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Internet of Things (IoT) is getting popular 
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Problems of Sending All Data to Cloud

• Excessive Internet access cost

• Degraded QoS due to network congestion

• Heavy burden of computing resource
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Dynamically Deploy IoT Analytics to Gateways

Advantages:
l Reducing work load of cloud servers
l Reducing upload bandwidth consumption
l Better utilizing download bandwidth of access links

8
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68,238 Bytes
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Research Problems

Image
Download
Problem

Rate 
Allocation
Problem

selects additional IoT analytics 
to deploy on a gateway to 
save as much upload 
bandwidth as possible

allocates the upload bandwidth 
among IoT analytics on both 
the data center servers and 
gateways to maximize the 
overall QoS level 10



Contributions

Rate 
Allocation
Problem

Image 
download 
problem

Achieve as high 
as 1 weighted 

QoS level in the 
scale of [0,1]

We deploy as many IoT 

analytics containers on 
the gateway as possible.

Our heuristic algorithms 

saves as much upload 
bandwidth as the optimal 

algorithm while achieving 
similar QoS levels.

Our proposed algorithm 
outperforms the two baseline 
algorithms 

1. by 23% and 37% in 
weighted QoS levels,

2. by 168% and 74% in 
utilization of upload bandwidth.
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Edge Computing
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Container Images

Pack IoT analytics into container images can

l Easily package heterogeneous environments

l Make IoT analytics be easily and Rapidly deployed

Container engine and management tools:

l Docker

l Kubernetes
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Docker
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Layer Dependency
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People Counting Plate Recognition
Object Detector Object Detector

OpenCV 3 OpenCV 2
TensorFlow 1.13 TensorFlow 1.10

Python pip
Python2

apt-get update
Ubuntu 16.04

Different

Shared



Kubernetes

• Defines different roles for each IoT device 

• Combine each IoT device in clusters

• Monitor the condition of analytics containers

• Monitor resources of each IoT device
• Automatically restart the dead containers
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Implemented Algorithms

IDA
Image Download Algorithm

RAA
Rate Allocation Algorithm

LRP
Layer Replacement Policy
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1. Dynamic Programming Algorithm (IDAD)

2. (1 − ε)-Approximation Algorithm (IDAA)

3. Greedy Algorithm (IDAG)

1. Rate Allocation Algorithm (RAA)

2. Weighted Allocation Algorithm (WA)

3. Unweighted Allocation Algorithm (UA)

Default setting: 

Least-Recently-Used (LRU) 



Execution Time of Algorithms
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Image Download Algorithm
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Symbols of Image Download Problem
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Problem Formulation
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Resource is used up or all the containers are checked
Remaining resource is 

not enough to deploy a

//Not choose a

Dynamic Programming Algorithm (IDAD)

//Choose a

//Not choose a

Remaining resource is 
enough to deploy a

//Return the better one

Time complexity: 
pseudo-polynomial



(1 − ε)-Approximation Algorithm (IDAA)
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//Rounding denominator Rounding the saved upload 
bandwidth of each container

//Run IDAD with new saved upload bandwidth
!′ = {!′1 , !′2, . . . , !′) }

Time complexity: 
+(-

.

ε )

//Give the bound by rounding it by 0

Approximation factor: 
(1 − ε)



Greedy Algorithm (IDAG)
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Sort the saved upload bandwidth 
normalized to the consumed 

download bandwidth

Remaining resource is used up

Remaining resource is enough to deploy a

Time complexity: 
!(#$%&#)
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Symbols of Rate Allocation Algorithm
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Problem Statement and Formulation
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Rate Allocation Algorithm (RAA)
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Calculate ! "# = weighted QoS value
bandwidth

of each container

Repeatedly find the maximal 
!("#) of each container, and 
increase the QoS knob "# by the 
step size ).

Time complexity: 
*(+, -. ∪ -0 )
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Testbed
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Default Sample Run Analysis
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Ø Our proposed algorithms achieve high weighted QoS: 0.72 - 1
Ø Negligible running time of IDAD and RAA: at most 1200 ms
Ø Do not overload the upload and download bandwidth



Weighted QoS of IDA
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Ø IDAD, IDAA, and IDAG all have high weighted QoS.
Ø # of the containers deployed on the gateway is much less than that on the cloud server.

3GB, 100M, 
3 request/min



Deployed Number of IDA
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Ø IDAD, IDAA, and IDAG all consider “current” condition.
Ø IDAG has the highest hit rate.
Ø IDAG outperforms IDAD and IDAA by

• 35% and 41% in IDA Def,
• 32% and 43% in IDA 4GB,
• 39% and 9% in IDA 50M.

3GB, 100M, 
3 request/min

3GB, 100M, 
3 request/min



Saved Upload B/W of IDA
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Ø IDAD, IDAA, and IDAG all perform well in in terms of saved upload bandwidth.
Ø IDAD, IDAA, and IDAG all consider “current” condition.
Ø IDAG has the highest hit rate.

3GB, 100M, 
3 request/min

3GB, 100M, 
3 request/min



Weighted QoS of RAA
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Ø RAA algorithm outperforms the WA and UA algorithms by 
• about 23% and 37% in 5-Mbps upload B/W,
• about 12% and 15% in 10-Mbps upload B/W.

5-Mbps upload B/W, 10-Mbps upload B/W,



Utilization of Upload B/W of RAA
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5-Mbps upload B/W, 10-Mbps upload B/W,

Ø RAA algorithm outperforms the WA and UA algorithms by 
• about 51% and 28% in 5-Mbps upload B/W,
• about 168% and 74% in 10-Mbps upload B/W.



Running Time of RAA
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5-Mbps upload B/W, 10-Mbps upload B/W,

Ø All the RAA algorithms averagely take short running time: < 300 ms
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Conclusion
1. We evaluated our proposed algorithms on our campus and lab testbeds built upon several open-source 

projects. 

2. The experiment results show our proposed system and algorithms increase the overall QoS level (between 

0.72 and 1 in the scale of [0,1]) without overloading the network and gateway (terminate in < 1.2 s). 

3. For image download problem, our heuristic algorithms saves as much upload bandwidth as the optimal 

algorithm while achieving similar QoS levels.

4. For rate allocation problem, our proposed algorithm outperforms the two baseline algorithms by

l 23% and 37% in weighted QoS levels

l 168% and 74% in utilization of upload bandwidth
46



Future Works

• Utilizing the source code of Docker engine for better performance.

• Exploring more probability of different layer replacement policies.

• Larger experiments driven by real traces from our campus testbed.
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Layer Replacement Policy

Classical layer replacement policies:

• Least-Recently-Used (LRU)

• Most-Recently-Used (MFU)

• Least-Frequently-Used (LFU)

• Most-Frequently-Used (MFU)
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Problem Formulation
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New Problem Formulation
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Save upload bandwidth
Deploy decision

Total layer size
Residual 

Image pool size

Maximal 
download 
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Remaining resource R



Sample IoT Analytics
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Object 
Detector

Sound 
Classifier



QoS model of object detector 
and sound classifier:

Raw and processed data 
bandwidth models of object 
detector and sound classifier:

Parameters:

QoS and Bandwidth Models of IoT Analytics
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monotonically 
increasing in 
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24 IoT analytics containers using : 

1. Two sample analytics (object detector and sound classifier)

2. Different Ubuntu versions (16.04.5, 16.04.6, and 18.04.4)

3. Different Python versions (2 versus 3)

4. Different TensorFlow versions (1.14.0 versus 1.15.0)
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Sample IoT analytics containers



Testbed
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Sample IoT analytics containers
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Setup
• Image pool size: 3 GB
• Network bandwidth (Bu, Bd): (5, 100) Mbps
• TL: 5 minutes
• TS: 1 minute
• IoT analytics requests: Poisson process with 1/3-min inter-arrival time
• Departure time: [1, 10] minutes
• Each experiment run lasts for 40 minutes
• Weights: random floating point numbers in [0, 1]
• Approximation parameter ε: 0.3
• Step size α = 0.1
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Image Download Algorithm Analysis
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3 GB, 100 Mbps, 3 requests/min 4 GB

4 requests/min50 Mbps

Ø IDAD, IDAA, and IDAG all have high weighted QoS.
Ø # of the containers deployed on the gateway is much less than that on the cloud server.



Running Time of IDA
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Ø IDAD, IDAA, and IDAG all averagely finish in short time: < 40 ms.

3GB, 100M, 
3 request/min


