TensorFlow 1.10

Python pip
Python2

apt-get update
Ubuntu 16.04

Different

Shared



Kubernetes

• Defines different roles for each IoT device 

• Combine each IoT device in clusters

• Monitor the condition of analytics containers

• Monitor resources of each IoT device
• Automatically restart the dead containers

17



Image
Download
Algorithm

Rate
Allocation
Algorithm

Evaluation

Conclusion

Dynamic Programing
(1-ε)-Approximation

Greedy

Introduction

Background

System
Architecture

18



Implemented Algorithms

IDA
Image Download Algorithm

RAA
Rate Allocation Algorithm

LRP
Layer Replacement Policy

19

1. Dynamic Programming Algorithm (IDAD)

2. (1 − ε)-Approximation Algorithm (IDAA)

3. Greedy Algorithm (IDAG)

1. Rate Allocation Algorithm (RAA)

2. Weighted Allocation Algorithm (WA)

3. Unweighted Allocation Algorithm (UA)

Default setting: 

Least-Recently-Used (LRU) 



Execution Time of Algorithms

20

Time
TL

TS

IDA and (maybe) LRP

RAA

TS/TS Time Slots



Deployment 
Manager

K8s

Gateway

Heterogeneous Requests

Deployment 
Manager

Device 
Manager

K8s

Image Manager
Master Image Pool

Docker

Result Data Manager

Analytics
Images

Download 
Images

Sensors

Sensor Data

Sensor Data Manager

Raw Data

Analytic
Container

Processed 
Data

Analytic
Container

Raw Data

Processed 
Data

Download
Requests

Original Modules
Algorithms
Extend Modules
Analytics
Control Data
Data Streams

Server & Controller

Image Manager
Image Pool

Docker
Deployed 
Analytics

Analytics
Images

21

Basic System Architecture



Deployment 
Manager

K8s

Gateway

Image 
Download Algo.

Heterogeneous Requests

Deployment 
Manager

Device 
Manager

K8s

Image Manager
Master Image Pool

Docker

Result Data Manager

Analytics
Images

Download 
Images

Sensors

Sensor Data

Sensor Data Manager

Raw Data

Analytic
Container

Processed 
Data

Analytic
Container

Raw Data

Processed 
Data

Download
Requests

Original Modules
Algorithms

Extend Modules

Analytics

Control Data
Data Streams

Download 
Decision

Server & Controller

Image Manager
Image Pool

Docker
Analytics 

List
Deployed 
Analytics

Analytics
Images

22

Image Download Algorithm



Deployment 
Manager

K8s

Deleted Layers

Gateway

Layer
Replacement Pol.

Heterogeneous Requests

Deployment 
Manager

Device 
Manager

K8s

Image Manager
Master Image Pool

Docker

Result Data Manager

Analytics
Images

Download 
Images

Layers Info.

Sensors

Sensor Data

Sensor Data Manager

Raw Data

Analytic
Container

Processed 
Data

Analytic
Container

Raw Data

Processed 
Data

Download
Requests

Original Modules

Algorithms

Extend Modules

Analytics

Control Data

Data Streams

Server & Controller

Image Manager
Image Pool

Docker
Deployed 
Analytics

Analytics
Images

23

Layer Replacement Policy



Deployment 
Manager

K8s

Gateway

Rate Allocation
Algo.

Heterogeneous Requests

Deployment 
Manager

Device 
Manager

K8s

Image Manager
Master Image Pool

Docker

Result Data Manager

Analytics
Images

QoS Knobs
Download 

Images

Sensors

Sensor Data

Sensor Data Manager

Raw Data

Analytic
Container

Processed 
Data

Analytic
Container

Raw Data

Processed 
Data

Download
Requests

Original Modules

Algorithms

Extend Modules

Analytics

Control Data

Data Streams

Analytics 
List

Server & Controller

Image Manager
Image Pool

Docker
Deployed 
Analytics

Analytics
Images

24

Rate Allocation Algorithm



Deployment 
Manager

K8s

Deleted Layers

Gateway

Image 
Download Algo.

Layer
Replacement Pol.

Rate Allocation
Algo.

Heterogeneous Requests

Deployment 
Manager

Device 
Manager

K8s

Image Manager
Master Image Pool

Docker

Result Data Manager

Analytics
Images

QoS Knobs
Download 

Images

Layers Info.

Sensors

Sensor Data

Sensor Data Manager

Raw Data

Analytic
Container

Processed 
Data

Analytic
Container

Raw Data

Processed 
Data

Download
Requests

Original Modules
Algorithms
Extend Modules
Analytics
Control Data
Data Streams

Download 
Decision

Analytics 
List

Server & Controller

Image Manager
Image Pool

Docker
Analytics 

List
Deployed 
Analytics

Analytics
Images

25

Overall System Architecture



Rate
Allocation
Algorithm

Evaluation

ConclusionIntroduction

Background

System
Architecture

Image
Download
Problem

Dynamic Programing
(1-ε)-Approximation

Greedy

26



Symbols of Image Download Problem

27



Problem Formulation

28

Saved upload bandwidth
Deploy decision

Total layer size
Residual 

Image pool size

Maximal 
download 

amount in TL

Saved upload bandwidth z 

Remaining resource R

Downloaded layer size s 



29

Resource is used up or all the containers are checked
Remaining resource is 

not enough to deploy a

//Not choose a

Dynamic Programming Algorithm (IDAD)

//Choose a

//Not choose a

Remaining resource is 
enough to deploy a

//Return the better one

Time complexity: 
pseudo-polynomial



(1 − ε)-Approximation Algorithm (IDAA)

30

//Rounding denominator Rounding the saved upload 
bandwidth of each container

//Run IDAD with new saved upload bandwidth
!′ = {!′1 , !′2, . . . , !′) }

Time complexity: 
+(-

.

ε )

//Give the bound by rounding it by 0

Approximation factor: 
(1 − ε)



Greedy Algorithm (IDAG)

31

Sort the saved upload bandwidth 
normalized to the consumed 

download bandwidth

Remaining resource is used up

Remaining resource is enough to deploy a

Time complexity: 
!(#$%&#)



Evaluation

Conclusion

Dynamic Programing
(1-ε)-Approximation

Greedy

Introduction

Background

System
Architecture

Image
Download
Algorithm

Rate
Allocation
Problem

32



Symbols of Rate Allocation Algorithm

33



Problem Statement and Formulation

34

Raw data b/w
Processed data b/w

Upload network bandwidth



Rate Allocation Algorithm (RAA)

35

Calculate ! "# = weighted QoS value
bandwidth

of each container

Repeatedly find the maximal 
!("#) of each container, and 
increase the QoS knob "# by the 
step size ).

Time complexity: 
*(+, -. ∪ -0 )



Conclusion

Dynamic Programing
(1-ε)-Approximation

Greedy

Introduction

Background

System
Architecture

Image
Download
Algorithm

Rate
Allocation
Algorithm

Evaluation

36



Testbed

37

Controller
Server
Intel i7 3.6 GHz

Traffic Generator
Intel i7 3.6 GHz

Gateway
Intel i3 2.1 GHz

Et
he

rn
et

TC command



Default Sample Run Analysis

38

Ø Our proposed algorithms achieve high weighted QoS: 0.72 - 1
Ø Negligible running time of IDAD and RAA: at most 1200 ms
Ø Do not overload the upload and download bandwidth



Weighted QoS of IDA

39

Ø IDAD, IDAA, and IDAG all have high weighted QoS.
Ø # of the containers deployed on the gateway is much less than that on the cloud server.

3GB, 100M, 
3 request/min



Deployed Number of IDA

40

Ø IDAD, IDAA, and IDAG all consider “current” condition.
Ø IDAG has the highest hit rate.
Ø IDAG outperforms IDAD and IDAA by

• 35% and 41% in IDA Def,
• 32% and 43% in IDA 4GB,
• 39% and 9% in IDA 50M.

3GB, 100M, 
3 request/min

3GB, 100M, 
3 request/min



Saved Upload B/W of IDA

41

Ø IDAD, IDAA, and IDAG all perform well in in terms of saved upload bandwidth.
Ø IDAD, IDAA, and IDAG all consider “current” condition.
Ø IDAG has the highest hit rate.

3GB, 100M, 
3 request/min

3GB, 100M, 
3 request/min



Weighted QoS of RAA

42

Ø RAA algorithm outperforms the WA and UA algorithms by 
• about 23% and 37% in 5-Mbps upload B/W,
• about 12% and 15% in 10-Mbps upload B/W.

5-Mbps upload B/W, 10-Mbps upload B/W,



Utilization of Upload B/W of RAA

43

5-Mbps upload B/W, 10-Mbps upload B/W,

Ø RAA algorithm outperforms the WA and UA algorithms by 
• about 51% and 28% in 5-Mbps upload B/W,
• about 168% and 74% in 10-Mbps upload B/W.



Running Time of RAA

44

5-Mbps upload B/W, 10-Mbps upload B/W,

Ø All the RAA algorithms averagely take short running time: < 300 ms



Dynamic Programing
(1-ε)-Approximation

Greedy

Introduction

Background

System
Architecture

Image
Download
Algorithm

Rate
Allocation
Algorithm

Evaluation

Conclusion

45



Conclusion
1. We evaluated our proposed algorithms on our campus and lab testbeds built upon several open-source 

projects. 

2. The experiment results show our proposed system and algorithms increase the overall QoS level (between 

0.72 and 1 in the scale of [0,1]) without overloading the network and gateway (terminate in < 1.2 s). 

3. For image download problem, our heuristic algorithms saves as much upload bandwidth as the optimal 

algorithm while achieving similar QoS levels.

4. For rate allocation problem, our proposed algorithm outperforms the two baseline algorithms by

l 23% and 37% in weighted QoS levels

l 168% and 74% in utilization of upload bandwidth
46



Future Works

• Utilizing the source code of Docker engine for better performance.

• Exploring more probability of different layer replacement policies.

• Larger experiments driven by real traces from our campus testbed.

47



������������� rId3 ������

Q&A

Yu-Jung Wang
yurongwang.tw@gmail.com



NAME OF YOUR

49



NAME OF YOUR

50



Layer Replacement Policy

Classical layer replacement policies:

• Least-Recently-Used (LRU)

• Most-Recently-Used (MFU)

• Least-Frequently-Used (LFU)

• Most-Frequently-Used (MFU)

51



Problem Statement

52



Problem Formulation

53

Raw data 
b/w

Processed 
Data b/w

Deploy decision
Total Image size

Image pool size
Total layer size

Maximal download 
amount in TL



New Problem Formulation

54

Save upload bandwidth
Deploy decision

Total layer size
Residual 

Image pool size

Maximal 
download 
amount

Remaining resource R



Sample IoT Analytics

55

Object 
Detector

Sound 
Classifier



QoS model of object detector 
and sound classifier:

Raw and processed data 
bandwidth models of object 
detector and sound classifier:

Parameters:

QoS and Bandwidth Models of IoT Analytics

56

monotonically 
increasing in 

!"#, %"#



24 IoT analytics containers using : 

1. Two sample analytics (object detector and sound classifier)

2. Different Ubuntu versions (16.04.5, 16.04.6, and 18.04.4)

3. Different Python versions (2 versus 3)

4. Different TensorFlow versions (1.14.0 versus 1.15.0)

57

Sample IoT analytics containers



Testbed

58

Controller
Server
Intel i7 3.6 GHz

Traffic Generator
Intel i7 3.6 GHz

Gateway
Intel i3 2.1 GHz

Et
he

rn
et

TC command



Sample IoT analytics containers

59



Setup
• Image pool size: 3 GB
• Network bandwidth (Bu, Bd): (5, 100) Mbps
• TL: 5 minutes
• TS: 1 minute
• IoT analytics requests: Poisson process with 1/3-min inter-arrival time
• Departure time: [1, 10] minutes
• Each experiment run lasts for 40 minutes
• Weights: random floating point numbers in [0, 1]
• Approximation parameter ε: 0.3
• Step size α = 0.1

60



Image Download Algorithm Analysis

61

3 GB, 100 Mbps, 3 requests/min 4 GB

4 requests/min50 Mbps

Ø IDAD, IDAA, and IDAG all have high weighted QoS.
Ø # of the containers deployed on the gateway is much less than that on the cloud server.



Running Time of IDA

62

Ø IDAD, IDAA, and IDAG all averagely finish in short time: < 40 ms.

3GB, 100M, 
3 request/min


