Download and Rate Allocation
of Internet-of-Things Analytics
at Gateways in Smart Cities

EEBHTRES L2 MHES TEXSET

Yu-Jung Wang

Advisor: Cheng-Hsin Hsu

Networking Multimedia Systems Lab
CS Dept. National Tsing-Hua University

S S E D ECI 3T

Outline

/ Dynamic Programing

(1-¢)-Approximation
Greedy Rate

Image
Download

Problem /

A /
Introduction A
w

\ -\

Internet of Things (IoT) is getting popular

30 75.44

IoT connected devices (in billions)

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Year

loT Analytics

Cloud Servers

loT Devices

Problems of Sending All Data to Cloud

« EXxcessive Internet access cost
« Degraded QoS due to network congestion

« Heavy burden of computing resource

loT Analytics

Cloud Servers

loT Devices

Dynamically Deploy IoT Analytics to Gateways

Advantages:
e Reducing work load of cloud servers
e Reducing upload bandwidth consumption
e Better utilizing download bandwidth of access links

.

Dynamically Deploy IoT Analytics to Gateways

[oT Analytics IoT Analytics
Containers Deploy Containers 10T Devices
O O. o0 O » O O. o0 O
Data Center Gate:’\ivgys \3%3 ;:
Servers m) G5y Y
‘! ! == = / ’ " 'i
— —~EEE ")) o
~_>< 8
Hetero. ~ @7 /g v
—== Access =) A= <
Raw Data L1nks Short-Range]

Processed Data

WLANSs

Research Problems

Image
Download

Problem

selects additional IoT analytics
to deploy on a gateway to
save as much upload
bandwidth as possible

Rate
Allocation
Problem

allocates the upload bandwidth
among IoT analytics on both
the data center servers and
gateways to maximize the
overall QoS level

10

Achieve as high
as 1 weighted

QoS level In the
scale of [0,1]

N~

We deploy as many IoT
analytics containers on

the gateway as possible.

Contributions

Image
download

problem

N

Our heuristic algorithms

saves as much upload
bandwidth as the optimal
algorithm while achieving

similar QoS levels.

Rate
Allocation

Problem

N

Our proposed algorithm

outperforms the two baseline

algorithms

1. by 23% and 37% in
weighted QoS levels,

2. by 168% and 74% in

utilization of upload bandwidth.

11

\

— ckgrou

\

12

Edge Computing

Edge Computing loT

Cloud Servers Cloud Servers

Far-end
) E_’ Gateways/
Near-end | eees] Edge Servers Gateways
:
B
+ Edge Devices loT Devices
Front-end - o gl

13

Container Images

Pack IoT analytics into container images can

o Easily package heterogeneous environments

o Make loT analytics be easily and Rapidly deployed

Container engine and management tools:

» Docker dOCer

e Kub
ubermetes €3 kubernetes

14

Docker -&*docker

Operating System _
Container

Image

Libraries \
:

Environment Variables

Codes // <

Base Image

Image layers
Operating System

Libraries

Environment Variables

Codes

Base Image

15

Different <

Shared =<

\ W4

Layer Dependency

People Counting Plate Recognition
Object Detector Object Detector
OpenCV 3 OpenCV 2
TensorFlow 1.13 TensorFlow 1.10
Python pip
Python2

apt-get update

Ubuntu 16.04

Kubernetes £3 kubernetes

Defines different roles for each IoT device
Combine each IoT device in clusters
Monitor the condition of analytics containers

Monitor resources of each IoT device
Automatically restart the dead containers

17

18

Implemented Algorithms

IDA RAA

Image Download Algorithm Rate Allocation Algorithm

Dynamic Programming Algorithm (IDA;) 1. Rate Allocation Algorithm (RAA)

Greedy Algorithm (IDA) 3. Unweighted Allocation Algorithm (UA)

LRP

Layer Replacement Policy

Default setting:
Least-Recently-Used (LRU)

19

Execution Time of Algorithms

l T l l l lIDA and (maybe) LRP
- Time

Basic System Architecture

Heterogeneous Requests

K8s

Device
Manager

Deployment
Manager

Docker

Image Manager
Master Image Pool

Docker

Image Manager
Image Pool

K8s

Gateway Download
: Images

Analytics

Download

Requests

Images

Deployment

Analytics

DepI loyed
Analytics

Manager

4

Processed
Data

Sensors

Server & Controller

Original Modules

Algorithms

. Extend Modules

Q Analytics
— Control Data
— Data Streams

21

Image Download Algorithm

Heterogeneous Requests

Server & Controller

: K8
: > Result Data Manager :
Device Deployment ry :
. g Manager Manager
: Y Processed
: : Data
: Docker Analytics
: Images
: (IEECBYENET S < | Download
: Master Image Pool Decision
Gateway Download Deployed| Analytics .
: Docker _{Images Analytics| List Original Modules
Download : Algorithms
In}age Mia)na%er Requests Image . Extend Modules
mage roo Download Algo. : :
Analytics : O Analytics
K38s Images : — Control Data
Deployment | : — Data Streams
Manager :

Sensors

Layer Replacement Policy

Heterogeneous Requests

Server & Controller

K8
> Result Data Manager .

Device Deployment 4
Manager Manager

Processed
Data

Docker Analytics

Image Manager |
Master Image Pool

E Gateway Download Dep [Oyed o
: Docker __+Images Analytics Original Modules
Download Algorithms

Image Manager Requests . Extend Modules

Image Pool :
Analytics : Q Analytics
K8s Images Layer : — Control Data
Deployment [Replacement Pol. |ENEIRO@DEIERYEREIGCM : —> Data Streams
Manager P :
Layers Info. Deleted|Layers Sensor|Data

Sensors 23

Rate Allocation Algorithm

Heterogeneous Requests

Server & Controller

s it D sz}
: Device Deployment ry
g Manager Manager |

: Processed

: Analytics p,¢,

. Docker Analytics List

Images

: Image Manager | Rate Allocation

Master Image Pool Algo.

: Gateway Download Deployed :
: Docker Images Ane{lytics QoS|Knobs Original Modules

: Algorithms
. Extend Modules

Q Analytics

Download
Requests

Image Manager
Image Pool

Analytics :
K8s Images : —» Control Data
Deployment { : — Data Streams
Manager :

Sensors

Overall System Architecture

Heterogeneous Requests

Server & Controller

: K8
: > Result Data Manager :
Device Deployment ry :
. g Manager Manager |

: Y ~ Processed

: Analytics p,¢,

Docker Analytics List

: Images

: IIERCRYENET O < |Download|| Rate Allocation

: Master Image Pool Decision

Gateway Download Deployed| Analytics .
: Docker —_¢Images Analytics| List Original Modules
Download : Algorithms
Image Manager Requests Image . Extend Modules
Image Pool : Download Algo. : O :
Analytics : Analytics
K8s Images Layer : — Control Data
Deployment [Replacement Pol. |ENEIRO@DEIERYEREIGCM : —> Data Streams
Manager P :
Layers Info. Deleted|Layers Sensor|Data

Sensors 25

Dynamic Programing
(1-¢)-Approximation

Image
Download
Problem

26

Symbols of Image Download Problem

Symbol Description

A Number of IoT analytics
L Total number of layers in the whole system
S Total image pool space of gateways

Maxr Indicator of image layer [is in analytic a
hy Indicator of image layer [is on gateway
Uy Size of image layer [
17, Download Algorithm time slot duration
By Total downlink bandwidth

rq(-) Uplink bandwidth consumption of raw data for analytic a

po(-) Uplink bandwidth consumption of processed data from analytic a

Ca Deploying analytic a on gateways

Approximation parameter of (1. — €)-approximation algorithm 2

Problem Formulation

Integer Linear Programming (ILP) formulation:
Saved upload bandwidth z

Maximal

. Residual download
a—1 Downloaded layer size s

—ToteNeyersize Image pool size amountin T,
S.T. Zle €q Zlel ma,l(l — hl)ul < min{S — Zlel huy, BdTL}

e, €{0,1}Va=1,2,..., A. v

Remaining resource R

28

Dynamic Programming Algorithm (IDA,)

Input: downloaded layer size s = {s11,812,...,51.0,521,---,54.1}, saved upload

bandwidth z = {21, 29, ..., 24}, remaining resource R, selected container a.

Output: total saved upload bandwidth t*, deployed containers D*.

Time complexity:
pseudo-polynomial

1: if R <0orn <0 then

2t =0,D = {) } Resource is used up or all the containers are checked
3: elseif >, s, > R then } Remaining resource is

4: t*, D* =IDAp(s,z, R,a — 1) //Not choose a not enough to deploy a

5. else

6: tn.D,=IDAp(s,z,R,a—1) //Notchoosea 7

7. ti,D; =IDAp(s,2, R — S, Say.a — 1) //Choose a

8. ift; <t,then //Return the better one Remaining resource is
9: t* =t,,D* = D, enough to deploy a
10: else

11: "=t +z2, D" "=D;Ua y

12: return t*, D*

29

(1 — €)-Approximation Algorithm (IDA,)

Algorithm 4 IDA Time complexity:
Input: downloaded layer size s = {s11,S12,-..,81.0,521,.--,54.1}, saved upload 0(A3)
bandwidth z = {z, 29,...,24}, remaining resource R. approximation parameter €
€. Approximation factor:
Output: total saved upload bandwidth ¢/, deployed containers D’. (1 — E)
I: initialize: t' =0, 2/ = {2/} foralla = 1,2,..., A
LK = eagf?i”{za} //Rounding denominator :
: a Rounding the saved upload

cfora=1;a< A;a+ + do
2 =|2] [/Give the bound by rounding it by K
. t,D' =IDAp(s, 2, R, A [/Run IDA, with new saved upload bandwidth

: for a € D' do z = {2,1;2,21---:2’/1}
t'=t+z,

bandwidth of each container

return t’, D’

30

Greedy Algorithm (IDAg)

Input: dO\fvnloaded layer size s = {81:1,.81’2,...,Sl,L,SQ’l,...,SA,L}, saved upload Time complexity:
bandwidth z = {21, 2o, . .. ,zA}., remaining resource R 0 (A log A)

Output: total saved upload bandwidth ¢, deployed containers D.

1: initialize: t =0, D = {}

2: fora=1;a < A;a+ +do Sort the saved upload bandwidth

v e = [/ Ea, normalized to the consumed

4: Sort the containers by n,, in the descending order. download bandwidth

5: for each container a in the descending order do

6 if R < 0 then Dhy 4 .

} Remainingresource is used up

7 break

8. elseif >, s, < Rthen

9 D=DUa

0 N > Remaining resource is enough to deploy a

11: R=R—>" S

12: return ¢, D 31

Allocation

Problem

32

Symbols of Rate Allocation Algorithm

Symbol

Description

Number of IoT analytics
Allocation Algorithm time slot duration
Total uplink bandwidth
The set of analytics running on data center servers
The set of analytics running on gateways
Uplink bandwidth consumption of raw data for analytic a
Uplink bandwidth consumption of processed data from analytic a
QoS level of analytic a
Weight of analytic a
QoS knob of analytic a
Maximum QoS knob to run analytics a
Minimum QoS knob to run analytics a

Step size of the proposed rate allocation algorithm 33

Problem Statement and Formulation

The problem can be mathematically written as:

> waga(k (6.5a)
a€AcUAG Processed data b/w
aw data b/w
s.t. ZR)+) pa(ka) < By (6.5b)
acAc a€Ag Upload network bandwidth

L, <k, <k:Vac AcUAg. (6.5¢)

34

Rate Allocation Algorithm (RAA)

Input: Weight w,, minimal QoS knob k,, maximal QoS knob k,, QoS model qa(+), raw

bandwidth models r,(-), processed bandwidth models p,(-) Va € A U A, upload

bandwidth B, step size a.

Output: Optimal QoS knobs decision £k, Va € Ac U Ag.

I:

o p—
- O

A S = A LB R~

initialize: A/c = Ac, Al = Ag, k, = k,Va € Ao U Ag

\

if a € Ac then N
Let g(ka) = waa(ka) /7 (ko) Calculate g(kq) =
else //a € Ag e
Let g(k,) = waga(ka)/pa(ke)
while 0 < B, and A'c UA' # @ do
find the container a with the maximal g(k,) Va € A'c U A'¢
k, =k, + a.
if k, > k, then

remove o from A’ U A/

. return k, Va € Ao U Ag

Time complexity:
1
O(=|Ac U Agl)

weighted QoS value
bandwidth

of each container

Repeatedly find the maximal
g(k,) of each container, and

" increase the QoS knob k, by the
step size «.

35

Testbed

Controller
Server
Intel i7 3.6 GHz

— TC command

)
Q
-
| -
Q
i
)
Ll

Gateway
Intel i3 2.1 GHz

Traffic Generator
Intel i7 3.6 GHz

Controller
: Rate
1\? CVICE Allocatation
anager Algorithm

Deployment
Manager

>

Server

Cloud Server

IoT Devices

Object
Detector
Sound
Classifier

o
0]
(©)

Gateway
Layer
Down}oad Replacement
Algorithm ,
Policy

Deployment Object Sound |\ o o o
Manager RECCIALTLE

Sensor

>

- Kubernetes - Docker
- Sensors ‘,’ Network

Q Docker, Python, TensorFlow, MQTT

S

Python

- MQTT Server

RTSP s

Internetwork

37

Default Sample Run Analysis

1
Py =—=0On Server
08 é g 50 | === On Gateway | |
5 = : 40
= 0.6 = 6 3
= B g 30
-~ = o
004 5 4 ©
] S 20 -
g 0.2 T 2 “
: c% 10 -
O , . . O . , , . . . O ’ ‘---" . i ..t‘ ‘ ‘ *us"
0O 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (m) Time (m) Time (m)
1200 x : : : - 100 ‘ ‘ 5
x o IDAD ’_% w M” "N /%:
4 Qo
—.1000 x RAA S g0 =
= 80 " & -
q) | g &
< S 60 53
H 600 - * = O
2 . = 40 £2
= 400 - - M
& - iy x g 20- 21
200 % * ok x, - E Z
%
0 *x *Ox_ xR x O (o] xguﬂ x& x Qxxgx 8 0 Aot ‘ ‘ LML@LM nm*J 0 bl b = 0- ‘ ‘ i ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (m) Time (m) Time (m)

» Our proposed algorithms achieve high weighted QoS: 0.72 - 1
» Negligible running time of IDA, and RAA: at most 1200 ms
» Do not overload the upload and download bandwidth 38

Weighted QoS of IDA

[1PA, IPA, []1PA,

Weighted QoS
2 g

S
(\®)
!
|

IDA Def. IDA 4GB IDA 50M IDA Arr4

3GB, 100M, Experiment
3 request/min

» IDA,, IDA,, and IDA; all have high weighted QoS.
> # of the containers deployed on the gateway is much less than that on the cloud server.

Deployed Number of IDA

>
>

IDAg has the highest hit rate.
IDA; outperforms IDAp and IDA, by

35% and 41% in IDA Def,

32% and 43% in IDA 4GB,

39% and 9% in IDA 50M.

35 ' I DA Hit [|IDA_ Miss 35 — DA, A I DA r 0.7

. -o IDAJHR. -+ IDA, HR. ——IDA_HR.
§ 30 | I IDA A Hit []IDA A Miss 30
2 B IDA Hit []IDA_ Miss § 2
B 251 - £25- ~
= —] <) E
S 20 A - § 20 -
n -+
ar & -
O) <D
£ 15 - 515 2
v} = P
= o
= Q ~
s 10 i © 10 1)
@) = A
o 51 - 5 -
Z.

O - = 0 i

IDA Def. IDA4GB IDASOM IDA Arrd IDA Def. IDA 4GB IDA 50M IDA Arrd
3GB, 100M, Experiment 3GB, 100M, Experiment
3 request/min 3 request/min
» IDA,, IDA,, and IDA; all consider “current” condition.

40

Saved Upload B/W of IDA

Saved Bandwidth (Mbps)

20 -IDAD Hit - IDA A Hit -IDAG Hit
C|IDAD Miss EIDA A Miss EIDAG Miss
15 -
10 -
5 |

0_

IDA Def. IDA 4GB IDA 50M
3GB, 100M, Experiment

IDA Arr4

Saved Bandwidth (Mbps)

o [EEDA, EETDA, EEPA

...c,...IDAD HR. -+ IDAA HR. —..—IDAG H.R.

[E—
(V)]
]

[E—
o
]

()1
|

0,

IDADef. IDA4GB IDASOM IDA Arr4
3GB, 100M, Experiment

Deployment Hit rate

3 request/min

3 request/min

» IDA,, IDA,, and IDA; all perform well in in terms of saved upload bandwidth.
» IDA,, IDA,, and IDA; all consider “current” condition.
» IDAg has the highest hit rate.

41

Weighted QoS of RAA

5-Mbps upload B/W,

10-Mbps upload B/W,

Weighted QoS

<
N=

=
o0

S
0

S
o)

S
n

| |RAA WA [JUA

i i i .
i |
.
2 3 4 5 Avg
Run

Weighted QoS

S
o

ot
o0

<
9

S
o)

0.5

UA

Ea

[IRAA WA [
e

T

ga

2

3

Run

4

5

Avg

» RAA algorithm outperforms the WA and UA algorithms by

* about 23% and 37% in 5-Mbps upload B/W,
e about 12% and 15% in 10-Mbps upload B/W.

42

Utilization of Upload B/W of RAA

5-Mbps upload B/W, 10-Mbps upload B/W,

4 | | | | 4 | | | |
z [[RAA EEWA []UA z 11 [JRAA EEWA []UA
e) o)

\E/ 3 - \2/ 3 I - =2
= = i i
@) % o
O 2 2 e &
= 0 = o .
-] & & - b
m gs R . m -
= 1 = 1-
< <
2 2
o, @h
N | M|
0 0
1 2 3 4 5 Avg 1 2 3 4 5 Avg
Run Run

» RAA algorithm outperforms the WA and UA algorithms by
 about51% and 28% in 5-Mbps upload B/W,
e about 168% and 74% in 10-Mbps upload B/W. 43

Running Time of RAA

5-Mbps upload B/W, 10-Mbps upload B/W,
400 : ' : : 400 |
[IRAA EEWA [JUA || [RAA IEWA [JUA
= 300 - 2 300
= D)
5 - ~ E b
£ 200 - T]1 J[- | [200 i I
=¥ 20
= i 2 |
_ = |
CE 100 = 100 m
0 0
1 2 3 4 5 Avg 1 2 3 4 5 Avg
Run Run

» All the RAA algorithms averagely take short running time: < 300 ms

44

Conclusion

We evaluated our proposed algorithms on our campus and lab testbeds built upon several open-source

projects.

The experiment results show our proposed system and algorithms increase the overall QoS level (between

0.72 and 1 in the scale of [0,1]) without overloading the network and gateway (terminate in < 1.2 s).

For image download problem, our heuristic algorithms saves as much upload bandwidth as the optimal

algorithm while achieving similar QoS levels.

For rate allocation problem, our proposed algorithm outperforms the two baseline algorithms by

® 23% and 37% in weighted QoS levels

® 168% and 74% in utilization of upload bandwidth
46

Future Works

Utilizing the source code of Docker engine for better performance.
Exploring more probability of different layer replacement policies.

Larger experiments driven by real traces from our campus testbed.

47

Yu-Jung Wang
yurongwang.tw@gmail.com

S

NAME OF YOUR

NAME OF YOUR

Layer Replacement Policy

Classical layer replacement policies:
« Least-Recently-Used (LRU)

* Most-Recently-Used (MFU)

« Least-Frequently-Used (LFU)

« Most-Frequently-Used (MFU)

51

Problem Statement

Problem 2. Let k, be the default QoS knob of analytics container a from all A containers
that can be deployed to the gateway. Determine whether each a should be deployed at the

gateway to maximize the saved upload traffic without exceeding the image pool size S.

52

Problem Formulation

Integer Linear Programming (ILP) formulation:
Raw data Processed

A p/ w Data b/w
max Z k.)]e. Deploy decision

Total Image Size

A
S.t. ZeaZmalul < S;

Image pool Size
A LTotaI layer size

Zf’azmaz 1 — h)w < Bilr;

Maximal download
e, €{0,1}Va=1,2,.... AamountinT,

(5.1a)

(5.1b)

(5.1c)

53

New Problem Formulation

Integer Linear Programming (ILP) formulation:

A Save upload bandwidth Maximal
. axima
max Z[Ta(k‘a) — pa(ka)]ea Deploy decision Residual download
a=1 Total layer size Image pool size amount
A L . L
S.1. Za:l €a lel ma,l(l — hl)ul S IIllIl{S — lel hlul, BdTL}

W—/

ea €{0,1} Va=1,2,... A Remaining resource R

54

0.8

0.6
QoS Knob

04

T T T T T T (=
Al o v o e (=] gl (=]
oo T o B S

?Q@Mv YIprmpueg eye(] passed0l]

0.8

: 0.6
QoS Knob

=} =] (=] (=] =] (=]]
O wy <t o ol —_

(sdq3) yIpmpueg eye(ey

0.8

0.6

Sample IoT Analytics

QoS Knob

04

OI.2

-~ o e o~
S o =
(9) Ko1endoy ur SO0

0.6

Object
Detector

(c)

(b)

(a)

- o0 O -t ol o
s S S =) =}
o o o o

08 09

0.7
QoS Knob

()

0.6

05

04

(sdq3]) qIpmmpueg ®yR(] PISSOI0I]

o o o o o o o o
=] (=] (=] (=] (= S (=]
~ \O w < [ag} ol —
(sdqy]) yiprpueq eyeq aey
.
— 9 9 < o
o (=) o

S
(9) Korendoy ur SO0

Sound
Classif

06 0.7 0.8 09
QoS Knob

0.5

04

0.6 0.7 08 09
QoS Knob

0.5

04

55

(e)

(d)

QoS and Bandwidth Models of IoT Analytics

QoS model of object detector

and sound classifier:

Raw and processed data
bandwidth models of object

detector and sound classifier:

0°(ko) = par€P™? ™ 4 pos;

qz(ka> — Pa,1 hl(pa,Qka) + Pa,35

Ta(ka) — pa,4ka =+ Pa,5;

pa(ka) — pa,6ka + Pa,75

Parameters:

Analytics Pa,1 Pa,2 Pa,3 Adj' R2 Pa 4 Pa,5 Ad.]' R2 Pa.6 Pa,7 Adj' R2
Sound Classifier | 0.01 | 3.99 | 0.16 | 0.9630 | 687.56 | 1.01 | 0 0.05 | Undef.
Object Recognizer | 0.16 | 494 0 0.9828 | 52.52 | 545 | 0.9974 | 30.01 | 4.17 | 0.9956

monotonically
increasing in

[Ka kal

56

Sample IoT analytics containers

24 IoT analytics containers using :

1.

2.

Two sample analytics (object detector and sound classifier)
Different Ubuntu versions (16.04.5, 16.04.6, and 18.04.4)
Different Python versions (2 versus 3)

Different TensorFlow versions (1.14.0 versus 1.15.0)

57

Testbed

Controller
Server
Intel i7 3.6 GHz

Q
=
Q — TC command
=
Ll

A Gateway
i Intel i3 2.1 GHz

Traffic Generator
Intel i7 3.6 GHz

58

Sample IoT analytics containers

Container | Size (GB) | # of Layers || Container | Size (GB) | # of Layers
SC 1 0.72 19 OD 1 0.88 16
SC 2 0.81 20 OD 2 0.96 16
SC 3 1.27 19 oD 3 1.43 16
SC4 1.35 20 OD 4 1.5 16
SC 5 0.81 19 OD 5 0.97 16
SC 6 0.9 20 OD 6 1.02 16
SC7 1.35 19 OD 7 1.51 16
SC 8 1.44 20 OD 8 1.59 16
SC9 0.81 21 oD 9 0.97 19
SC 10 1.16 22 OD 10 1.41 21
SC 11 1.67 23 OD 11 1.83 21
SC 12 1.93 24 OD 12 2.1 22

Setup

Image pool size: 3 GB

Network bandwidth (B, By): (5, 100) Mbps

T.: 5 minutes

Ts: 1 minute

IoT analytics requests: Poisson process with 1/3-min inter-arrival time
Departure time: [1, 10] minutes

Each experiment run lasts for 40 minutes

Weights: random floating point numbers in [0, 1]

Approximation parameter €: 0.3

Step sizea = 0.1

60

Image Download Algorithm Analysis

3 GB, 100 Mbps, 3 requests/min 4 GB
1— ‘ ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘ ‘
205 ‘|:|IDAD EEIDA DIDAG‘ » Los. ‘|:|IDAD EEIDA DIDAG‘
2 (.).9 J{ : 2 (.).9 i i i
< J[% I = Jf i
2085 : £08s %
2 08 2 08
0.75 0.75
07 - — 07 - o
1 2 3 4 5 Avg 1 2 3 4 5 Avg
Run Run
50 Mbps 4 requests/min
. 9; ‘i’IDAD ‘-IDAI; DID‘AG‘ 7 ; 9; | ‘i’IDAD -IDAI; DID‘AG‘ |
209 17, o B A : 2 09 - :
S |]L 0 I Tl < : il }1
Zoss Ml : Zoss 7 :
§ 08 HlH — § 08 H m im —
075 - : 075 - % _ ml H H :
07 - - 07" Im .
1 2 3 4 5 Avg 1 2 3 4 5 Avg
Run Run

» |IDAD, IDAA, and IDAG all have high weighted QoS.
» # of the containers deployed on the gateway is much less than that on the cloud server. &

Running Time of IDA

[DA, IPA, []1PA,
35 -

U
()
l
T

Running Time (ms)
= S

()|
!
T

-

IDA Def. IDA 4GB IDA 50M IDA Arr4

3GB, 100M, Experiment
3 request/min

» IDA,, IDA,, and IDA; all averagely finish in short time: < 40 ms.

62

