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Abstract

Internet-of-Things (IoT) devices are connected to the Internet through a

gateway, which can host IoT analytics encapsulated in containers to convert

raw sensor data into more condensed processed data. In this thesis, we study

two research problems to maximize the overall Quality-of-Service (QoS)

level of all IoT analytics that run on both data center servers and gateways.

The first problem is selecting additional IoT analytics to deploy on a gate-

way to save upload bandwidth due to uploading raw sensor data. The second

problem is allocating the residue upload bandwidth among all IoT analytics

to maximize the overall QoS level. We propose several algorithms to solve

these two research problems. Moreover, we implement several classical layer

replacement policies and discuss their performance. We have implemented

real testbeds to evaluate our proposed system and algorithms. Our exper-

iment results reveal that our proposed algorithms: (i) capitalize the down-

load bandwidth and storage space of the gateway in order to save the upload

bandwidth consumption, (ii) achieve high QoS levels without overloading the

network and gateway, (iii) outperform the other two baseline algorithms by

18% and 37% in QoS levels in low upload network bandwidth environment,

and (iv) outperform the other two baseline algorithms by 162% and 61% in

the utilization rate of upload bandwidth in high upload network bandwidth

environment.
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中中中文文文摘摘摘要要要

物聯網 (IoT)裝置透過閘道器連接至網路，並且閘道器讓被包裝成

容器的物聯網分析程式能夠轉換原始的感測器資料成為更為濃縮的處

理過的資料。在這個論文裡，我們研究兩個研究問題去最大化跑在資

料中心伺服器上和閘道器上的物聯網分析程式的總體服務品質 (QoS)

。第一個問題是根據需要上傳的原始的感測器資料，挑選一部分的物

聯網分析程式去佈建在閘道器上，用以節省所需的上傳頻寬。第二個

問題是分配剩下的上傳頻寬給所有的物聯網分析程式，用以最大化總

體的服務品質。我們提出了一些演算法去解決這兩個研究問題。除此

之外，我們實作了一些經典的分層替換策略並且探討了他們的表現。

我們已經實作了真實的平台用以測試我們提出的系統和演算法。我們

的實驗結果揭示了我們提出的演算法： (i) 運用閘道器的下載頻寬和

儲存空間來節省上傳頻寬的消耗， (ii)在沒有過載網路和閘道器的情

況下，取得高服務品質級別， (iii)在低上傳頻寬的環境下，比起其他

兩個基準算法，服務品質級別分別高出了18%和37%， (iv) 在高上傳

頻寬的環境下，比起其他兩個基準算法，上傳頻寬的使用率分別高出

了162%和61%。
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Chapter 1

Introduction

Along with the tremendous increase in the number of Internet-of-Things (IoT) devices,

analyzing IoT sensor data has led to new market opportunities [4]. We refer to such

analysis tasks as IoT analytics [43], which extract useful information from the ocean of

sensor data. Smart city1 [49] is one of the most popular IoT usage scenarios in which

IoT analytics enable more efficient resource usage, higher Quality-of-Service (QoS), and

lower management costs. In smart cities, IoT devices are often clustered, and thus it

makes sense to deploy a CPE (Customer Premises Equipment) for each cluster of IoT

devices. CPEs are essentially gateways that interconnect IoT devices and the Internet, as

illustrated in Figure 1.1. More precisely, IoT devices are connected to their gateways via

short-range wireless (or wired) networks, while gateways are attached to heterogeneous

Internet access links.

A naive way to deploy IoT analytics is to send all sensor data through gateways and

access links to data center servers for analysis. Doing so, however, incurs a large amount

of network traffic over the access links, which could be costly if city-wide 4G/5G cellular

links are installed. Uploading data from rich-media sensors, like microphones, cameras,

and Lidar (Light detection and ranging) could cause: (i) high Internet access cost and (ii)

degraded QoS due to network congestion. To cope with these issues, we dynamically de-

ploy some IoT analytics to gateways because: (i) modern gateways offer nontrivial com-

putational power, and (ii) download bandwidth of access links may not be fully utilized.

For IoT analytics running on gateways, only processed data are sent over gateways and

access links, and thus the upload bandwidth consumption is reduced. As shown in Fig-

ure 1.1, IoT analytics are packed into container images that can be launched on different

computers on-demand [23, 24].

Deploying containers on gateways is not an easy task, because container images may

1For brevity, we use the term smart city, while our discussion can be generalized to smart spaces in

various scales, such as smart buildings, smart campuses, and smart communities.
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Figure 1.1: We propose to deploy some IoT analytics on gateways to reduce the bandwidth

consumption.

be quite large. For example, a Ubuntu Linux base image has a size of 120+ MB, while

adding Mobilenet [25] to it increases its size by 122–638 MB. These container images

are organized into layers, where a layer may be shared by multiple container images.

The image layers are downloaded and stored in the image pool at the gateway, which

has limited storage space. Therefore, before deploying an IoT analytics to a gateway, we

need to carefully account for both the pros (saved upload bandwidth) and cons (consumed

download bandwidth and storage space).

1.1 Contributions

In this thesis, we strive to solve the following two research problems to maximize the

overall QoS level of all IoT analytics that run on both data center servers and gateways.

• Image download problem selects additional IoT analytics to deploy to a gateway

to save as much upload bandwidth as possible.

• Rate allocation problem allocates the upload bandwidth among IoT analytics on

both the data center servers and gateways to maximize the overall QoS level.

In particular, we propose an optimal, approximative, and heuristic algorithm to solve

the image download problem. We also propose a heuristic algorithm to solve the rate

allocation problem. We discuss four classical layer replacement policies as well. We have

implemented our solution on open-source projects, including Kubernetes [7], Docker [3],

2



and TensorFlow [10]. We set up testbeds to evaluate the performance of our proposed

algorithms under different system parameters.

Our experiment results show the merits of our proposed algorithms, e.g.:

• We achieve as high as 0.99 weighted QoS level in the scale of [0,1] because we

deploy as many IoT analytics containers to the gateway as possible.

• For image download problems, our heuristic algorithm saves as much upload band-

width as the optimal algorithm while achieving similar QoS levels.

• For rate allocation problems, our proposed algorithm outperforms the two baseline

algorithms by 18% and 37% in weighted QoS levels in a low upload network band-

width environment, and it also outperforms the two baseline algorithms by 162%

and 61% in the utilization of upload bandwidth in a high upload network bandwidth

environment.

All the results are achieved without overloading the access link and gateway. For example,

we have observed at most a 400 ms running time in our algorithms.

1.2 Thesis Organization

This thesis is organized as follows. We give the background of the architectures of edge

computing and Internet of Things in Chapter 2. We state the research problem in Chap-

ter 3. Chapter 4 gives our system architecture. We solve the two research problems:

(i) image download problem in Chapter 5 and (ii) rate allocation problem in Chapter 6.

We then discuss the representative layer replacement policies in Chapter 7 We implement

our solutions and report the evaluation results in Chapter 8. We survey the literature in

Chapter 9. Chapter 10 concludes the thesis and describes our future work.

3



Chapter 2

Background

In this chapter, we introduce the architecture and the features of edge computing and

IoT. We next discuss how to package IoT analytics into containers and the advantages of

containers. In the end, we briefly present two container management tools, Docker and

Kubernetes, which are used in our implementation.

2.1 Edge Computing

The mobile devices and various sensors are becoming more and more prevalent. The re-

sulting massive data from sensors and devices becomes a heavy load on the cloud servers.

In addition, most of these devices need to respond to users in a short time, which some-

times suffers from the long routes from the cloud servers to the end-users. In response

to the long distance between the cloud servers and end-users in cloud computing, edge

computing seeks to provide services closer to end-users. Edge computing puts the ana-

lytics in the local devices or servers, which means it has the benefits of low latency and

quick response time. Thus, edge computing plays an important role in many fields like

surveillance, virtual reality, etc.

Figure 2.1 shows the architecture of edge computing. Generally, edge computing

contains three layers [48]:

• Front-end. The front-end includes edge sensors and edge devices, which provide

interactions for the end-users. Edge devices in the front-end have to respond in real-

time to users. However, these edge devices usually have limited resources, which

makes it hard to accomplish all the requested tasks. Therefore, edge devices in the

front-end still need help from the near-end and far-end.

• Near-end. The near-end includes gateways and edge servers. Gateways deal with

the most of network traffic in edge computing. Edge servers have more resources

4



to run the analytics, which means edge servers in the near-end can run harder and

more sophisticated analytics like sound classification and object detection. Also,

edge servers are close to users. Although the network latency of the analytics in

edge servers increases a little bit, users still can get better real-time services.

• Far-end. The far-end includes cloud servers. These servers typically are far away

from end-users. Compared to the edge devices and edge servers, cloud servers have

the most resources. Hence, cloud servers are able to run analytics, such as data

mining and machine learning. Nonetheless, the long distance between cloud servers

and users dramatically increases the network latency, which limits us from putting

all the analytics in cloud servers.

Far-end

Near-end

Front-end

Figure 2.1: The architecture of edge computing [48].

2.2 Internet of Things

Originally a new idea for Radio Frequency Identification (RFID) to connect items to the

Internet in 1999 [15], IoT is getting more and more popular today. IoT is contained

everywhere in our life, such as the so-called smart home [31] and smart city [27, 49]. In

2014, Amazon released its smart speakers, Amazon Echo [1], which is a smart assistant

designed to help people with everyday tasks like ordering pizzas, taking a phone call,

playing music, etc. Also, Google and Alibaba Group introduced their smart speakers,

Google Home [5] and Tmall Genie [11], in 2016 and 2017 respectively. According to the

5



statics [6], the number of IoT connected devices is forecasted to grow to 75.44 billion in

2025.

Figure 1.1 gives the typical architecture of IoT. IoT is composed of three main com-

ponents:

• Sensors/Devices. In IoT, billions of sensors/devices have been developed in many

fields. These IoT sensors/devices can provide various types of data for IoT analytics,

such as images, audio, air conditioning, etc. Compared to the data produced by

humans, sensors/devices can automatically and continuously produce diverse types

of data, which is a heavy burden for cloud servers. Therefore, sensors/devices are

interconnected to gateways instead of directly connecting to cloud servers.

• Gateways. As middlewares between sensors and cloud servers, gateways transfer

and buffer the raw data from sensors to cloud servers. In addition, some gateways

have restricted resources to run some IoT analytics. Running IoT analytics on gate-

ways not only makes the loading of cloud servers lighter but saves the bandwidth of

cloud servers. Some IoT analytics need huge raw data from sensors but output the

simple processed data to the users. For example, transferring a 4-second and 22-kHz

audio needs around 300 KB of bandwidth, but transferring the recognition result of

the audio only uses about 10 bytes of bandwidth,

• Cloud Servers. Cloud servers provide services to users by running IoT analytics

and receive data from sensors through gateways. Cloud servers have much more

resources than gateways to satisfy numerous and various IoT analytics.

2.3 IoT Analytics

!"#$%&'()*+,-&#.

/'0$%$'#-

1(2'$3(.#(&*4%$'%05#-

637#-

8%-#*9.%)#
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/'0$%$'#-
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Figure 2.2: Illustrations of IoT analytics containers.
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The popularity of IoT devices leads to another issue - how to rapidly and easily col-

lect data and manage resources to run the applications in IoT devices. We use container

virtualization techniques to solve the above issue. We can package applications and the

needed environments, including operating systems, libraries, environment variables, etc

into containers, which is shown in Figure 2.2. After analytics containers are deployed

to devices, the environments are set up in advance, which can significantly shorten the

startup time of analytics. Moreover, some analytics containers can share the same envi-

ronment, such as the same operating system, which can dramatically reduce the storage

occupancy. Therefore, a container is a lightweight process in IoT devices. To create IoT

analytics containers, we then introduce two containers management tools in the following

two subsections 2.3.1 and 2.3.2, which are also employed in our implementation.

2.3.1 Docker

One of the most famous container technology is Docker [3]. Docker container technology

is developed from Linux Containers (LXC) [8] technology. In addition to LXC virtual

technology, Docker also adds storage drivers and the concept of base images. The concept

provides good architecture and dependency in order to cache Docker images. Docker

containers begin from images that can be seen as the code of containers. An image can

start many containers, and these containers can do different actions if needed. A new

image can be built from an existing image as a base and with new commands on the base.

Also, this image can be the base image of many other images. We create two new images,

python3 and pip3, by two Docker files in Tables 2.1 and 2.2 as an example. In Table 2.1, to

create python3, we first pull an image (ubuntu:16.04) from a remote Docker pool and use

ubuntu:16.04 as a base image. Then, we create the working directory and install Python3

through Linux commands. After creating python3, we follow similar steps, using python3

as a base image and install pip3 through Linux commands, given in Table 2.2. Now, we

have three images, ubuntu:16.04, python3, and pip3. Notice that Docker fails to run a

container from the image pip3 if one of ubuntu:16.04 or python3 is missing.

2.3.2 Kubernetes

Kubernetes is originally designed by Google to manage the clusters of numerous IoT ana-

lytics containers deployed on heterogeneous IoT devices and gateways at different places.

Kubernetes provides automatical deployment, scaling, and management for IoT analytics

containers and IoT devices. Users can define pods and services for analytics containers to

deploy different analytics containers to heterogeneous IoT devices. Users can also define

different roles for each IoT device and combine each IoT device in clusters. Kubernetes
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Table 2.1: The Docker File of Python3

From ubuntu : 1 6 . 0 4

RUN mkdir py thon3

WORKDIR / py thon3

RUN apt−g e t −y u p d a t e

RUN apt−g e t i n s t a l l −y python3

Table 2.2: The Docker File of Pip3

From python3 : l a t e s t

RUN mkdir p ip3

WORKDIR / p ip3

RUN apt−g e t −y u p d a t e

RUN apt−g e t i n s t a l l −y python3−p i p

can thus monitor the condition of the analytics containers and the resources in each IoT

device. Moreover, users can easily scale up the number of IoT analytics containers since

Kubernetes can automatically create replicas of analytics containers. Beside, Kubernetes

also provides services like automatically restarting the dead analytics containers or updat-

ing analytics containers without termination.

8



Chapter 3

Research Problem

In this chapter, we first present the considered problem in Section 3.1. We then decompose

it into two subproblems in Section 3.2.

3.1 Problem Statement

Both the data center servers and gateways are capable of executing IoT analytics contain-

ers to turn raw sensor data into (more condensed) information, or processed sensor data,

as illustrated in Figure 1.1. We use Bu and Bd to denote the upload and download band-

width of the access link reserved for IoT analytics. We let A be the number of analytics

containers and L be the number of layers. We use an A × L boolean matrix M to map

layers to containers, i.e., ma,l = 1 iff l (l = 1, 2, . . . , L) is part of a (a = 1, 2, . . . , A).

The size of the image layer l is represented by ul. Therefore, the size of a is
∑L

l=1ma,lul.

The decision variable ea = 1 denotes deploying a on the gateway, and ea = 0 denotes

otherwise.

To execute a on a gateway, all its layers must be downloaded to the image pool of the

gateway. The image pool has a limited size S. We use boolean value hl (l = 1, 2, . . . , L)

to denote whether layer l is already on the gateway, i.e., hl = 1 iff l is in the image pool.

We assume IoT analytics have control knobs, referred to as the QoS knobs to tradeoff

their QoS and resource consumption. The control knobs are normalized in [0, 1]. Execut-

ing container a with QoS knob ka on a data center server consumes ra(ka) kbps upload

bandwidth due to raw sensor data, while doing so on the gateway consumes pa(ka) kbps

upload bandwidth due to processed sensor data. Container a produces results with a QoS

level of qa(ka) under QoS knob ka. We use ǩa and k̂a to denote the minimal and maximal

QoS knob of a, which are empirically derived. Table 3.1 summarizes the symbols used

throughout the thesis. We write our main research problem as follows.
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Problem 1. Given A IoT analytics containers, where each container a has a weight wa.

Our problem is to determine: (i) the boolean variable ea that indicates whether down-

loading/deploying container a to the gateway without overflowing the image pool size (S)

and (ii) the target QoS knob ka without overloading upload and download bandwidths

(Bu and Bd). The goal is to maximize the overall weighted QoS level (
∑

a∈A

waqa(ka)).

3.2 Problem Decomposition

IDA LRP

RAA

Figure 3.1: The execution time of the three subproblems (P1, P2, and P3).

Solving Problem 1 is not easy because of the different properties of the two decision

variables: ea and ka. The decisions on ka must be made frequently to cope with the

dynamic environments. On the other hand, changing ea may result in nontrivial down-

load/storage overhead, and thus should be performed less frequently. On top of that,

some image layers are available in the image pool, while others need to be downloaded.

Therefore, we decompose Problem 1 into: (i) the image download problem (IDA) that de-

termines ea, (ii) the rate allocation problem (RAA) that determines ka, and (iii) the layer

replacement policy (LRP) that releases free space when the image pool is full. Figure 3.1

presents the executions timeline of the three subproblems. The image download problem

is solved once every TL second. It picks a few IoT analytics containers to deploy to the

gateway, while the missing layers must be downloaded within TL second (finished before

the next execution time). The rate allocation problem is solved more often: once every TS

seconds, where TS ≤ TL. It sets the optimal QoS knobs of individual IoT analytics con-

tainers without overloading the upload bandwidth. We assume TL is a multiple of Ts for

simplicity. Unlike the image download problem and the rate allocation problem solved

periodically, the layer replacement policy checks the usage of the image pool before the

image download problem. It runs only when the usage is over the threshold.
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Table 3.1: Symbols Used in This Thesis

Symbol Description

A Number of IoT analytics

L Total number of layers in the whole system

S Total image pool space of gateways

MA×L Indicator of image layer l is in analytic a

hl Indicator of image layer l is on gateway

ul Size of image layer l

TL Image Download Algorithm time slot duration

TS Rate Allocation Algorithm time slot duration

Bu Total uplink bandwidth

Bd Total downlink bandwidth

AC The set of analytics running on data center servers

AG The set of analytics running on gateways

ra(·) Uplink bandwidth consumption of raw data for analytic a

pa(·) Uplink bandwidth consumption of processed data from analytic a

ea Deploying analytic a on gateways

ǫ Approximation parameter of (1− ǫ)-approximation algorithm

qa(·) QoS level of analytic a

wa Weight of analytic a

ka QoS knob of analytic a

k̂a Maximum QoS knob to run analytics a

ǩa Minimum QoS knob to run analytics a

α Step size of the proposed rate allocation algorithm

Wh High-water mark of the storage usage in gateway

Wl Low-water mark of the storage usage in gateway
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Chapter 4

System Architecture

This chapter presents our system architecture. Figure 4.1 gives an overview of our pro-

posed system. We describe the key system components below.

Deployment 

Manager

K8s

Deleted Layers

Gateway

Image 

Download Algo.

Layer

Replacement Pol.

Rate Allocation

Algo.

Heterogeneous Requests

Deployment 

Manager

Device 

Manager

K8s

Image Manager

Master Image Pool

Docker

Result Data Manager

Analytics

Images

QoS Knobs
Download 

Images

Layers Info.

Sensors

Sensor Data

Sensor Data Manager

Raw Data

Analytic

Container

Processed 

Data

Analytic

Container

Raw Data

Processed 

Data

Download

Requests

Original Modules

Algorithms

Extend Modules

Analytics

Control Data

Data Streams

Download 

Decision

Analytics 

List

Server & Controller

Image Manager

Image Pool

Docker

Analytics 

List

Deployed 

Analytics

Analytics

Images

Figure 4.1: The architecture of our proposed system.

4.1 Server and Controller

• Device manager keeps track of the device status, such as resource utilization and

network condition.
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• Deployment manager keeps track of IoT analytics status and supports tasks like

launching an IoT analytics container. When deploying an IoT analytic, the deploy-

ment manager will first check whether the analytics image, including all the needed

layers, is on the master image pool or not, then run the IoT analytics container.

• Image manager and master image pool reside on the server. The image manager

supports tasks like providing images and layers to the image manager on gateways.

The master image pool stores all images and layers.

• Rate allocation algorithm determines the rate allocation among IoT analytics by

QoS knobs for each IoT analytic to maximize the overall QoS. The rate allocation

algorithm then sends the QoS knobs to the sensor data manager on gateways to adjust

sensor data.

• Result data manager collects the processed data of IoT analytics both on the server

and gateways.

• Analytics container is the IoT analytic deployed by the deployment manager. An-

alytics containers first take raw data from the sensor data manager on gateways,

process the raw data, and then send the proposed data to the result data manager.

4.2 Gateway

• Image Manager and Image pool reside on gateways. The image manager on the

gateway supports tasks such as downloading IoT analytics images and layers from

the master image pool on the server or deleting IoT analytics images and layers in

the image pool. The image pool on the gateway stores a subset of all IoT analytics

layers in the master image pool on the controller.

• Deployment manager supports accepting the deployment tasks from the deploy-

ment manager on the controller and launching IoT analytics containers. When de-

ploying an IoT analytic, the deployment manager will first check if the IoT analytics

image, including all the needed IoT analytics layers, is on the image pool. If not,

the image manager will download the missing IoT analytics layers from the master

image pool on the server.

• Image download algorithm determines which IoT analytics containers to deploy to

the gateway in the upcoming TL seconds. The download decision is next sent to the

deployment manager on the controller.
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• Layer replacement policy chooses the victim IoT analytics layers to be deleted when

the usage of the image pool on the gateway is over the high-water mark. Layer re-

placement policy then requests the image manager to delete the victim IoT analytics

layers.

• Analytics container is the IoT analytic deployed by the deployment manager. An-

alytics containers first take raw data from the sensor data manager, process the raw

data, and then send the proposed data to the result data manager on the server.

• Sensor data manager receives sensor data from sensors and downsamples the sen-

sor data as the raw data according to the QoS knobs from the rate allocation algo-

rithm. The sensor data manager then sends the raw data to IoT analytics containers.

• Sensors detect and collect data from outside and send sensor data to the sensor data

manager on gateways.
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Chapter 5

Image Download Problem and

Algorithms

This chapter formulates and solves the image download problem. Table 5.1 summarizes

the symbols of the image download problem and algorithms.

Table 5.1: Symbols of Image Download Problem and Algorithms

Symbol Description

A Number of IoT analytics

L Total number of layers in the whole system

S Total image pool space of gateways

MA×L Indicator of image layer l is in analytic a

hl Indicator of image layer l is on gateway

ul Size of image layer l

TL Image Download Algorithm time slot duration

Bd Total downlink bandwidth

ra(·) Uplink bandwidth consumption of raw data for analytic a

pa(·) Uplink bandwidth consumption of processed data from analytic a

ka QoS knob of analytic a

ea Deploying analytic a on gateways

sA×L Downloaded layer size of image layer l in analytic a

za Saved upload bandwidth of analytic a

R Remaining resource

ǫ Approximation parameter of (1− ǫ)-approximation algorithm
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5.1 Problem Formulation

Problem 2. Let ka be the default QoS knob of analytics container a from all A containers

that can be deployed to the gateway. Determine whether each a should be deployed at the

gateway to maximize the saved upload traffic without exceeding the image pool size S.

Lemma 1 (Hardness). The image download problem is NP-hard.

Proof. We show this by reducing the m-dimensional knapsack problem (m-DKP) [29,

Ch. 9] to our problem as follows. The m-DKP is an NP-hard problem where we pack some

objects from all objects in a bag in order to maximize the total value of the selected objects

subject to m resource constraints, or say capacities. Let m = 2, and we first map the two

resource capacities to the two resource constraints of our problem: S and BdTL. For each

object o with a value zo, we create an IoT analytic a with ra(ka) = zo and pa(ka) = 0. We

also set total layer size
∑L

l=1ma,lul and downloaded layer size
∑L

l=1max(ma,l − hl, 0)ul

to the two dimensions of the 2-DKP problem. The objective function of 2-DKP is to

maximize the sum of the chosen objects’ zo. We set the objective function of our problem

as maximizing the sum of the saved bandwidth ra(ka)− pa(ka) of the deployed analytics,

which is equivalent to minimizing the resulting uplink traffic. Lastly, by setting S and

BdTL and because of the 2-DKP resource capacities, we reduce the problem in polynomial

time. Thus, we have proved the hardness.

To solve NP-hard image download problem, we write Problem 2 into the following

Integer Linear Programming (ILP) formulation:

max
A
∑

a=1

[ra(ka)− pa(ka)]ea (5.1a)

s .t .
A
∑

a=1

ea

L
∑

l=1

ma,lul ≤ S; (5.1b)

A
∑

a=1

ea

L
∑

l=1

ma,l(1− hl)ul ≤ BdTL; (5.1c)

ea ∈ {0, 1} ∀a = 1, 2, . . . , A.

Eq. (5.1a) accounts for the saved bandwidth, which is the difference between the raw and

processed data amounts. Eqs. (5.1b) and (5.1c) are the constraints on the image pool size

and download network bandwidth. It is not hard to see that Eqs. (5.1b) and (5.1c) can be

merged into:
∑A

a=1 ea
∑L

l=1ma,l(1−hl)ul ≤ min{S−
∑L

l=1 hlul, BdTL}, which reduces

the 2-DKP problem in Eq. (5.1) into a 1-DKP problem.
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5.2 Dynamic Programming Algorithm

Algorithm 1 Dynamic Programming Algorithm (IDAD)

Input: downloaded layer size s = {s1,1, s1,2, . . . , s1,L, s2,1, . . . , sA,L}, saved upload

bandwidth z = {z1, z2, . . . , zA}, remaining resource R, selected container a.

Output: total saved upload bandwidth t⋆, deployed containers D⋆.

1: if R ≤ 0 or n ≤ 0 then //resource is used up or all the containers are checked

2: t⋆ = 0, D⋆ = {}

3: else if
∑L

l=1 sa,l > R then //remaining resource is not enough to deploy a

4: //return the total saved upload bandwidth and deploy containers from containers

1, 2, . . . , a− 1 with remaining resource R

5: t⋆, D⋆ = IDAD(s, z, R, a− 1)

6: else

7: //find the total saved upload bandwidth and deploy containers from containers

1, 2, . . . , a− 1 with remaining resource R

8: tn, Dn = IDAD(s, z, R, a− 1)

9: //find the total saved upload bandwidth and deploy containers from containers

1, 2, . . . , a− 1 with remaining resource R−
∑L

l=1 sa,l, a− 1

10: ti, Di = IDAD(s, z, R−
∑L

l=1 sa,l, a− 1)

11: if ti ≤ tn then

12: t⋆ = tn, D
⋆ = Dn

13: else

14: t⋆ = ti + za, D
⋆ = Di ∪ a

15: return t⋆, D⋆

We first develop an optimal algorithm using dynamic programming [29, Ch. 2], which

is called the IDAD algorithm. We present the pseudocode of IDAD in Algorithm 1. We

start our algorithm by setting downloaded layer size s = {sa,l} = {ma,l(1−hl)ul} for all

l = 1, 2, . . . , L, a = 1, 2, . . . , A, saved upload bandwidth z = {za} = {ra(ka)− pa(ka)}

for all a = 1, 2, . . . , A, remaining resource R = min{S −
∑L

l=1 hlul, BdTL}, selected

container a = A. IDAD recursively finds the total saved upload bandwidth and deployed

containers with remaining resource R. In each recursion, if the remaining resource is

sufficient to deploy the container a, and the total saved upload bandwidth with a is larger

than that without a, IDAD returns the total saved upload bandwidth and deployed con-

tainers with a. Otherwise, IDAD returns the total saved upload bandwidth and deployed

containers without a. The time complexity of IDAD is pseudo-polynomial. Moreover,

IDAD gives us the optimal solution D⋆ and optimal value t⋆. We then let ea = 1 for each

container a in the D⋆. Otherwise, ea = 0.
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5.3 (1− ǫ)-Approximation Algorithm

Algorithm 2 (1− ǫ)-Approximation Algorithm (IDAA)

Input: downloaded layer size s = {s1,1, s1,2, . . . , s1,L, s2,1, . . . , sA,L}, saved upload

bandwidth z = {z1, z2, . . . , zA}, remaining resource R. approximation parameter

ǫ.

Output: total saved upload bandwidth t′, deployed containers D′.

1: initialize: t′ = 0, z′ = {z′a} for all a = 1, 2, . . . , A

2: K = ǫ
max

a∈[1,A]
{za}

A

3: for a = 1; a ≤ A; a++ do

4: z′a = ⌊ za
K
⌋ //give the bound of za by rounding it by K

5: //run IDAD with the new saved upload bandwidth z′ = {z′1, z
′
2, . . . , z

′
A}

6: t,D′ = IDAD(s, z′, R, A)

7: for a ∈ D′ do

8: t′ = t′ + za

9: return t′, D′

While IDAD gives optimal solutions, it suffers from the pseudo-polynomial running

time. Therefore, we next develop an (1 − ǫ)-approximation algorithm with Fully Poly-

nomial Time Approximation Scheme (FPTAS) [29, Ch. 2], which is called IDAA. Algo-

rithm 2 gives the pseudocode of IDAA. In the beginning, we set the downloaded layer size

s, saved upload bandwidth z, and remaining resource R same to those of Algorithm 1.

Moreover, we let ǫ be the approximation parameter. IDAA calculates the rounding de-

nominator K = ǫ
max

a∈[1,A]
{za}

A
. IDAA then takes the floor of the saved upload bandwidth za

divided by the rounding denominator K as the new saved upload bandwidth z′a for each

container a. Finally, we run IDAD with the new saved upload bandwidth z′ and get the

total saved upload bandwidth t′ and deployed containers D′. We then let ea = 1 for each

container a in the D′. Otherwise, ea = 0.

Rounding the saved upload bandwidth za of each container a makes za = iK where

i ≥ 0 is an integer, which thus gives a bound of the total saved upload bandwidth t. The

total saved upload bandwidth t ≤ A
max

a∈[1,A]
{za}

K
= A2

ǫ
. For a given container a, IDAD com-

pares the total saved upload bandwidth at most A2

ǫ
times, and IDAD checks A containers.

Hence, IDAD has a polynomial running time of O(AA2

ǫ
) = O(A

3

ǫ
).

Since
∑

a∈D⋆

za −
∑

a∈D′

z′a ≤
∑

a∈D⋆

za −
∑

a∈D⋆

z′a ≤ AK, we can derive t′ =
∑

a∈D′

z′a ≥
∑

a∈D⋆

za − AK = t⋆ − ǫ max
a∈[1,A]

{za} ≥ t⋆ − ǫt⋆ = (1 − ǫ)t⋆. Therefore, IDAD has an

approximation factor (1− ǫ).
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5.4 Greedy Algorithm

Algorithm 3 Greedy Algorithm (IDAG)

Input: downloaded layer size s = {s1,1, s1,2, . . . , s1,L, s2,1, . . . , sA,L}, saved upload

bandwidth z = {z1, z2, . . . , zA}, remaining resource R.

Output: total saved upload bandwidth t, deployed containers D.

1: initialize: t = 0, D = {}

2: for a = 1; a ≤ A; a++ do

3: //saved upload bandwidth normalized to the consumed download bandwidth of a

4: na =
[

za

]

/
[∑L

l=1 sa,l
R

]

,

5: Sort the containers by na in the descending order.

6: for each container a in the descending order do

7: if R ≤ 0 then //remaining resource is used up

8: break

9: else if
∑L

l=1 sa,l ≤ R then //remaining resource is enough to deploy a

10: D = D ∪ a

11: t = t+ za

12: R = R−
∑L

l=1 sa,l

13: return t, D

To solve the problem more efficiently, we finally propose a greedy algorithm IDAG.

The pseudocode of IDAG is shown in Algorithm 3. We start by setting downloaded layer

size s, saved upload bandwidth z, and remaining resource R same to those of Algorithm 1

and Algorithm 2. IDAG initializes the total saved upload bandwidth t = 0 and deployed

containers D = {} in line 1. Between line 2 and line 4, IDAG computes na, represent-

ing the saved upload bandwidth normalized to the consumed download bandwidth of a.

IDAG then sorts the containers by na in the descending order in line 5. From line 6 to

line 12, IDAG repeatedly picks analytic a from the sorted list. If the residual resources are

sufficient to deploy a on the gateway, IDAG chooses the container a as one of deployed

containers D and increases the total saved upload bandwidth t by the saved upload band-

width za. The loop stops when all the gateway resources are used up, or when all the

containers are checked. In the end, IDAG returns the total saved upload bandwidth t and

deployed containers D in line 13. We then let ea = 1 for each container a in the D.

Otherwise, ea = 0.

IDAG has a polynomial running time of O(A logA) due to the sorting of containers in

line 5. Since a container image will be downloaded only once, we combine the containers

with the same container image into a single container before running IDAD, IDAA, and

IDAG.
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Chapter 6

Rate Allocation Problem and

Algorithms

This chapter formulates and solves the rate allocation problem. Table 6.1 summarizes the

symbols of the rate allocation problem and algorithm.

Table 6.1: Symbols of Rate Allocation Problem and Algorithm

Symbol Description

Bu Total uplink bandwidth

AC The set of analytics running on data center servers

AG The set of analytics running on gateways

ra(·) Uplink bandwidth consumption of raw data for analytic a

pa(·) Uplink bandwidth consumption of processed data from analytic a

wa Weight of analytic a

qa(·) QoS level of analytic a

ka QoS knob of analytic a

k̂a Maximum QoS knob to run analytics a

ǩa Minimum QoS knob to run analytics a

α Step size of the proposed rate allocation algorithm
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6.1 QoS and Bandwidth Models of IoT Analytics

Different IoT analytics have different QoS metrics. For concrete discussion, we consider

two sample IoT analytics: object detector and sound classifier1, and employ accuracy as

their QoS metric. These two analytics can trade QoS levels (lower accuracy) for band-

width consumption (lower bitrate) through adjusting an analytic-dependent QoS knob ka.

We define the accuracy as the fraction of correct classifications. For the object detector,

we employ an object detection network [14] to test 300 images from 20 classes [13]. The

average image resolution is 390× 467 originally, and the downsampled image resolution

is determined by ka. For the sound classifier, we adopt a sound classification network [2]

to test 8732 audio files from 10 classes [12]. The original sampling rate is 22 kHz, and

the downsampled sampling rate is determined by ka.

We measure: (i) accuracy, (ii) raw data size, and (iii) processed data size for different

ka values in [ǩa, k̂a]. Note that the sound classifier stops working when ka < 0.4 (8 kHz),

and thus we define ǩa = 0.4, k̂a = 1 for the sound classifier. We also define ǩa = 0,

k̂a = 1 for the object detector. We observe that the QoS values of the object detector and

the sound classifier can be respectively captured by:

qoa(ka) = pa,1e
pa,2ka + pa,3; (6.1)

qsa(ka) = pa,1 ln(pa,2ka) + pa,3, (6.2)

where pa,1–pa,3 are model parameters. Moreover, both the raw and processed data band-

widths can be captured by:

ra(ka) = pa,4ka + pa,5; (6.3)

pa(ka) = pa,6ka + pa,7, (6.4)

where pa,4–pa,7 are model parameters. We report the sample results and models in Fig-

ure 6.1.

When deriving the model parameters, we ensure that the function is monotonically in-

creasing in [ǩa, k̂a]. In particular, we consider degree-1 polynomial, exponential function,

and logarithm. We compute the adjusted R2 of the three functions for each model and

select the function with the maximal adjusted R2 value. Table 6.2 gives the parameters of

the resulting models and adjusted R2 values.

1These analytics are merely samples, our proposed approach is applicable to other analytics, including

those developed in the future.
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Table 6.2: QoS and Bandwidth Model Parameters of Sample Analytics

Analytics pa,1 pa,2 pa,3 Adj. R2 pa,4 pa,5 Adj. R2 pa,6 pa,7 Adj. R2

Sound Classifier 0.01 3.99 0.16 0.9630 687.56 1.01 1 0 0.05 Undef.

Object Recognizer 0.16 494 0 0.9828 52.52 5.45 0.9974 30.01 4.17 0.9956

6.2 Problem Formulation

For the sake of presentation, we partition all IoT analytics containers into two sets: AC

and AG for containers running on data center servers and gateways, respectively.

Problem 3. Given the QoS models qa(·), the bandwidth models ra(·) and pa(·) for all an-

alytics container a, find the best QoS knobs ka, ∀a ∈ AC ∪AG, to maximize the weighted

QoS value without exceeding the upload bandwidth Bu.

The problem can be mathematically written as:

max
∑

a∈AC∪AG

waqa(ka) (6.5a)

s .t .
∑

a∈AC

ra(ka) +
∑

a∈AG

pa(ka) ≤ Bu; (6.5b)

ǩa ≤ ka ≤ k̂a ∀a ∈ AC ∪AG. (6.5c)

The objective function in Eq. (6.5a) follows that of Problem 1. The constraints in

Eq. (6.5b) ensure that the upload bandwidth is not exceeded.

6.3 Rate Allocation Algorithm

The algorithms for solving Problem 3 heavily depend on the properties of the model

functions. Our empirical models in Eq. 6.1–6.4 are monotonically increasing on ka. This

should be valid if the control knob is well-defined in [ǩa, k̂a]: higher bandwidth consump-

tion should lead to higher accuracy.

We propose a greedy rate allocation algorithm with a step size α, which is called RAA.

We give the pseudocode of RAA in Algorithm 4. In line 1, RAA initializes A′
C and A

′
G

by AC and AG. Also, RAA initializes the QoS knob ka by ǩa for each container a in the

cloud servers and gateways. From line 2 to line 5, RAA computes g(ka), which is the ratio

of weighted QoS value and bandwidth according to where the container is deployed. In

the while loop between line 6 and line 10, RAA repeatedly selects the container a with the

maximal g(ka). RAA then increases the QoS knob ka by the step size α. If the QoS knob

ka reaches the maximal QoS knob k̂a, RAA removes the container a from A
′
C ∪ A

′
G.

The while loop stops when the upload bandwidth Bu is used up, or when the QoS knobs
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of all the containers reach k̂a, i.e., A′
C ∪A

′
G is empty. In the end, RAA returns the QoS

knob ka for all a in the cloud servers and gateways.

Algorithm 4 Rate Allocation Algorithm (RAA)

Input: Weight wa, minimal QoS knob ǩa, maximal QoS knob k̂a, QoS model qa(·), raw

bandwidth models ra(·), processed bandwidth models pa(·) ∀a ∈ AC ∪AG, upload

bandwidth Bu, step size α.

Output: Optimal QoS knobs decision ka ∀a ∈ AC ∪AG.

1: initialize: A′
C = AC , A′

G = AG, ka = ǩa ∀a ∈ AC ∪AG

2: if a ∈ AC then

3: Let g(ka) = waqa(ka)/ra(ka)

4: else //a ∈ AG

5: Let g(ka) = waqa(ka)/pa(ka)

6: while 0 < Bu and A
′
C ∪A

′
G 6= ∅ do

7: find the container a with the maximal g(ka) ∀a ∈ A
′
C ∪A

′
G

8: ka = ka + α.

9: if ka ≥ k̂a then

10: remove a from A
′
C ∪A

′
G

11: return ka ∀a ∈ AC ∪AG

6.4 Analysis

Finding the maximal g(ka) has a complexity of O(1) if the containers are stored in a

heap. We repeatedly find the maximal g(ka) at most 1
α
|AC ∪ AG| times. Hence, the

greedy algorithm has a polynomial running time of O( 1
α
|AC ∪AG|), which is linear to A

for typical α values.
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Figure 6.1: Sample models from the object recognizer: (a), (c), (e); and the sound classi-

fier: (b), (d), (f). (a) and (b) are the QoS models; (c) and (d) are the raw data bandwidth

models; and (e) and (f) are the processed data bandwidth models.
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Chapter 7

Layer Replacement Policies

Each analytics container consists of a set of image layers with a linear dependency among

them. That is, a higher layer depends on all the layers beneath it. Layers are the units of

those downloaded and cached, while an analytics container cannot be launched if not all

its image layers are already saved/cached in the local image pool. Typically, the highest

layer encapsulates the application, which is the IoT analytics in our scenarios. The lower

layers provide utilities and libraries. While the higher layers of different analytics con-

tainers are quite different, e.g., with different neural networks, their lower layers may be

common, e.g., the same Linux utilities and C libraries. Figure 7.1 shows the layers of two

sample analytics containers, where some lower layers are shared, which are good candi-

dates to be cached in the image pools to reduce the download bandwidth consumption.

Notice that the lower layers of different analytics containers may encapsulate different

versions of the same library. These layers are essentially different and cannot be shared.
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Figure 7.1: Illustrations of container image layers of two sample IoT analytics.

The symbol table of layer replacement policies is shown as Table 7.1. Before de-

ciding what IoT analytics should be deployed on the gateway, the system checks the
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Table 7.1: Symbols of Layer Replacement Policies

Symbol Description

L Total number of layers in the whole system

S Total image pool space of gateways

hl Indicator of image layer l is on gateway

ul Size of image layer l

Wh High-water mark of the storage usege in gateway

Wl Low-water mark of the storage usege in gateway

gateway’s storage occupation. To decide whether Layer Replacement Policy (LRP) runs

or not and how much it removes if it runs, we employ watermarking policy [28, Ch. 8].

Precisely, the layer replacement policy starts deleting victim layers when the storage us-

age reaches high-water mark (Wh), i.e.,
∑L

l=1 hlul ≥ WhS, the layer replacement pol-

icy chooses a victim layer l′ and removes it (hl′ = 0). Next, the layer replacement

policy checks if the storage usage is lower than or equal to the low-water mark (Wl),

i.e., WlS ≥ (
∑L

l=1 hlul) − ul′ . If not, the layer replacement policy keeps doing the

above removing process until the storage usage is down to the low-water mark Wl, i.e.,

WlS ≥
∑L

l=1 hlul.

We consider the following classic cache replacement policies [40, Ch. 4] to identify a

victim layer:

• Least-Recently-Used (LRU): The layer of the least recently used image is selected.

• Most-Recently-Used (MFU): The layer of the most recently used image is selected.

• Least-Frequently-Used (LFU): The layer of the least frequently used image is se-

lected.

• Most-Frequently-Used (MFU): The layer of the most frequently used image is

selected.

The victim layer is picked from the top layer of the selected image. For example,

the top layer of one of the sample analytics, people counting in Figure 7.1, has been

chosen as the victim layer and deleted in the previous round. That is, the top layer, people

counting, has been removed. If the sample analytic is chosen again in this round, the layer

replacement policy will pick the second top layer, object detector, as the victim layer.

Note that the layer replacement policy only deletes the layer where no running ana-

lytic is using. For instance, we continue choosing victim layers and want to choose the
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layer, python-pip, as the next victim layer. Another sample analytics, plate recognition in

Figure 7.1, is running on the gateway. Since plate recognition is already using this layer,

we will choose another layer instead.
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Chapter 8

Evaluations

We implement our proposed solutions on a real testbed. We then conduct extensive ex-

periments to evaluate its performance.

8.1 Implementations
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Figure 8.1: The proposed IoT testbed.

We have implemented our proposed system, as shown in Figure 8.1. The management

platform is built on Kubernetes. The Kubernetes server runs on the controller, and the
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minions run on the data center server and gateway. The analytics containers are built on

TensorFlow and Docker and executed on the server and gateway. Figure 8.2 gives the user

an interface for monitoring the usage and analytics on our system. We have augmented

Kubernetes, Docker, and TensorFlow to meet our needs. For example, the vanilla Docker

does not support removing a single image layer from the image pool. We adopt Moby [9]

to add and remove individual layers. We use a table to record the deleted layers and layer

information. Nevertheless, our system needs to download the top layers when deleting the

bottom layers, which takes additional time. In addition, we do not consider the extraction

time when downloading image layers. Extraction consumes a lot of time, especially in

the high download network bandwidth environment. To ignore deleting and extraction

time, we add the deleting and extraction time to the end of each time slot. We have also

added additional features. For example, we have developed Python scripts to capture

sensor data streams, such as live video from cameras and audio from microphones, and

save them into trace files. Another set of scripts replay these trace files using protocols

like Real Time Streaming Protocol (RTSP) to mimic sensors in the field. By doing so,

we can incur exactly the same workload on different algorithms for fair comparisons. We

use Message Queuing Telemetry Transport (MQTT) protocol to exchange data among

sensors and analytics containers.

Table 8.1: Sample IoT Analytics Containers

Container Size (GB) # of Layers Container Size (GB) # of Layers

SC 1 0.72 19 OD 1 0.88 16

SC 2 0.81 20 OD 2 0.96 16

SC 3 1.27 19 OD 3 1.43 16

SC 4 1.35 20 OD 4 1.5 16

SC 5 0.81 19 OD 5 0.97 16

SC 6 0.9 20 OD 6 1.02 16

SC 7 1.35 19 OD 7 1.51 16

SC 8 1.44 20 OD 8 1.59 16

SC 9 0.81 21 OD 9 0.97 19

SC 10 1.16 22 OD 10 1.41 21

SC 11 1.67 23 OD 11 1.83 21

SC 12 1.93 24 OD 12 2.1 22

We have created 24 IoT analytics containers using : (i) the two sample analytics (ob-

ject detector and sound classifier), (ii) different Ubuntu versions (16.04.5, 16.04.6, and

18.04.4), (iii) different Python versions (2 versus 3), and (iv) different TensorFlow ver-
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sions (1.14.0 versus 1.15.0). Table 8.1 summaries the sample analytics containers. These

containers are composed of 457 image layers (253 of them are unique). We give the sam-

ple result of the two sample analytics in Figure 8.3. We have implemented our proposed

algorithms using Python. For the rate allocation problem, we have implemented two

baseline algorithms: Unweighted Allocation (UA) and Weighted Allocation (WA) algo-

rithms. The UA algorithm equally allocates bandwidth among analytics containers. The

WA algorithm allocates bandwidth that is proportional to the weight of each analytic con-

tainer. We have also implemented multiple layer replacement policies: (i) Least-Recently-

Used (LRU), (ii) Most-Recently-Used (MRU), (iii) Least-Frequently-Used (LFU), and

(iv) Most-Frequently-Used (MFU).

Figure 8.2: User interface for monitoring the usage and analytics on our system.

Figure 8.3: Sample results of: (a) object detector and (b) sound classifier.
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8.2 Testbeds

We have deployed a campus testbed, as shown in Figure 8.4. The testbed contains eight

street lamps, which are interconnected by Ethernet and WiFi mesh networks. Multi-

ple sensors, including cameras, microphones, air-quality, and micro-weather sensors (not

shown in the figure) are mounted on the lamps. Two lamps are equipped with gateways,

which are essentially rugged PCs. The lamps are connected to the controller and a public

master image pool hosted on DockerHub. The campus testbed allows us to validate the

functionalities of the proposed IoT gateway and optimization algorithms.

Server

Gateway Sensor Box

Camera

Device 

Box

Camera

Microphone

Smart Poles

Figure 8.4: Our campus testbed with smart street lamps.

For exercising different parameters, we have also set up a lab testbed, as shown in

Figure 8.5. Different from the campus testbed, we have set up our own master image pool

and adopt the Linux TC tool to throttle the network bandwidth to mimic access links. We

record video/audio streams from the campus testbed and replay them in the lab testbed to

fairly compare the performance of different algorithms under diverse parameters.
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Figure 8.5: Our lab testbed with an emulated access link.

8.3 Setup

By default, we let the image pool size be 3 GB. We let the network bandwidth (Bu, Bd)

= (5, 100) Mbps. The image download algorithms are executed once every 5 minutes,

and the rate allocation algorithms are executed once every 1 minute. We generate the IoT

analytics requests using a Poisson process with 1/3-min inter-arrival time. Each request

randomly selects one of the twenty-four analytics containers. The average departure time

of IoT analytics requests is randomly chosen in [1, 10] minutes. Each experiment run

lasts for 30 minutes. For the rate allocation problem, we use weights, which are random

floating-point numbers in the interval [0, 1]. Table 8.2 gives the weights of the two sample

IoT analytics containers. We compare the saved upload bandwidth among IDAA with the

approximation parameter ǫ from 0.1 to 0.5 and show their results in Figure 8.6. We let the

approximation parameter ǫ = 0.4 since it averagely has the most saved upload bandwidth.

We also compare the weighted QoS and running time among RAA with different step

sizes (α = 0.01, 0.05, 0.1, 0.15), which are shown in Figure 8.7(a) and 8.7(b). While

the QoS of the four step size in Figure 8.7(a) is similar, the step size 0.01 takes the least

running time in Figure 8.7(b). Therefore, we let the step size α = 0.01.

We employ IDAD, RAA, and LRU algorithms if not otherwise specified. Apart from

looking at the experiment by default settings, we also adjust some parameters in experi-

ments. We consider the following experiments. For Image download algorithms (IDAD,
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Table 8.2: Weights of Sample IoT Analytics Containers

Run

Analytic
SC 1 SC 2 SC 3 SC 4 SC 5 SC 6 SC 7 SC 8 SC 9 SC 10 SC 11 SC 12

1 0.22 0.06 1.0 0.9 0.16 0.01 0.25 0.63 0.07 0.49 0.52 0.24

2 0.6 0.51 0.48 0.9 0.63 0.52 0.83 0.56 0.05 0.09 0.38 0.91

3 0.33 0.45 0.07 0.4 0.95 0.82 0.88 0.86 0.98 0.53 0.75 0.7

4 0 0.9 0.86 0.11 0.08 0.23 0.53 0.96 0.2 0.96 0.54 0.03

5 0.73 0.37 0.33 0.05 0.21 0.07 0.02 0.96 0.45 0.08 0.15 0.82

Run

Analytic
OD 1 OD 2 OD 3 OD 4 OD 5 OD 6 OD 7 OD 8 OD 9 OD 10 OD 11 OD 12

1 0 0 0.25 0.94 0.71 0.53 0.09 0.54 0.7 0.99 0.59 0.72

2 0.54 0.51 0.6 0.25 0.03 0.23 0.03 0.02 0.26 0.83 0.35 0.26

3 0.6 0.76 0.03 0.74 0.74 0.78 0.33 0.1 0.78 0.6 0.29 0.35

4 0.2 0.38 0.4 0.37 0.94 0.31 0.61 0.37 0.58 0.92 0.73 0.92

5 0.42 0.91 0.47 0.3 0.24 0.17 0.55 0.2 0.3 0.35 0.21 0.89

1 2 3 4 5 Avg
0

2

4

6

8

10
0.1 0.2 0.3 0.4 0.5

Figure 8.6: Saved upload bandwidth of IDAA with different approximation parameters ǫ.

IDAA, and IDAG), we employ default settings, but with different: (1) image pool size:

3 GB (default), 6 GB, and (2) inter-arrival time: 1/3 min (default), 1/2 min. For rate

allocation algorithms (RAA, WA, and UA), we use default settings, but with different

upload network bandwidth: 5 Mbps (default), 10 Mbps. For layer replacement policies,

we compare LRU, MRU, LFU, and MFU with default settings and extend the experiment

time to 60 minutes. Moreover, we run each experiment five times with five different input

requests.

To evaluate our proposed algorithms, we report the performance results using the

following metrics:

• Weighted QoS value across all analytics containers on the data center server and

gateway.
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Figure 8.7: Comparisons between RAA with different different step sizes α: (a) weighted

QoS and (b) running time.

• Saved upload bandwidth, which indicates the reduced upload network workload by

deploying containers to the gateway.

• Hit saved upload bandwidth, which indicates the saved upload bandwidth of the

containers successfully deployed to the gateway.

• Miss saved upload bandwidth, which indicates the saved upload bandwidth of the

containers unsuccessfully deployed to the gateway.

• Expected saved upload bandwidth, which indicates the saved upload bandwidth of

the containers that IDA algorithms are supposed to deploy to the gateway. Expected

saved upload bandwidth is also the sum of the hit saved upload bandwidth and the

miss saved upload bandwidth.

• Hit rate, which is the ratio of the hit saved upload bandwidth and the expected saved

upload bandwidth.

• Number of analytics containers on the cloud server and gateway, which includes

the number of analytics containers running on the cloud server and the number of

analytics containers running on the cloud server gateway.

• Number of analytics containers on the gateway, which is the number of analytics

deployed to the gateway.

• Upload/Download bandwidth consumption, which indicates the incurred network

workload.

• Running time of various algorithms.
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8.4 Results

In this section, we first compare the performance of the three image download algorithms

IDAD, IDAA, and IDAG. We then compare the performance of our proposed rate al-

location algorithm with the two baselines.. Last, we compare the performance of four

representative layer replacement policies LRU, MRU, LFU, and MFU. We report average

values with 95% confidence intervals whenever possible.

8.4.1 Default Sample Run Analysis
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Figure 8.8: A sample run with IDAD measuring: (a) weighted QoS, (b) saved upload

bandwidth, (c) number of containers on the cloud server and gateway, and (d) running

time.

Our proposed algorithms achieve high weighted QoS. Figure 8.8(a) reports the

QoS level averaged per minute. This figure reveals that our algorithms achieve fairly

high weighted QoS levels: at least 0.8 and at most 0.99 are observed. This is non-trivial,

considering the QoS level is normalized in the range of [0, 1]. A closer look indicates

that our proposed algorithms capitalize on the otherwise wasted download bandwidth to
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Figure 8.9: A sample run with IDAD measuring: (a) upload bandwidth consumption and

(b) download bandwidth consumption.

deploy IoT analytics on the gateway. In particular, Figure 8.8(b) shows that increasingly

more upload bandwidth (at most 6.9 Mbps) is saved over time. Figure 8.8(c) gives the

number of containers over time, and Figure 8.8(d) depicts that the maximal running time

of IDAD and RAA is very short: at most 400 ms, which is negligible compared to their

minute-scale invocation periods. We also validate that our algorithms do not overload the

upload and download bandwidth, which are shown in Figure 8.9(a) and 8.9(b).

8.4.2 Image Download Algorithm Analysis

In this section, we compare the weighted QoS, saved upload bandwidth, number of an-

alytics containers on the gateway, and running time of three IDA algorithms across five

runs in the four different experiments in Figure 8.10–Figure 8.14. In these figures, the

first group, IDA Def., is the experiments using default settings. Other groups IDA 6GB

and IDA Arr2 are the experiments which exploit the default settings, but separately have

a 6-GB image pool size and a 1/2-min inter-arrival time.

IDAD, IDAA, and IDAG all have high weighted QoS. We compare the weighted

QoS of three IDA algorithms in the three different experiments in Figure 8.10. From

Figure 8.10, we observe that: (1) the three algorithms work well in terms of overall QoS,

and (2) increasing image pool size has little influence on weighted QoS. The reason for

the two above observations is that the number of IoT analytics containers deployed on

the gateway is much less than that on the cloud server. For example, in Figure 8.8(c), the

difference in the number of IoT analytics containers on the cloud server and gateway is

large. In contrast, Figure 8.10 reveals that increasing the inter-arrival time severely affects

the weighted QoS since the number of analytics containers dramatically decreases.
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Figure 8.10: Weighted QoS of the three IDA algorithms in experiments: default settings

(3-GB, 100-Mbps, 1/3-min), default settings with a 6-GB image pool size, and default

settings with a 1/2-min inter-arrival time.

IDAD has the optimal result in expected saved upload bandwidth as the input

requests are the same. Since some analytics containers depart before the deployment

manager finishes downloading their container images, the deployment manager may fail

to deploy some containers to the gateway. We call these failed containers miss containers

and call successfully deployed containers hit containers for convenience. Also, the sum

of hit and miss containers is the expected containers. The hit and miss saved upload band-

width is the upload bandwidth that the hit and miss containers can save, separately. The

expected saved upload bandwidth is the sum of the hit and miss saved upload bandwidth,

and the ratio of hit saved upload bandwidth to the expected saved upload bandwidth is

the hit rate. We compare the hit and miss saved upload bandwidth of analytics containers

on the gateway of the three IDA algorithms in the first time slot of the three different

experiments in Figure 8.11(a). We compare the saved upload bandwidth in the first time

slot of experiments because, in the first time slot, the input requests of the three IDA al-

gorithms are the same. For the expected saved upload bandwidth in Figure 8.11(a), IDAD

gives the optimal result, and IDAA and IDAG give similar results. We also compare the

hit saved upload bandwidth and hit rate of the three IDA algorithms in the first time slot

of the three different experiments in Figure 8.11(b). IDAG has a higher hit rate in the

first two experiments in Figure 8.11(b). We investigate deeper and find that IDAG gives

smaller analytics containers higher priority when the input requests are the same. That is,

IDAD and IDAG sometimes encounter the problem that small analytics containers depart

when waiting for the downloading of big analytics containers. All in all, IDAD, IDAA,
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Figure 8.11: (a) Hit and miss saved upload bandwidth and (b) hit saved upload bandwidth

and hit rate of the three IDA algorithms in the first time slot of experiments with default

settings (3-GB, 100-Mbps, 1/3-min), default settings with a 6-GB image pool size, and

default settings with a 1/2-min inter-arrival time.

and IDAG have similar saved upload bandwidth.
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Figure 8.12: (a) Overall hit and miss saved upload bandwidth and (b) Overall hit saved

upload bandwidth and hit rate of the three IDA algorithms in experiments with default

settings (3-GB, 100-Mbps, 1/3-min), default settings with a 6-GB image pool size, and

default settings with a 1/2-min inter-arrival time.

IDAD, IDAA, and IDAG all perform well in terms of saved upload bandwidth.

Apart from comparing the outcome in the first time slot, we compare the overall hit and

miss saved upload bandwidth of the three IDA algorithms in the three different experi-

ments in Figure 8.12(a). We compare the overall hit saved upload bandwidth and hit rate

of the three IDA algorithms in the three different experiments as well in Figure 8.12(b).

In every time slot, the results of the three IDA algorithms are decided by the current an-

alytics containers status, which depends on the results in the previous time slots. Hence,
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the overall comparison results of saved upload bandwidth of the three IDA algorithms in

Figure 8.12(a) and 8.12(b) may be different from those in Figure 8.11(a) and 8.11(b). In

Figure 8.12(a), we find that IDAD has the most expected saved upload bandwidth. In ad-

dition, IDAD has the lowest hit rate in Figure 8.12(b). However, IDAD, IDAA, and IDAG

conclusively save similar amounts of upload bandwidth.
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Figure 8.13: Overall hit and miss number of analytics containers on the gateway of the

three IDA algorithms in experiments: default settings (3-GB, 100-Mbps, 1/3-min), default

settings with a 6-GB image pool size, and default settings with a 1/2-min inter-arrival

time.

IDAG deploys more analytics containers to the gateway. We compare the number

of analytics containers on the gateway of the three IDA algorithms in the three different

experiments in Figure 8.13. In Figure 8.13, IDAG averagely has the most expected ana-

lytics containers on the gateway. Moreover, IDAG averagely deploys the most analytics

containers on the gateway. Figure 8.13 reports that IDAG outperforms IDAD and IDAA at

most by 29% and 17%. A deeper investigation indicates that this is because IDAG gives

smaller analytics containers higher priority. Smaller analytics have higher chance to be

downloaded before the deadline, which is crucial in dynamic (real) environments.

IDAD, IDAA, and IDAG all finish in a short time. For instance, Figure 8.14 confirms

the short running time of all algorithms in the three experiments: < 40 ms. Since the

scale of every request is small, and the total analytics containers are less diverse, the three

algorithms have similar running times.
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Figure 8.14: Running time of the three IDA algorithms in experiments: default settings

(3-GB, 100-Mbps, 1/3-min), default settings with a 6-GB image pool size, and default

settings with a 1/2-min inter-arrival time.

8.4.3 Rate Allocation Algorithm Analysis

Our proposed RAA algorithm achieves a higher weighted QoS. We compare the

weighted QoS between RAA and two baselines (WA and UA) across five runs in dif-

ferent upload network bandwidths (5 and 10 Mbps) in Figure 8.15. Figure 8.15(a) reports

that when the upload network bandwidth is 5 Mbps, our RAA algorithm outperforms the

WA and UA algorithms by about 18% and 37% in weighted QoS. Figure 8.15(b) shows

that when the upload network bandwidth is 10 Mbps, our RAA algorithm outperforms

the WA and UA algorithms by about 12% and 15% in weighted QoS. Furthermore, Fig-

ure 8.15(a) also reveals that RAA can still maintain the high weighted QoS around 0.82 in

low upload network bandwidth. On the other hand, the two baselines are severely influ-

enced by the upload network bandwidth. Figure 8.15(b) reports that high upload network

bandwidth provides a stabler and higher weighted QoS. For example, the difference be-

tween the lowest and highest weighted QoS of RAA in Figure 8.15(b) is roughly 0.03,

which is much less than the difference 0.1 of RAA in Figure 8.15(a).

Our proposed RAA algorithm has higher utilization rate of upload network band-

width. We compare the upload network bandwidth consumption between RAA and two

baselines (WA and UA) across five runs in different upload network bandwidths (5 and 10

Mbps) in Figure 8.16. Figure 8.16(a) reports that when the upload network bandwidth is

5 Mbps, our RAA algorithm outperforms the WA and UA algorithms by about 53% and

31% in the upload network bandwidth consumption. Figure 8.16(b) reports that when the
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Figure 8.15: Weighted QoS of RAA and two baselines (WA and UA) in experiments: (a)

default settings with a 5-Mbps upload network bandwidth and (b) default settings with a

10-Mbps upload network bandwidth.

upload network bandwidth is 10 Mbps, our RAA algorithm outperforms the WA and UA

algorithms by about 162% and 61% in the upload network bandwidth consumption. To

be more precise, our RAA algorithm maintains 27% and 26% utilization rates of upload

network bandwidth in Figure 8.16(a) and 8.16(b). However, WA and UA have 17% and

20% utilization rates of upload network bandwidth in Figure 8.16(a), and their utilization

rates drop to 10% and 16% in Figure 8.16(b).

All the RAA algorithms have a short running time. We compare the running time

between RAA and two baselines (WA and UA) across five runs in different upload net-

work bandwidths (5 and 10 Mbps) in Figure 8.17. More precisely, the average running

time of RAA, WA, and UA are all less than 200 ms in both figures, which is negligible.

8.4.4 Layer Replacement Policy Analysis

LRU saves more upload bandwidth. Figure. 8.18 shows that different replacement poli-

cies have little impact on the weighted QoS. Figure. 8.19 reports LRU outperforms MRU,

LFU, and MFU by about 14%, 23%, and 16% respectively in the saved upload band-

width. In addition, LRU and MRU are the best and the second best policies to save the

most upload bandwidth. We take a closer look and find that the container images which

are downloaded in the same time slot will share more layers with each other. Therefore,

LRU and MRU will preserve more complete container images, which can avoid too many

pieces of container images occupying the space of the image pool. Furthermore, LRU will

also avoid deleting the layers, whose bottom layers are shared with the running containers.

Thus, LRU averagely saves the most upload bandwidth in Figure. 8.19.
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Figure 8.16: Upload bandwidth consumption of RAA and two baselines (WA and UA) in

experiments: (a) default settings with a 5-Mbps upload network bandwidth and (b) default

settings with a 10-Mbps upload network bandwidth.
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Figure 8.17: Running time of RAA and two baselines (WA and UA) in experiments: (a)

default settings with a 5-Mbps upload network bandwidth and (b) default settings with a

10-Mbps upload network bandwidth.
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Figure 8.18: Overall weighted QoS of layer replacement policies.
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Figure 8.19: Overall saved upload bandwidth of layer replacement policies.
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Chapter 9

Related Work

In this chapter, we survey the literature. We first present the studies focusing on IoT

platforms without edge devices. We then present the studies where edge devices are

incorporated into IoT platforms. Last, we focus on the studies related to IoT analytics.

9.1 IoT Platforms without Edge Devices

IoT platforms in real-world deployments and measurements for environmental and traffic

monitoring have been studied in the literature [16,26,42]. These studies focus on mitigat-

ing high computational complexity due to large-scale dynamic data collected from many

IoT devices. Zhai et al. [51] consider the problem of minimizing total power consumption

under constrained user-specified rates. The problem is challenging as the Shannon capac-

ity formula shows that the data rate is nonlinear. They transform the problem into a convex

optimization problem for optimal power and rate allocation. They evaluate their system

in simulators without real-world deployment. Zhai et al. [50] investigate the power con-

sumption minimization and dynamic user scheduling problem for Non-Orthogonal Mul-

tiple Access (NOMA) networks. In this paper, a low-complexity algorithm is proposed

based on Lyapunov optimization and branch-and-bound techniques. Their simulations

evaluate the performance of their algorithm without real implementations. Furthermore,

Lv et al. [33] solve the problem of maximizing the sum- and fair-throughput in both the

downlink and uplink, from the networking aspect. The above studies focus on some op-

timization criteria, and there are also papers that discuss the trade-off among multiple

objectives, like power allocation, throughput, communication overhead [17, 19, 36]. Hi-

erarchical system architectures or dynamic scheduling algorithms are employed in these

papers. Like the aforementioned studies, however, data processing (such as IoT analyt-

ics) is done in the cloud rather than edge devices, which results in long response time and

degraded QoS.
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Table 9.1: Related Work

Reference
Offloading

Decision

Resources

Allocation

Deleted

Policy
Virtualization Objective

Decision

Maker

Fan et al. [20] ✓ ✗ ✗ VM Delay Cloud

Zhao et al. [52] ✓ ✗ ✗ VM Delay Cloud

Moghaddam et al. [34] ✓ Uplink ✗ VM Price Cloud

Faruque et al. [21] ✓ Uplink ✗ VM Energy IoT Device

Yousefpour et al. [47] ✓ ✗ ✗ VM Delay Cloud

Liu et al. [32] ✓ Computation ✗ VM Energy Cloud

Deng et al. [18] ✓ Computation ✗ VM Energy Cloud

Wang et al. [44] ✓
Uplink

Computation
✗ VM Delay IoT Device

Wei et al. [45] ✓
Uplink

Computation
✗ VM Delay IoT Device

Our Proposal ✓ Uplink ✓ Container QoS
Cloud

IoT Device

9.2 IoT Platforms with Edge Devices

Edge devices are incorporated into some IoT platforms to mitigate some of the drawbacks

of pure-cloud based IoT platforms. Kiani and Ansari [30] employ the concept of cloudlet

to extend remote data centers so as to bring the cloud closer to end-users. Hierarchical in-

frastructure is used to meet the QoS requirements from users. Through simulations, they

demonstrate that their proposal outperforms the baselines in terms of, e.g., latency reduc-

tion. Fan and Ansari [20] and Zhao et al. [52] both investigate the placement problem of

cloudlets in SDN networks. Their proposed algorithms adapt to devices with diverse and

dynamic workloads. While the concept of cloudlet brings some computing and storage

resources to the end-users, it lacks horizontal integration [37].

In contrast, fog computing aims to integrate a distributed deployment of multiple edge

devices, in order to reduce the transfer time among IoT devices, edge servers, and cloud

servers. Xu and Helai [46] introduce the Cloud-Edge-Beneath (CEB) architecture for

large-scale deployment in smart cities. CEB consists of three layers: the beneath layer

(physical layer), edge layer, and cloud layer. They conduct experiments with diverse num-

bers of sensor nodes and compare the average CPU utilization as time goes on. While the

experiments validate the functionality of this system, no optimization strategies exist in

their system. Morabito et al. [35] adopt lightweight virtualization technologies to deploy

software on real IoT devices. In their measurement study, they quantify the response

time, CPU utilization, and power consumption of different tasks and networks, with and

without different virtualization technologies. Pahl et al. [38, 39] introduce another edge-

cloud architecture based on the Platform-as-a-Service paradigm and implement it on IoT
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devices. Their architecture supports cluster management for reducing power consump-

tion and processing latency. The above system papers focus on building fog computing

systems without rigorous performance optimization.

More recently, different optimization objectives, such as energy consumption, latency,

and QoS requirements, have been considered in literature. Table 9.1 shows the research

with different optimization objectives. Moghaddam and Leon-Garcia [34] solve the prob-

lem of energy management. The fog nodes act as the retail power market in the proposed

model, providing energy to end-users, and the system would optimize the customer’s

schedule based on the power consumption of each application. The simulations evaluate

the bandwidth allocation and delay of the fog-based model and cloud-based model. Also,

they confirm that the proposed fog-based model decreases bandwidth consumption and

delay time. Faruque and Vatanparvar [21] address the energy management issue through

fog computing, especially for the implementation of Home Energy Management (HEM)

and microgrid-level energy management. With fog computing, the system can overcome

real-time connectivity and data privacy challenges, and the experiments show that they are

able to monitor and control energy consumption. Yousefpour et al. [47] solve the problem

of minimizing the service delay by delay-minimizing fog offloading policy. The policy

is to offload tasks based on their response time, which depends on the queue length and

request types. The simulation evaluates the performance on the proposed framework, but

the threshold of fog nodes is static. Liu et al. [32] and Deng et al. [18] investigate the rela-

tion between power consumption and delay performance. They trade delay performance

off against power consumption. The previous work use queuing theory to Mobile Devices

(MD), fog, and cloud center while the last one decomposes the problem into three sub-

problems: the tradeoff for the fog computing system, the tradeoff for cloud computing

system, and the tradeoff for the fog-computing system. The simulations of both studies

show the transmission power and delay performance is better than other schemes, which

only optimize power utilization or delay reduction. But with the complexity of data in-

creasing, we need a more suitable application for complicated analysis. Wang et al. [44]

solve the problem of minimizing the system latency by coupling the offloading, transmis-

sion, and computing resource allocation. The experiments evaluate the system latency and

system utility, but the downlink is not considered, which may affect the startup time of

the fog application. Wei et al. [45] tackles the issues of minimizing the system latency by

content strategy, offloading policy, and radio resource allocation. They have proposed an

actor-critic deep RL model to make the decisions. They consider both uplink and down-

link. The simulations evaluate the system latency and the system utility, but they don’t

consider the deleted images policy when the edge devices are full.
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9.3 IoT Analytics on Edge Devices

IoT analytics is the data analysis application to obtain value from a large volume of data.

With lightweight virtualization technologies, IoT analytics could be deployed on small

devices, such as mobile devices or embedded devices. He et al. [22] introduce the multi-

tier fog computing model with IoT analytics in order to maximize utility for QoS aware

services. In this paper, the architecture includes two tier fog nodes, dedicated fog (D-fog)

and ad-hoc fog (A-fog). They develop job admission control/offloading and resource al-

location schemes, which decide where the analytics service is executed (D-fog, A-fog,

or cloud), and how many resources (CPU, memory) it can use. The simulations evaluate

the service utility and job arrival time, but they only consider the uplink bandwidth as the

limitation.

Our earlier work [41] considered a simplified version of the considered rate allocation

problem over a 3G cellular link, where the IoT analytics containers were preloaded on

gateways, and diverse QoS functions were not considered.
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Chapter 10

Conclusion

In this thesis, we solved the image download and rate allocation problem at an IoT gate-

way in smart spaces like smart cities. Our proposed image download algorithms strive

to reduce the upload bandwidth consumption due to the bulky raw sensor data, while our

rate allocation algorithm takes the heterogeneity of IoT analytics into consideration to

maximize the overall weighted QoS level. We evaluated our proposed algorithms on our

campus and lab testbeds built upon several open-source projects. The experiment results

show the merits of our proposed system and algorithms on increasing the overall QoS

level (between 0.8 and 0.99 in the scale of [0,1]) without overloading the network and

gateway (terminate in < 400 ms). For the image download problem, we recommend us-

ing IDAG in a dynamic environment, which makes smaller analytics have a higher chance

to be downloaded before the deadline. For the rate allocation problem, our proposed al-

gorithm RAA outperforms the two baseline algorithms by 18% and 37% in weighted QoS

levels in a low upload network bandwidth environment, and it also outperforms the two

baseline algorithms by 162% and 61% in utilizing upload bandwidth in a high upload

network bandwidth environment. For layer replacement policies, LRU saves more upload

bandwidth than that of the other three policies.

The current thesis can be extended in the following directions:

• Considering more resource types. The current system only considers a few re-

source types like image pool size and bandwidth. Some other resource types, like

computation resources, can also be accounted.

• Augmenting the source code of the Docker engine. The current system does not

fully implement the layer deletion and layer extraction functionalities in the Docker

engine. If we augment the Docker engine and directly put these functionalities in it,

the overall performance can be further improved.

• Conducting more experiments. Additional experiments can be conducted to fur-
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ther understand the performance of our system and algorithms under diverse, dy-

namic, and realistic conditions. For instance, we can extend larger experiments

driven by real traces from our campus testbed. We can even run our algorithms

on the street lamps handling live data feeds from sensors.
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