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Abstract

Augmented and Virtual Reality (AR/VR) has become more popular over
the years. It delivers a more immersive experience than using the traditional
planar monitor with the head-mounted display (HMD). Still, to increase the
Quality of Experience (QoE), researchers dedicate to building a better envi-
ronment with more captured space information. With the capability to re-
trieve all light information in the space, the light field technology (LF) has
excellent potential for the future development of AR/VR technology. In this
paper, we study and research two possible directions of LF applications in
AR/VR. In the microlens camera system, we design and implement a head-
mounted VR system that enables the auto scene refocusing based on the
user’s eye gaze. To optimize the latency of the refocusing process, we de-
sign two optimization methods that significantly reduce the execution time.
In the camera array system, we develop a 3DoF+ VR environment and create
a novel view selection algorithm that exploits the 3D space information (view
scene coverage, object occlusion) of the scene to save both the bandwidth and
the computation of view synthesis process. Finally, we hold experiments in
both objective and subjective perspectives to evaluate the performance of the
systems. The results show that, for the auto-refocus VR system, our opti-
mization methods reduce the refocusing time by up to 319 times and increase
the subjective Mean Opinion Score (MOS) by 19% compared to the baseline
system. As for the view selection algorithm, our proposed algorithm leads to
99.67% of average synthesis result coverage, which is only 0.1% lower than
the optimal solution. However, at the same time, our execution time is about
18 times faster than the optimal solution.
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中中中文文文摘摘摘要要要

擴增和虛擬實境（AR / VR）在近年來蔚為風行，而隨著頭戴顯示
器的普及使用，它提供了使用者比傳統平面顯示器更加身臨其境的體

驗。儘管如此，為了提供更高品質的觀看體驗，研究人員致力於建立

一個能夠捕獲更多空間信息的環境。 其中，光場技術能夠收集空間

中的所有信息，具有很大的發展潛力。在本論文中，我們研究了AR /
VR中光場技術應用的兩個發展方向。首先，在微透鏡相機系統中，我
們設計了一套自動聚焦VR系統，能夠根據使用者的注視位置自動對場
景重新聚焦，並在優化層面設計了2種方法來大幅減少重新聚焦的計
算時間。而在相機陣列系統中，我們開發了一套3DoF+ VR系統、並
同時設計了一套新的視圖選擇算法，該算法能有效利用場景中的資訊

（包刮視圖覆蓋區域、物體遮擋等）來節省視圖合成需要的頻寬及運

算量。最後，我們收集了以客觀和主觀角度執行的實驗結果，以評估

系統效能。結果表明，對於自動聚焦VR系統，我們的優化將重新聚焦
的時間縮短了近319倍，並且與基準系統相比，我們系統的主觀平均
意見分數（MOS）高出了19％。而對於視圖選擇算法，我們提出的算
法可以得到高達99.67％的平均覆蓋率，只比最優解低了0.1％，而同
時我們的計算時間比最優解快了近18倍。
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Chapter 1

Introduction

1.1 Motivation

Augmented and virtual reality (AR/VR) have been thriving in recent years, and have

drawn much attention from both industries and academia. For its capability of provid-

ing an omnidirectional experience of virtual worlds and captured scenes, With recent

advances in hardware, network, computation power, storage, and other adjunct areas, dif-

ferent novel AR/VR applications are widely promoted in various fields. For instance,

Facebook spaces [4] allow users to socialize with their friends from different places in

a shared virtual room. For retailers, customers may buy clothes online with virtual fit-

ting rooms to save commute time and expense. In education, HMDs may capture more

students’ attention at lower costs for the more intuitive classroom experience. Without a

doubt, AR/VR may bring a brand new way of working, communication, and entertain-

ment shortly.

According to the reports, it is estimated that the global VR market size will reach

26.89 billion USD by 2022, with an annual growth rate of 54% from 2017 to 2022 [54].

Also, IDC reports [55] indicate that more than a billion people will be using and access-

ing AR/VR apps, content, and data by 2021. There’s no doubt that AR/VR is one of

the most trending technologies in the world. Moreover, for the more immersive viewing

experience, the Head-Mounted Displays (HMDs) is widely researched and used. Com-

pared to the traditional planar monitors, HMDs enables the dynamic viewport changes in

real-time, which makes the VR viewing experience more immersive and intuitive. Over

the past years, AR/VR products, such as HMDs, have become easily accessible. Many

companies develop and release their HMD products, such as Oculus Rift DK2 [8], HTC

Vive [13], FOVE VR [10], Google Cardboard [12], Sony PlayStation VR [21], and so on.

These products offer viewers wider Field-of-Views (FoVs) than traditional monitors and

dedicate to provide better user experience, some of them can even detect user body move-
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ment and eye movement [14, 10], which makes more advanced usage scenarios possible.

Furthermore, lots of 360◦ cameras, which take pictures in 360◦ panorama format, also

come to the market, for instance, Ricoh Theta S [19], Luna 360 VR [15], and Samsung

Gear 360 [20].

(a) (b)

Figure 1.1: Same scene with different focal length: (a) apply short focal length and focus

on the badminton, (b) apply long focal length and focus on the ball cans.

Figure 1.2: The schematic diagram of multi-view video system.

As the development of the 360◦ video continues to thrive, there are still several limita-

tions that keep the technology from the more immersive experience, including fixed pic-

ture focal length and fixed viewpoint. These limitations not only keep users from further

exploring the scene but also may result in diverse types of discomfort, including dizzi-

ness, imbalance, and vomiting, which lead to significant drops of the QoE. The following

are some observations on these two limitations:

• Fixed video focal length. Conventionally, images/videos are taken with a default

focal length, which leads to the fixed focused and blurred area in the videos/images

and we can not adjust the focus afterward. Since there are no focus/defocus effect in

2



the 360◦ images/videos, the objects’ proper distances from the eye gaze cannot be

indicated when users watch the scene in HMDs. The phenomenon violates human

visual adaptation and hence leads to confusion of our brains, it’s not hard to imagine

the discomfort due to the mismatch between the DoF and eye gaze [49, 29, 52].

To resolve the mentioned problem, we use the dynamic focal length adaptation

mechanic, in which the focal length of the scene should automatically change based

on the depth value of whatever objects the users are gazing. As shown in Fig. 1.1,

when users gaze on the badminton, a short focal length is applied, and the scene

is then refocusing on the badminton; and when users gaze on the ball cans on the

table, a longer focal length is applied, and the scene should be focusing on the cans.

• Fixed viewpoint. Usually, photographers take images/videos from a single view-

point instead of multiple viewpoints. The single viewpoint means that users can-

not move their perspectives in the video even if they change their positions (head,

body) in real life when viewing 360◦ videos with HMDs, resulting in the conflicts

between what information our bodies and our eyes send to our brains and may cause

discomfort as well [49]. There are several possible solutions to deal with the prob-

lem, one of the most intuitive ways is by increasing the number of viewpoints, that

is, to capture the scene from multiple different positions and rotations in advance,

and generate the view of the user viewpoint during playout time by interpolation

or other blending methods. Fig. 1.2 demonstrate the concept of multi-viewpoint

media, Since the light information is collected from multiple different viewpoints,

users can move their positions with the corresponding scenes in HMDs available

(as long as moving within the range of captured scene). For this kind of HMD

VR, MPEG has categorized it as the 3DoF+ VR, which is a standardization of the

immersive media. More details of 3DoF+ VR will be elaborated in Sec. 2.3.

As the observations indicate, these limitations are the main factors why people feel

the discomfort after a long-time wearing HMD during VR exploration. Thus, the main

goal of this thesis is to propose systems that can eliminate the discomfort caused by the

limitations and hopefully increase the user’s Quality of Experience (QoE).

1.2 Research Problems

To better understand the limitations, we first study the state-of-the-art 3D video technol-

ogy [56, 30, 33, 51] and survey its possible applications in 360◦ video [32, 53, 71]. To

better handle the problems, we use the light field (LF) technology [46, 50, 66], which is

a special format of the multi-view video in a more efficient way. With the characteristic

3



of the LF image, we can perform image refocusing effect with an arbitrary depth value

within the focal range as well as view synthesis with any viewpoint within image captur-

ing range. We introduce the background knowledge of the LF technology in Chapter. 2.

However, solely with the methods is not enough for a real system for there are still

several challenges that need to be solved, such as heavy computation, storage/memory

exceeding, bandwidth consumption. Throughout this thesis, we strive to solve these chal-

lenges and establish two real VR systems to deal with the limitations mentioned above

and maximize user experience. For each system, we pick one most important challenge

as our research problems:

• Auto-refocus VR system. The main focus on this system is the computation of the

refocusing process, which is the foundation of the depth adaptation. The compu-

tation of the process is extremely heavy due to the enormous size of the LF data,

and this profoundly impacts the performance of the system. To build up a real

and workable system, we must optimize the refocusing process and make it work

in real-time. Thus, how to optimize the refocusing process as well as the whole

system is the leading research problem here.

• 3DoF+ VR system. The most important problem of this system is to reduce the

number of views for view synthesis, which is the core of the 3DoF+ VR. Since the

computation of view synthesis is heavily reliant on the number of reference views

as well as the pixel number it needs to process, we want the used reference view to

be as relevant as the target view, not only in geometry relationship (position, rota-

tion) but also in 3D space coverage. To be specific, the used reference views must

lead to a high-quality synthesis result as possible while in the meantime, limit the

number of used reference view to save the computation, and ultimately leads to the

view selection problem of the reference views. Therefore, to find an effective and

efficient view selection algorithm is the leading research problem of this system.

1.3 Contributions

In this thesis, we study the aforementioned limitations of 360◦ video and present ways to

solve it using LF technology. Also, we develop real systems to tackle each limitation by

proposing the optimization methods as well as the novel algorithm. Eventually, in this

thesis, we made the following contributions:

• We propose and implement an HMD VR system with real-time depth adaptation

supports based on the user eye movement. To our best knowledge, this has never

4



been done in the literature. Two practical optimization techniques are proposed to

reduce the computation latency of the refocusing process. The details of the HMD

VR system are described in Chapter 3. Also, the work of the system is highlighted

in ACM AltMM’18 workshop [45].

• We propose and implement another 3DoF+ VR system that allows users to move

their heads around with HMDs. We also offer a view selection algorithm that

can exploit the 3D space information, like scene coverage and object occlusion

information, of the reference view. To ensure the efficiency of the selection, we

map the problem to Maximum Coverage Problem (MCP), which is an NP-hard

question, and approximate it with a polynomial-time solution. The details of the

system are described in Chapter 4.

• We evaluate the performance of both systems in objective and subjective perspec-

tives. In the auto-refocus VR system, we measured the system performance and

analyzed the effectiveness of the optimization methods. We also held a user study

to learn the impact of depth adaptation to the user’s QoE level. The results show

the efficiency of our system with auto-refocus supports, about 319 times faster than

the baseline system, and show that providing Depth of Field is indeed critical for

good user experience with a 19% higher Mean Opinion Score (MOS). In the 3DoF+

VR system, we evaluate the effectiveness and efficiency of our proposed view se-

lection algorithm by comparing to the geometry-based algorithm and the optimal

set selection (brute force). We also test online vs. offline view selection and see

the possibility of view set caching. The results show that our proposed algorithm

holds about 6.15% higher view coverage percentage than the geometry-based algo-

rithm on average and only approximately 0.1% lower than the optimal selection on

average. Moreover, we cache 5929 views and test with 1200 views, which are an

extract from real user traces, to see the performance of offline selection. The results

demonstrate a somewhat competent ability to the online selection (about 1% lower

on average).

1.4 Thesis Organization

The rest of this thesis is organized as followed: we give an introduction in the AR/VR

research field and list down the limitation as well as the solution of current 360◦ video

viewing experience in Chapter 1; the background knowledge of light field technology (LF)

in Chapter 2; the auto-refocus VR system we proposed to solve the fixed focal length lim-

itation, including its system architecture, optimization methods, implementation details

5



and evaluations in Chapter 3; another 3DoF+ VR system we proposed to tackle the fixed

viewpoint limitation, including its system overview, algorithm design, implementation

details and evaluations in Chapter 4; finally, conclusions of our works and discussion of

the future works are listed in Chapter 5.
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Chapter 2

Background

2.1 Light Field Technology

Figure 2.1: The light field in 4D data format, with UV plane as angular coordinate system

and ST plane as spatial coordinate system.

Being one of the long researched topics, light field technology (LF), as the name

suggests, is designed to capture all the light information in the space. The concept is

becoming more and more popular these years as the immersive media becoming one

of the most trending industry. It is originally formulate as a 7-dimensional plenoptic

function [66]:

L(x, y, z, θ, φ, γ, t) (2.1)

The formulation describes the amount of light flowing in every direction through every

point in space, in which, (x, y, z) describe the point the light travels through in the 3D

space, (θ, φ) indicate the direction (angle) the light is heading, γ shows the spectrum

of the light, and t stands as the time stamp. While the function is quite complete, it is

also burdensome and unrealistic for real-life usage. For instance, γ is unnecessary since

the spectrum range we human can observe is limited; also, t is not a concern for every
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image/video taken contains its time stamp, and we cannot record light information of

all times. After simplification and modification, the LF function can be shown as a 4D

function [46, 66]:

L(u, v, s, t) (2.2)

4D LF is defined as radiance along with rays in space, which is a sense turns the light

(x, y, z, θ, φ) into a ray shoot through two planes - UV plane and ST plane As shown in

Fig. 2.1, each light information is considered as two coordinates on two parallel planes.

Among them, UV plane, which is the first plane the light pass through, represents the

angular coordinate system, and another one, ST plane, represents the spatial coordinate

system. With this structure, lights from specific directions (the ones facing the ST plane)

can be captured. In this way, while the scale of LF may be limited, its accessibility and

practicality increase a lot, which leads to a bunch of useful applications, such as virtual

aperture synthesis, image scene refocusing, and scene depth estimation.

(a) (b)

Figure 2.2: LF image representation. (a) present all spatial coordinates with the fixed

angular coordinate; (b) present all angular coordinates with the fixed spatial coordinate.

Since an LF image contains 4D light volume information, there are two ways of in-

specting the data: (i) present all spatial coordinates with a fixed angular coordinate, and

(ii) present all angular coordinates with a fixed spatial coordinate. In the first format, an

LF image can be represented as a 2D array (angular resolution) of 2D images (spatial

resolution), as shown in Fig. 2.2(a). For each angular coordinate (u, v), it records all the

light information coming from the same direction, which can then form as an image taken

with the corresponding angular distance and in size of spatial resolution, where the pixels

are the spatial coordinates. As for the second format, a tile is formed in the same size

of angular resolution recording the information from the same spatial coordinate for each

spatial coordinate (s, t), which is shown as Fig. 2.2(b). The image shown in the first for-

mat is also called sub-aperture (sub-view) image, it is a common and efficient way for the

researchers to access the LF data.

8



The light field consists of an enormous amount of data for it collect the data from

multiple points. So how do we capture such amount of data at the same time? Empirically,

there are two ways of acquiring the data. One of them is the micro-lenses camera system,

this method is widely used and can acquire a small scale of the light field. Another one

is the camera array system, while it can be expensive in both design and establishment, it

can acquire the LF data on a large scale. The features and the applications of these two

acquisition methods will be further introduced in Sec. 2.2 and Sec. 2.3, respectively.

2.2 Micro-lenses Camera System

Figure 2.3: Comparison between conventional camera and light field (plenoptic) camera.

The main difference is the micro-lenses placed between the main lens and the image

sensor.

Microlens array system is a delicate yet straightforward way of collecting LF data; it

is long researched and developed over the years. From the simple image sensor array [67,

59, 65, 61] to the commercial product [5, 18], micro-lenses system can capture the light

volume in the space with a single camera lens. Precisely, in the camera, a micro-lens array

is placed between the primary lens and image sensor to effectively disperse the lights so

the angular information can be obtained [47, 50, 68], this kind of special camera is also
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called plenoptic camera. Like Fig. 2.3 shows, the main difference between a conventional

camera and a plenoptic camera is the lenses in front of the image sensor, it is used to split

the lights into multiple perspectives and multiplex the lights onto the sensor. Practically,

the UV plane represents the focal plane of the camera, and the ST plane can be viewed as

the image sensor plane.

The system only uses one camera lens for data acquisition, resulting in a comparably

small scale of LF. The disparity between two sub-aperture images is small, and hence the

overlapping part is significant, which is suitable for the application like depth estimation,

and image refocusing. However, the limited image sensor size also leads to the trade-off

between angular and spatial resolution. Since LF images require 4D data, compared to

the regular 2D image, the resolution of the captured scene (spatial resolution) is several

times smaller. Let’s say we have a 4K LF image, whose size is 4000 × 2000 pixels, and

its angular resolution is 10× 10; this results in the size of 400× 200 of spatial resolution,

which is relatively low in modern standard, not to mention that we may want to view it

with HMD. Many researchers have tried to tackle the problem (spatial super-resolution),

including applying interpolation to the EPI solpes [39, 64], using a regular DSLR camera

as pixel supplement [28, 62]. These solutions are practical and have lots of potentials to

expand the scale of an LF image.

(a) (b) (c)

Figure 2.4: Commercially available plenoptic cameras: (a) Original Lytro LF camera [1],

(b) Lytro Illum camera [3], and (c) RayTrix R11 camera [2].

Commercial plenoptic camera manufacturers, such as Lytro Inc. and RayTrix Inc.,

also utilize this micro-lenses technology in their products. Fig. 2.4 shows the camera

models that are commercially available now, including the original Lytro camera [1],

Lytro Illum camera [3], and RayTrix R11 camera model [2]. Among them, the resolution

of the Lytro Illum cameras is up to 15×15×434×625 pixels, which is the state-of-the-art

LF camera technology. However, due to lengthy process latency, the cameras can only

shoot the LF video in 3 fps.
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2.2.1 Depth Estimation

Figure 2.5: The depiction of epipolar plane extraction of LF data. By fixing (t, v) values,

the epipolar slope of point P on SU epipolar plane is ∆s/∆u.

Depth estimation is one of the main features of the micro-lenses camera system [42,

69, 57, 43]. The feature is crucial in many kinds of advance processing (such as 3D scene

reconstruction) and has been researched for a while. The necessary process procedure is

described as below [27].

Thanks to the slight viewpoint difference and the high overlapping part between the

sub-aperture images, we’re able to depict the epipolar plane, by fixing (t, v) coordinate

or (s, u) coordinate. As shown in Fig. 2.5, the goal is to find the depth value Z of an

arbitrary 3D point P . First, we fix the (t, v) coordinate to get SU epipolar plane. Then

we extract the epipolar slopes, which are indicative of the depths of the different objects

in the scene, with the edge detecting technique to the SU epipolar plane. These slopes

can then induce the depth values throughout the scene with the following function:

sZ =
Z

Z − f
,

Z =
sZ × f
sZ − 1

(2.3)

Let sZ be the epipolar slope of the corresponding depth value Z, and let f be the focal

length of the camera. Thus, the Z value is the depth value of point P in 3D space, and it’s

the depth estimation result we want.

2.2.2 Image Refocusing

Image refocusing is another important application for the micro-lenses camera system,

we can even say that the plenoptic cameras exist for this feature to some extent. There

are several ways of achieving the refocusing effect to an LF image, some by splitting the

foreground and background of the image [25, 70], others by designing the volumetric filter
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applied in frequency domain [35, 40]. Among them, the easiest and the most effective one

being the shift-sum algorithm proposed by Ng et al. [50], The method refocuses the LF

images based on the target epipolar slope in the spatial domain and will be explained in

the following paragraph.

Figure 2.6: The procedure of the LF shift-sum algorithm proposed by Ng et al. [50]

As shown in Fig. 2.6, the algorithm is executed in three steps:

1. Calculate the pixel-shifting number for each sub-aperture image in an LF im-
age according to its angular coordinate, the number doesn’t necessarily to be
an integer. The pixel-shifting number for each sub-aperture image is different, and

the shift is in both U and V axis. From Eq. 2.3, we get the epipolar slope sZ of any

depth Z in the scene, and thus we calculate the pixel-shifting number (ushift, vshift)

for the sub-aperture image located at angular coordinate (u, v) with the following

function:

ushift = U × sZ ×
(

u

U − 1
− 1

2

)
,

vshift = V × sZ ×
(

v

V − 1
− 1

2

) (2.4)

2. Shift all the sub-aperture images with the corresponding shift number pixel-
wisely. The process is essential for it aligns the lights in the focused area and then

disperses those in the defocused area. Note that the shifting number may not be an

integer; we use the interpolation technique for such condition.

3. Get the average image of all sub-aperture images. This process can calculate the

stacked light information of the specific depth in the scene, and thus the focused

area becomes apparent, and the defocused area becomes vague. Eventually, the

stacked (average) image is the refocused image we want.
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From the procedure, we can see that the computation of the algorithm is quite sub-

stantial: each pixel requires an interpolation process. The computation loading results in

significant process latency, especially for images with ultra-high resolution.

2.3 Camera Array System

Compared to the micro-lenses camera system, the camera array system aims to capture

light information on a much bigger scale, usually the whole 360◦ scene, this makes it

more suitable for the VR environment establishment. The alignment of the cameras is

different based on the user scenarios, it can be a simple straight line, a shape of a sphere,

or just randomly scattered around the space. However, more cameras lead to a more

expensive and bulkier setup and more data that needs to be processed. Therefore, more

cameras don’t necessarily mean a better quality of LF, the alignment of the cameras is all

that matters. How to design a proper camera array system is an essential topic for setting

up the system, we need to optimize the scene coverage of each camera and the dense

(overlapping part) of the light information.

Figure 2.7: The standardization concepts of VR media proposed by MPEG-I group: 3DoF

(left), 3DoF+ (center), and 6DoF (right).

Thanks to the multi-view property of camera array LF, it allows the users to move

between cameras (views) and see the corresponding scene with view synthesis technique

while wearing HMD devise, which is impossible for the traditional VR experience. To

better standardize this new kind of VR mode as well as the future development of im-

mersive media, MPEG-I group have proposed a scheme in 2017 [63] that divided the

VR development into three phases: 3 Degree of Freedom (3DoF), 3DoF+, and 6DoF,

which are shown in Fig. 2.7. Compared to the traditional 360◦ media, which provides

only 3DoF (yaw, pitch, and roll of head rotation) experience, 3DoF+ and 6DoF enable the
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view change from a different viewpoint to increase the immersion. The main difference

between these two phases is the scale of the moving range. While 3DoF+ focuses on

the experience when sitting still and enables a small range of head movement, 6DoF in-

volves body moving, providing a much broader view transition scale, and allowing users

to walk around in a 3D space. To achieve such a view transition, multi-view 3D videos,

which consist of textures and depth maps from multiple viewpoints, are needed. Without

a doubt, the camera array system LF is the perfect content provider for 3DoF+ even 6DoF

VR.

(a) (b) (c)

Figure 2.8: The research product of camera array system in the market: (a) Lytro Im-

merge 2.0 [6], (b) Google LF VR arc system [11], and (c) Facebook Surround 360 VR

camera [9].

Several state-of-the-art LF capturing structures from industries have also been released

to the market as shown in Fig. 2.8. Among them, the Lytro Immerge 2.0 camera aims to

shoot the cinematic level of LF; there are 95 lenses installed, resulting in 10K resolution

per eye [6]. To better research 6DoF VR, Google released a camera rig to capture the

light information omnidirectionally by rotating the arc structure, which is attached with

24 GoPro cameras. Also, Facebook designed and assembled a 360◦ camera with 24 lenses

installed [11], allowing users to create their own 6DoF VR content [9].

2.3.1 View Synthesis

View synthesis is a technique for synthesizing target view (scene) based on the parameter

of the reference views, such as positions, rotations, FoVs [31, 24, 48, 58]. Also, the

technique is the core of 3DoF+ and 6DoF VR experience for they need to update the view

in HMD based on the users’ viewpoint in each frame.

Fig. 2.9 shows the process of view synthesis, in which the green cameras being the

reference views, and the red one being the target view. From the figure, we see that the

process includes two steps: image warping and blending. In the image warping part, the
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Figure 2.9: The process of view synthesis. We first warping the reference view to target

view’s perspectives based on the camera parameter. Then we blend the warped images

together and get the synthesis result.

reference views are warped from their viewpoint to the viewpoint of the target view. The

warped view is shown as the yellow images in the figure, there are some black regions

in the image because they’re out of the coverage of the reference view. With the warped

images, we can blend them based on the geometry relationship and the color coordination

of the image. The final blended image is shown as the red image in the figure, which is

the result of the view synthesis. Nevertheless, there are cases that the coverage from the

reference views is not complete enough, the inpainting technique is used to deal with the

problem. The concept of the inpainting technique is to fill up the hole (uncovered region)

in an image utilizing the pixels around the hole. There are several ways of doing it, from

simple color interpolation to Generative Adversarial Network training, depends on the

researcher’s taste. Either way, the final inpainted image is the result of view synthesis.

15



Chapter 3

Auto-Refocus VR System

Our proposed system aims to render the panorama images with proper DoF on HMD

based on the user’s eye gaze. That is, our system refocuses the panorama image scene

to match the DoF of objects we lay our eye gaze. Since the video playback is sequen-

tial (ideally ≥ 30fps), to achieve smooth video playback, The whole rendering process,

including LF refocusing process and panorama rendering, needs to be real-time and ac-

curate to keep the QoE level. We implement the system on the Unity engine, which is a

gaming engine that supports FOVE rendering and provides comfortable usage.

3.1 System Overview

Figure 3.1: The proposed system consists of three components: panorama generator,

refocused image generator, and viewport player.

As shown in Fig. 3.1, the proposed system is composed of three components: (i)

panorama generator, (ii) refocused image generator, and (iii) viewport player. The panorama

generator is in charge of the calibration and stitching of the LF images to form an LF

panorama image. The refocused image generator manipulates LF images for refocused
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panorama with the proper DoF. The viewport player connects to an eye-tracker equipped

HMD to show viewport to the user. More details on these components are given below.

3.1.1 Panorama Generator

This component collects the LF images from an LF camera and stitches them into LF

panoramas using stitching methods, such as the one proposed in Birklbauer et al. [26].

The resulting panorama images are sent to the refocused image generator. In addition to

panorama LF images, the panorama generator also pre-renders some panorama images

at different depth of fields for the refocused image generator. These pre-rendered images

reduce the refocusing workload at the runtime, which is presented next.

3.1.2 Refocused Image Generator

This component is meant to generate refocused images in real-time. The component gen-

erates images according to the depth map and the coordinates from the eye gaze. During

the process, it extracts the depth value of the eye gaze coordinates and then calculates the

epipolar slope. With that slope, the image refocusing can be done using the shift sum

algorithm. We note that the generation of refocused images is the most demanding pro-

cess that must be done on-the-fly. Therefore, the refocused image generator is heavily

optimized, as presented in Sec. 3.2.

3.1.3 Viewport Player

Figure 3.2: The procedure of translation from eye gaze vector, D(x, y, z) in the leftmost

figure, to panorama coordinate, P in the rightmost figure.

This component is primarily a video player that projects refocused panorama images

to viewports for the HMD. That is, the panorama images are applied to a sphere’s in-
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ner surface that wraps around the user, while the viewport is projected from that sphere.

Moreover, this component also collects the 3D eye gaze vector D(x, y, z) from the eye-

tracker equipped HMD during the playback, and translates it to the 2D coordinates P (x, y)

on the panorama image. To do so, we first get the radius of yaw angle rθ and pitch angle

rφ of the vector in the sphere with the following equations:

rθ = atan(Dz/Dx) + π/2;

rφ = acos(Dy).
(3.1)

Next, we calculate the scale of P on panorama, (m,n), by dividing the radius to the

range. Since the range of θ is 360◦, rθ needs to be divided by 2π, which gives:

m =
rθ
2π
, n =

rφ
π
. (3.2)

Last, we get coordinates P by multiplying (m,n) with the height and width of the

panorama, that is:

Px = m×Wimg, Py = n×Himg, (3.3)

In the formula, Wimg and Himg stand for the width and height of the panorama image.

The resulting coordinates P are sent back to the refocused image generator as the latest

eye gaze for upcoming refocused images.

3.2 Optimization Methods

The latency of the image refocusing should be as low as possible for smoother focal

transition and better user experience. We propose two optimization techniques to achieve

that. Fig. 3.3 presents the detailed design of the optimized focused image generator.

3.2.1 Pre-Rendering Image Selection

As previously mentioned, we generate some pre-rendered panorama images with different

DoF, so they can be quickly retrieved instead of generated from scratch. More specifi-

cally, we have the panorama generator render several images at different DoFs, so that the

proper pre-rendered images can be selected at significantly reduced time complexity. The

real challenge here is to choose the right DoFs so that the pre-rendered images are used

more frequently.

We choose the target object depth using the depth map in our system, where the depth

values are discrete. Therefore, we may pre-render images of some depths in advance and

choose the closest one as the rendered result. In this way, the computing time can be
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Figure 3.3: Our optimized refocused image generator.

dropped significantly, but with the cost of more memory usage. One way to mitigate this

issue is to apply to cluster on the depth map. The results represent the majority depth

values in the LF image, which can be used as the candidate DoFs of the pre-rendered

images. Another way to choose DoFs is based on the objects in the scene for they are

more attractive to the users. Two approaches can be taken to find the objects: learning-

based object recognition or manually tagged objects. Both approaches give the candidate

DoFs. Among all candidates, we choose N DoFs and cache N pre-rendered images, as

shown in Fig. 3.3. At runtime, the input depth value is first matched against the cached

DoFs. If we hit the cache, the pre-rendered image selection (top of the figure) is triggered;

otherwise, the viewport specific rendering (bottom) is invoked.

3.2.2 Viewport Specific Rendering

To reduce the number of pixels from the panorama image to be rendered, we only process

the pixels seen in the HMD viewport. Due to the limited scope of the viewport (about

100◦ × 100◦), the HMD viewport is about 15% of the whole panorama image. As shown

in Fig. 3.3, the brighter area in the panorama represents the viewport, and we crop it

before rendering to reduce the time complexity. More specifically, we first determine the

viewport center coordinates, which in our case are given by the HMD. We perform the

refocusing process only on the viewport. We then paste the rendered viewport onto the

original panorama image for the final result.
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(a)

(b)

Figure 3.4: Sample results from our proposed system: (a) a full panorama LF image of

our lab and (b) the corresponding depth map.

3.3 Evaluations

We carry out experiments and a user study considering both objective and subjective per-

spectives. In the objective evaluations, we mainly want to see the performance of the

system and the improvement due to the optimization technique. As for the subjective

evaluations, our user study compares the user experiences between light field panorama

with refocusing and the normal panorama, in terms of MOS.

3.3.1 Implementations

We implemented the auto-refocus HMD VR system in C# based on the Unity engine [22].

We use CSMatIO [7], a C# library to load LF images written in Matlab mat format. We

adopt OpenCVSharp [17], which is an OpenCV [16] framework with .NET wrapping to

process LF images. We prepare the LF images with a Lytro Illum camera [5] and decode

the raw data with Matlab LF toolbox [34] to get 5D LF images. These 5D LF images are

then stitched into a panorama image [26].

Sample stitching results from our system are shown in Fig. 3.4, where Fig. 3.4(a)

being the panorama whose resolution is 3840 × 418, Fig. 3.4(b) being the depth map of

the panorama.

The resulting system is installed on a testbed for our evaluations. The testbed is com-

prised of a 7×7×1920×3840×3 LF panorama image captured in our lab. The LF image

has a size of 309 MB and is shown as Fig. 3.4. We employ FOVE HMD. The system runs

on a PC with an Intel i7-2600 CPU and 16 GB memory.

Table 3.1: The Average (Standard Deviation) Refocusing Time in Millisecond

Baseline Proposed Cache Hit Cache Miss
5691 27.16 17.8 634.6
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Figure 3.5: The average refocusing time of the systems in 6 runs, the 7th bar shows the

average time of the 6 runs: (a) the refocusing time of the baseline and proposed systems,

and (b) the cache-hit and cache-miss refocusing time of the proposed system.

3.3.2 Objective Measurements

Setup. We conduct the experiments using our VR HMD system. Several system parame-

ters can be adjusted in our experiments:

• Depth tolerance ε, which determines the maximal depth difference between a re-

focusing request and a cached pre-rendered image. A larger ε value increases the

cache hit ratio but reduces the QoE due to DoF mismatch.

• Pre-rendered cache size N , which is the number of cached pre-rendered images.

The default value of ε is 0.005, and that of N is 20. We run our experiments for six runs.

In each run, we randomly pick 50 sample pixels in the panorama LF image and then use

their depth values to generate the refocused images. The same sample pixels are fed into

our proposed VR HMD system and a baseline system, where none of the optimization

technique is adopted. For each refocused image, we consider the following metrics:

• Hit rate, which is the cache hit ratio of the pre-rendered image, showing the effec-

tiveness of the cache.

• Cache-hit time, which is the running time of selecting the pre-rendered image from

the cache. It is relevant when a cached pre-rendered image is within the depth

tolerance of the depth of the refocused image.

• Cache-miss time, which is the running time of rendering viewport. It is relevant

when no pre-rendered image is within the depth tolerance.

• Refocusing time, which is the time to generate a new refocused image.
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Figure 3.6: Results under different cache size N : (a) refocusing time, (b) hit ratio, (c)

video quality, and (d) depth deviation.

• Depth deviation, which is the deviation of the depth of a refocused image from the

ground truth.

• PSNR, which is the video quality of the refocused image compared to the ground

truth.

We report the average results and give 95% confidence intervals whenever applicable.

Last, we vary the system parameters N ∈ {5, 10, 15, 20} and ε ∈ {0.005, 0.001, 0.0005},
to study their impacts on the system performance.

Refocusing time. Fig. 3.5 shows the average refocusing time for 50 pixels in 6 runs,

with the 7th bar being the average time of the six runs. From Fig. 3.5(a), we can see

that the refocusing time of the baseline system is far longer than that of the proposed

system, showing that our optimization techniques significantly reduce refocusing time.

Fig. 3.5(b) reveals that the refocusing time of both pre-rendered image selection and the

viewport specific rendering. Between them, the cache-hit refocusing time is much lower

because we only switch the images when the cache is hit. Although viewport rendering

takes longer time than image switching does, it is still about 6.7 times faster than the
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Figure 3.7: Results under different depth tolerance ε: (a) refocusing time, (b) hit ratio, (c)

video quality, and (d) depth deviation.

baseline.

Implications of pre-rendered cache size. Fig. 3.6 reports the results under different

cache sizes N . From the figures, we can see that as N becomes larger, the hit rate is

higher and the refocusing time is faster because there are more candidate images for the

requests. As for the image quality, it does not change much since the depth tolerance

remains the same. Finally, the depth deviation is tiny, indicating the effectiveness of the

depth selection method, which is k-means clustering in our implementation.

Implications of depth tolerance. Fig. 3.7 shows the results under different depth

tolerance ε. First, we can see that the hit rate is lower as ε becomes lower and hence leads

to the raise of the refocusing time because of the decrease of the cache hit. Moreover,

small ε means the selected depth is closer to the target depth, leading to better image

quality. Typically, the depth deviation will grow with ε, whereas in our case, the diversity

of the depth values is small regardlessly, and hence we do not see this in the figure.
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3.3.3 User Study

The user study aims to find out different user experience between the panorama playback

system with refocusing mechanism and the system without it, also, to determine the im-

pact of the DoF factor on the VR experience. We use MOS to see the general feelings of

the system provided by multiple users, and the questionnaire includes two questions: (i)

do you notice the difference between two panorama images? and (ii) how much do you

like the images? Each user watches the same panorama image for 2-min in each system.

The order of the two systems is random. For the first question, a user briefly describes

the difference he/she feels during the experience. As for the second question, we use a

MOS score ranging from 1 to 5, in which the higher number indicates the user has a better

experience and is more fond of the video.

We hold a small user study with ten users; all of them are graduate students in their

20’s. We include both male (7) and female (3) users. We have two main findings:

• All of them tell the difference between the two systems.

• The MOS scores from our proposed system are on average of 2.78; while those

from the baseline system are on an average of 2.33, which is 0.45 lower.

Our user study, although preliminary, reveals the potential of refocusing supports with LF

panorama images in VR HMD systems.
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Chapter 4

3DoF+ VR System

4.1 System Overview

Figure 4.1: The architecture of the 3DoF+ VR system. 3 components are included: hole-

aware view selector, view synthesizer, and panorama player. Among them, hole-aware

view selector can be split into two components: mask generator and view selection algo-

rithm.

This system aims to provide users a novel VR experience that allows them to move

their positions with the corresponding viewpoint transition of the scene in HMD. To be
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specific, the view of a virtual viewpoint (user’s viewpoint) is synthesized in each frame

with the reference camera parameters. One of the biggest challenges is the latency of view

synthesis process, which is highly dependent on the number of reference views. Thus a

good view selection algorithm is required to reduce the reference view number while

maintaining the synthesis quality at the same time. To maintain the quality of synthesis

result, we need to get the 3D space information of the reference views, so the issues like

view coverage, object occlusion can be resolved.

The architecture of the system is shown as Fig. 4.1. As we can see, There are mainly

three components in the system, including (i) hole-aware view selector, (ii) view synthe-

sizer, and (iii) panorama player. Among them, the hole-aware view selector can be further

split into two sub-components: mask generator and view selector. The former component

is in charge of extracting 3D space information of each reference view, and the later one

is in charge of selecting the view set based on the extracted information, View synthesizer

synthesizes the image of the virtual view based on the selected reference view. Panorama

player transfers the virtual view image to the HMD device and also collect the user posi-

tion data for the future view selection. More details of the components are given below.

4.1.1 Hole-Aware View Selector

This component is responsible for the selection of view set that is used for view synthesis.

To make a suitable selection, the camera parameter of the reference views and the target

(user) view is required to get the geometry relationship between them. Besides, to ex-

tract the space information for a more accurate selection, the depth maps of the reference

views are necessary as well. Moreover, to keep the consistency of the synthesized view

throughout the frames, the selected view set from the last frame is also needed. Finally,

the output of the component is the desired view set for view synthesizer, of course.

The desired view set should have a limited number of views, and their synthesis result

should be as high quality as possible, also, the selection latency should be as low as

possible. Specifically, the component ensures the effectiveness as well as the efficiency

of the view selection in our system, leading to the two sub-components: mask generator

and view selection algorithm. To keep the quality of synthesis (reduce the holes), mask

generator extracts the space information of the reference views and generates the masks

containing such information. With the masks, the view selection algorithm will then

select the desired views for view synthesizer efficiently. To keep it efficient, instead of

finding the optimal result with brute force computation, we utilize a greedy algorithm to

approximate the optimal solution. This component is our main contribution to this system,

and more details can be found in Sec. 4.2.
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4.1.2 View Synthesizer

The component has only one purpose: to generate the image of the virtual (user) viewpoint

with the selected reference views. The view synthesizer reads the view set from the view

selector and gets the image of the corresponding reference views, based on the views, it

then performs view synthesis as described in Sec. 2.3.1 to generate the target view from

the user’s perspective. After the synthesis, the image will be sent to the panorama player

and shown to the user.

4.1.3 Panorama Player

The last component is the panorama player, which is a rather simple component that

receives the image of the target view and shows it to the user in HMD. Another feature

of the component is that it’s in charge of collecting the user viewpoint data, including

positions and orientations, and send it back to the hole-aware view selector as the next

target viewpoint. There are several ways of collecting the user viewpoint data, including

the depth sensor deployment, and motion capture. Among them, the easiest one is to find

an HMD devise that support body movement detection, such as HTC Vive Focus [14],

FOVE [10]. These HMDs can detect the relative transition as well as the orientation, the

user viewpoint parameter can be derived with these data.

4.2 Hole-Aware View Selection

As previously mentioned, the proposed view selection method consists of two parts of

processing: (i) mask generation and (ii) view selection. The former process produces

the masks that contain the space information indicating which area in the target view

is covered by the reference view. Specifically, a mask is in binary data format and the

same size as the target view image, showing if the reference view covers the pixels in the

target view. With these masks, the later process can select the desired view by checking

which mask has the most view coverage (number of covered pixels). Since the number of

the selected views is limited for reducing the computation loading, we utilize the greedy

algorithm and select the currently optimal view in each stage.

Besides the greedy selection method, we also propose another selection method based

on the pixel importance, which is a score of a pixel indicating the number of views cover-

ing it, the smaller the number, the more critical the pixel. The selection order is from the

most critical pixels to the less important ones, also there several conditions for different

conflict situations. The details of the selection methods are explained below.
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4.2.1 Mask Generation

Figure 4.2: Mask generation process in the mask generator component, including two

steps of process: 3D warping and hole filtering.

The goal of this process is to generate a binary mask for each reference view (or

the candidate ones), and each mask shows the coverage of a reference view to the target

view. Since the mask is in binary format, the value-1 pixels (white) are considered as

the covered (by the reference view) pixels, and the value-0 (black) pixels are considered

as the uncovered pixels. Fig. 4.2 shows the generation procedure of the masks, which

includes two steps of the process: 3D warping and hole filtering. The left figure indicates

the color and depth map of a reference view, which is taken with the real camera. The

middle figure shows the resulting image of the 3D warping, where we transform the pixels

into the target view perspective. The right figure presents the result after applying the hole

filtering technique, which can determine the nature of the holes and fill up the right ones,

and is also the final product of the mask generation process. In the following paragraphs,

the detailed design of the process will be presented.

3D Warping

This technique is usually used for the computer graphic algorithm like view synthesis

for it’s capable of transforming a set of the 3D point cloud from a coordinate system to

another [38]. That is, to see the scene from other viewpoints, we determine the view

coverage and object occlusion with this technique. Typically, there are three steps of the

process in the 3D warping technique:

1. Unprojection. This step aims to unproject the pixels of the 2D image to the 3D

space to form the corresponding point cloud. The unprojection process is pretty

straight forward, we first calculate the spherical coordinate (θ, φ) for each pixel

based on the horizontal and vertical FoV, then we translate the spherical coordinate
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to the corresponding unit vector (xn, yn, zn). With the vector, we multiply it with

the depth value from the depth map and can finally get a 3D coordinate (X, Y, Z).

After all pixels in the image are unprojected, we can get a 3D point cloud of the

scene, whose density is determined by the image resolution.

2. Affine transform. The second step is for the transform of the point cloud, from the

reference view coordinate system to the target view coordinate system. For a classic

affine transform, we have two affine spaces X and Y , and to do the transformation

f : X → Y , we use the function y = ax + b, where x and y are the vectors in

two affine spaces, respectively, a is a linear transform term on space X , and is b is

a vector in space Y . In our case, x represents the 3D point cloud from the pixel

unprojection, y represents the transformed point cloud in the target view coordinate

system, a represents a rotation matrix, and b represents a translation vector. The

goal here is to calculate the transform term a and b with the equation below so we

can do the transform.

a = RT
2 ×R1,

b = −RT
2 × (P2 − P1)

(4.1)

In these equations, R1 and R2 are the rotation matrices of the orientations of the

reference view and the target view; P1 and P2 are the 3D positions (vectors) of the

reference view and target view. Now formula y = ax + b is complete, we can

transform the point cloud from the reference viewpoint to the target viewpoint.

3. Projection. The final step is to project the transformed point cloud back to a 2D

image, the process is similar to the gaze translation mentioned in Sec. 3.1.3, which

is the opposite of the unprojection. In the process, we first want to get the spherical

coordinate (θ′, φ′) for each 3D coordinate (X ′, Y ′, Z ′) using Eq. 3.1. Then based

on the spherical coordinate, we can calculate the normalized 2D coordinate with

Eq. 3.2, only with different FoV values. Now we need to filter out the coordinates

that are outside the [0, 1] range for they won’t be shown in the image, and eventu-

ally, we get the real pixel coordinate in the image with Eq. 3.3. To make the binary

mask, we set the pixels with the projected coordinates to 1 and 0 to the others.

The mask we produce requires lots of computations, and most of them are repeated in

the view synthesis since 3D warping is also applied in this process. Therefore, part of the

data can be recycled, such as a 3D point cloud of the scene for the later use.

29



Hole Filtering

In this second process, we need to fill up the holes caused by the point cloud discontinuity,

which are the tiny holes scattered on the should-be-covered area in the central figure of

Fig. 4.2. Therefore, two main steps are taken in the hole filing process, including hole

recognition and pixel binarization. In the hole recognition, we recognize and categorize

each hole (value-0 pixel) in the mask by checking the coverage density to see if it needs to

be filled up. Then for each hole needed filling, we apply binarization to it with a threshold.

(a) (b) (c)

Figure 4.3: The hole filtering process of the mask. (a) The image before hole filtering

process, (b) the types of the holes, (c) the image after hole filtering process.

In the Fig. 4.3, the procedure of hole filtering is presented. Within it, Fig. 4.3(a)

represents the image from the warping result, which has lots of tiny holes on it and needs

to be fixed. The nature of causing these holes is the discontinuity of point cloud during

the warping. That is, the pixels on the image are discrete (the coordinates are integers),

and hence the unprojected coordinates are discrete as well since there’s no mesh formed.

The result point cloud is comparably sparse for the image projection, and so the seams

between the 3D points lead to the holes on the image. Since the selection is based on the

space coverage (number of the value-1 pixel) of each mask, we need these tiny holes to

be filled so the final result would not be affected.

Then how do we know which holes to fill? As Fig. 4.3(b) indicates, there are two

types of holes: the view coverage limitation causes the red ones; and the green ones are

caused by the point cloud discontinuity. As we can see, the most apparent difference

between these two is the scale of the hole. Compared to the messy and unruly point
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cloud discontinuity holes (green holes), the view coverage limitation holes (red holes)

have clear outlines and complete structures. Since the holes in the green region are more

like noises than the real structural ones, we categorize the holes based on their coverage

density. To be specific, we inspect the neighborhood area of a hole (value-0 pixel) and

see the number of holes in the very area. If the number is larger than a certain threshold,

than the inspected pixel is determined as a view coverage limitation (red) hole; otherwise,

a point cloud discontinuity (green) hole.

Table 4.1: Symbol table of hole filtering algorithm.

Symbol Description
M Mask that needs hole filtering process

k Size of kernel used for summation convolution

d Coverage density of a pixel

τ Threshold to determine the hole type (binarization)

Table 4.1 shows the symbols used for hole filtering algorithm, in which M is the

warped image like Fig. 4.3(a), k is the size of the kernel used for summation convolution,

d is the coverage density that shows the number of covered pixels around a pixel (k× k

area), and τ is the threshold of binarization, if any hole’s coverage density d is larger than

it, the hole will be classified as a green one and will be filled up.

Algorithm 1 Hole Filtering Algorithm
1: // Assign convolution kernel

2: K ← kernel filled with 1 in size of k × k
3: for each pixel p in M do
4: if p = 0 then
5: P ← the surrounding k × k area of p

6: // Assign coverage density

7: d← K ∗ P
8: // Fill the hole if coverage density d is big enough

9: if d ≥ τ then
10: p← 1

11: return M

Algorithm 1 shows the pseudo-code of the algorithm. As shown in the code, we first

assign the convolution kernel K with all elements being value-1 at line 2, and then we

conduct a convolution operation M ∗K. For each hole, we get a corresponding coverage

density d to see the number of the covered pixels around it at line 7. Next, by comparing
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d to the threshold τ , we can determine if a hole is a noise or a part of a complete structure.

Finally, we fill up a noise-like point cloud discontinuity hole at line 9.

Fig. 4.3(c) shows the result after applying the hole filtering. As we can see, compared

to Fig. 4.3(a), the holes in the green area are filled while the holes in the red area remain

untouched. The filtered mask shows the correct view coverage information of a reference

view.

4.2.2 View Selection Algorithm

Now the masks containing the space information are generated, the view selection can be

performed. We propose a view selection algorithm to select a suitable view set with the

information in the masks, and since the covered information in the mask is represented

as the value-1 pixels, the view selection problem can be considered as a problem to find

the combination of masks with the maximum view coverage (the mask union that con-

tains the most value-1 pixels). Also, due to the restriction of the selected view number,

the problem can be mapped to a classical combinatorial problem: Maximum Coverage

Problem (MCP) [60, 23, 41]. To better solve the MCP in polynomial time, we utilize the

greedy algorithm [23]. That is, to select the currently optimal combination of views with

the most covered pixel.

Maximum Coverage Problem

Figure 4.4: An example of the Maximum Coverage Problem (MCP): There are six sets

that contain the elements in universe, and we want to find at most 3 sets to cover the most

elements. The answer would be the collection [S2, S3, S6].

Maximum Coverage Problem (MCP) is a classical NP-hard combinatorial problem in
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computer science and is widely taught in approximation algorithms. The basic principle

of MCP is to select a certain number of sets that cover the most elements in the universe,

A simple example is shown as Fig. 4.4, where there are 15 elements in the universe, and

six sets that each covers a different part of the universe. If we want to find at most three

out of six sets that cover the most number of elements, which sets should be chosen? The

solution set of this example is [S2, S3, S6], which can cover ten elements.

So how do we map our view selection problem to MCP? First, we must define the

sample universe, which in our problem is the pixel set in the target view image, each

pixel in the image represents an element. Second, we need to define the sets that cover

the elements, which in our problem is the covered (value-1) pixels in the mask of each

reference view since those pixels represent the elements in the universe. Therefore, the

mapped problem here would be to find a set of masks with limited mask number whose

union can cover the most pixels in the target view image. Now with this mapped problem,

we need to find an effective as well as an efficient algorithm to solve it.

Greedy Algorithm

Being one of the classical combinatorial problems, MCP has been researched year decades.

Since the problem itself is NP-hard, there’s no optimal polynomial-time solution for it

until the day we prove P = NP . Over the years, researchers have been working on

better approximation algorithms for MCP, and the best-possible algorithm they find is the

generic greedy algorithm. To be specific, at each stage, we choose a set that contains

the largest number of uncovered elements. The approximation ratio of the algorithm can

reach 1 − 1/e ≈ 0.632, which is necessarily optimal under standard assumption [23].

To solve our view selection problem with the greedy algorithm, we symbolize the used

terms and perform a complete formulation of the problem. Below are the details of our

proposed algorithm.

Table 4.2: Symbol table of the view selection algorithm.

Symbol Description
M Collection of the covered pixels in the masks

S Set of the selected views

C Image used for union in each selection stage

T Union results of image C and all masks in M

r Coverage scores of T

k Maximum size of S

The symbols of the greedy view selection algorithm are listed in Table 4.2. As we
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can see, M is a collection of the covered (value-1) pixels in the mask of each candidate

reference view, which is generated from the previous component. S is the set of the

selected views and is the final result we want. C is the canvas used for greedy selection at

each stage, which records the result of the previous stage. T is set for the union of C and

all pixel sets in M, and r is the coverage pixel number for each union result in T. Finally,

k is the size limitation of the selected view set S. With the symbols, we can formulate the

objective function as below.

maximize

∣∣∣∣∣⋃
s∈S

Ms

∣∣∣∣∣ , s.t.|S| ≤ k (4.2)

The function shows that our goal is to right view set S, in which the union of all masks

inside the set is maximum under the constraint of set size k.

Algorithm 2 Greedy View Selection
1: // Initialize canvas

2: C ← image filled with value-0 pixels in the same size of views

3: // Select one view in each stage

4: for i from 0 to k − 1 do
5: for n from 0 to |M| − 1 do
6: Tn ←Mn ∪ C
7: rn ← number of value-1 pixels in Tn

8: // Find the view combination with the max coverage

9: idx← index of max element in r

10: // Assign selected view in this stage

11: Si ← idx

12: // Update canvas with the selected combination

13: C ← Tidx

14: return S

The pseudo-code of the algorithm is presented as Algorithm 2. In the code, we first

initialize the canvas as an uncovered mask, where all the pixels are set to 0 at line 2. Then,

we start the selection for k stages and select the one view per stage. At each stage, we go

through all pixel sets in M to get their union result with the canvas C and store them in

the temporary set T at line 6. Then we calculate the coverage score r of each union result

in T at line 7. After going through all the masks and get their union coverage score, we

get idx (view index) from the mask with the highest score at line 9. The idx is the view

index we select in this stage, we then update the canvas by assigning the union result Tidx
to it at line 13. After all k stages are through, we get the currently optimal view set S at

line 14.
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Figure 4.5: Example of our view selection strategy. In each stage, we choose the view

combination that covers the most pixels in target view. The final selected view set [v5,

v10, v1] leads to the coverage of 99.368%.

An example of the greedy view selection is shown as Fig. 4.5, in which the number of

reference views is 12 and the size of the selection k is 3. From the figure, we see that at

the first stage view 5 is selected for its coverage score is the highest among all reference

views, which is up to 92.56%. The canvas will be updated with the mask of view 5 for

the second stage selection. In the second stage, we select view 10 since it contains the

most uncovered pixels in the canvas, which is now the mask of view 5. Then the canvas

will be updated with the union result of view 5 and 10 for the third selection. At the final

stage, view 1 will be selected for it again covers the most pixels in the canvas. The final

synthesis result of view set [1, 5, 10] and its corresponding coverage mask are shown in

the figure, the coverage percentage of the selected set is up to 99.37%.

The selection mentioned above algorithm is not the optimal solution, whereas it’s the

best solution in polynomial time. Since the selection process needs to be done in a short

time, a more efficient algorithm with a certain quality (approximation ratio ≈ 0.632) is

preferred. Moreover, to maintain the coherence between frames, we preserve the view set

selected in the last frame and examine the coverage score it has for this frame (use the

masks in this frame). If the score from the previously selected set is better than the current

result, the set will be used in this frame again; also, if the previous result is worse than the

current one but the difference is within a threshold (like 0.001%), the set will be used as

well. This way, we can make the synthesized view coherent at a certain level.
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4.3 Other Solutions

Besides the MCP-based greedy algorithm, we described in the previous section, we also

implement other solutions for the view selection. One of them is the view selection algo-

rithm based on the pixel importance, which is the number of views that cover a pixel, the

smaller the number, the more critical. The other one is the offline view selection, instead

of proposing a new selection algorithm, we design a mechanism to pre-select and store

the view sets of certain viewpoints in advance so they can be utilized as the solution for

similar target viewpoint and save us the time of on-the-fly selection. Both of the methods

are elaborated in the following sections.

4.3.1 Pixel Importance-Based View Selection

Pixel importance-based view selection is a novel approach to tackle the problem, instead

of using the coverage of the view, we utilize the importance property of each pixel to

decide which views to pick. In our design, the importance of a pixel in the target view

is defined by the number of the reference views that can cover the very pixel, the smaller

the view number is, the more critical a pixel is. For instance, the pixel that is covered

by three different views is less important than the one that is covered by only one view.

This design ensures the pixels that are the least touched can be covered first. Also, several

conditions are set for the conflicts during the selections.

• Selection order. We select the view starting from the ones that cover the most

important pixels on the target view. Once the view is selected, the pixels it covers

are discarded from the selection space so we won’t get the same pixels again.

• Multiple pixels with the same importance. The conflict happens when multiple

pixels have the same amount of covering views, and we need to find the right pixel

among them. In our design, we select the one pixel that is the farthest from the

previously selected pixel. Such selection makes sure that as many different parts of

the target view can be covered as possible, which is crucial since empirically the

least covered pixels locate in some remote areas of the image.

• Multiple views cover a pixel. The conflict happens when a pixel is covered by

multiple reference views, which is typical for there can quite a few overlapping

areas between the views. To deal with it, we select the one view with the maximum

coverage area on the target view. The design ensures that as many covered pixels

as possible for that is the primary goal of the view selection.

An example of the pixel importance-based selection method is shown as Fig. 4.6,

which presents three stages of selection. At the first stage, the most important pixel,
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Figure 4.6: Procedure of pixel-importance-based view selection algorithm. In each stage,

we choose view of the most important pixel under several conditions.

which only gets covered by one view, is picked, and that one view covers it is selected as

the first view S0. Then the pixels that S0 covers are all discarded. At the second stage,

three pixels share the same importance, and we pick the one that’s farthest from the pixel

picked at the first stage. Since two views cover the pixel, we select the one that has the

most coverage area as the second view S1. Finally, at the third stage, we again pick the

pixel that has the least covering views, and from the two views, we select the one with the

most coverage area as the last view S2. After the stages are over, we get the result view

set S.

This algorithm is dense in computation, the decisions it needs to make is far more

complicated than the greedy algorithm. Therefore, this algorithm is not suitable for real

system usage.

4.3.2 Offline View Selection

Our proposed selection method often requires lots of computation, e.g., the union oper-

ation between the canvas and the multiple masks, let alone the mask generation process,

the warping is a costly operation. To save these computation power as well as the latency,

we propose a method to pre-select and store the view set for certain viewpoints before-

hand, and during the playout time, the sets can be used directly as the selection result.

This way, we can skip the whole hole-aware view selection process and send the stored

view set to the view synthesizer.

One big challenge here is that the 3DoF+ VR requires a smooth view transition, how

many pre-select viewpoints we need to achieve that? In our design, we restrict the 6DoF

transition to 4DoF by fixing the Z-axis position and roll-axis rotation, and in each remain-

ing dimension, we set the start, end, and step variables to define the range of viewpoints.

As shown in Fig. 4.7, the start, end, and step variables in X-axis movement are defined as
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Figure 4.7: The stored viewpoints of offline view selection. The Z-axis position, as well

as the roll-axis rotation, are fixed. For the rest 4 degree of freedoms, we define the start,

end, step values to determine the pre-selected viewpoints.

(x0, x1, xs), and the view number in X-axis is derived as xn = (x1−x0)/xs+1. The same

principle can be applied to other dimensions and we eventually define the total viewpoint

number as xn × yn × θn × φn.

4.4 Evaluations

In the evaluation part, we held experiments to test the performance of the system consider-

ing both synthesis quality as well as process latency. Also, we compare the performance

between offline and online view selection with a real user trace, which contains 1,200

frames of viewpoints. In our experiments, we compare our system’s performance to oth-

ers like Dziembowski et al. [37] as well as other algorithms. In the quality assessment,

we utilize PSNR, SSIM and coverage percentage of the synthesis results as the evalua-

tion metrics; and in the latency measurement, we compare the latencies between different

down-sampling ratios of greedy selection. The details, as well as analysis of the experi-

ments, are described in the following paragraph.

4.4.1 Implementation

Compared to the auto-refocus system, most of the components in this system are linked

externally. We implemented the hole-aware view selector, including both of its sub-

components, in python, and accelerate it with cython module. These modules are com-

piled to DLLs for the system usage. As for the view synthesizer component, we use
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the software from MPEG-I group developed in 2018 called Reference View Synthesizer

(RVS) [44]. The RVS is a reference software whose performance is not optimized; we

use it for the conservative purpose. The panorama player is implemented on unity engine

and is written in C# to connect the FOVE HMD, which can collect the user viewpoint

information.

Table 4.3: Test material we use in our system.

Name Cameras Frames FoV Depth
Technicolor Museum 24 300 180◦ × 180◦ Y

Technicolor Hijack 10 300 180◦ × 180◦ Y

Classroom Video 15 120 360◦ × 180◦ Y

The test materials we use in the system are shown in Table 4.3, which are all collected

from the MPEG-I group. All of these materials are multi-viewpoint with depth (MVD)

sequences that contain light information from different positions and orientations. The

table shows the camera number, frame number, and field of view (horizontal × vertical

angular range) of each sequence. In our experiments, we extract the first frame of the

sequence Technicolor Museum [36] as our target scene, that is, we test our user traces

and offline view set selection based on this scene. The details of the experiments will be

further introduced in the following sections. The machine used in our experiments is a

PC with an Intel i7-2600 CPU and 16 GB of memory.

4.4.2 Performance Analysis

(a) (b)

Figure 4.8: View selection results of the user trace data using the proposed algorithm: (a)

Distribution of the synthesis result coverage, (b) the PDF (bar) and CDF (curve) of the

coverage result.
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Figure 4.9: Results of average coverage percentage using different view selection algo-

rithms.

In this section, we evaluate the performance of our view selection with two parts

of experiments: quality assessment and latency measurement. The former compares the

synthesis quality of the selected views between different algorithms; and the later measure

the view selection latency of different conditions. In the performance test, we use all-

views result as our ground truth for it is the best possible synthesis result using all the

reference views. However, it’s no guarantee that the ideal view would be the same as

the real scene, there still can be some problems depends on the viewpoint’s position and

orientation. The baseline of the evaluation is the work from Dziembowski et al. [37],

in which they select views based on the geometry relationship. That is, to select the

most similar views as the results considering the only relation between the reference view

parameters and the target view and not the real space information. All the synthesis

results are from the 1200 viewpoints of the user trace, in which the PDF and the CDF of

the synthesis result coverage are shown in Fig. 4.8. From the figures, we see that more

than 80% of the distribution is above 99% of view coverage.

Fig 4.9 shows the average coverage percentages of the synthesis results from different

algorithms. As we can see, our hole-aware view selection has the result of 99.67% aver-

age coverage percentage, which is 15.5% higher than the baseline and only 0.1% lower

than the all-views result. The number proves that our proposed view selection method

is advantageous. On the other hand, pixel importance-based algorithm is not that useful,

the results show that its synthesis quality is merely higher than the MCP approximation

ratio. In Fig. 4.10 we observe the similar results, the hole-aware view selection algorithm

holds the best performance while the pixel importance-based algorithm performs poorly.
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Figure 4.10: Results of PSNR (left Y-axis) and SSIM (right Y-axis) comparing to ground

truth using different algorithms.

Note that the all-views result is not in the figure because it is the ground truth in this

comparison.

Fig 4.11 presents the performance results of our hole-aware view selection algorithm

under different down-sampling ratios. By applying down-sampling, we down-sample the

reference view image resolution with the assigning value d. Specifically, let the view

image resolution be 2048×2048, and the down-sampling ratio d be 2, then the image will

be down-sampled to 1024× 1024 before feeding to the mask generator. This way, we can

reduce the number of processed pixels and save bandwidth and computation. From the

figure, we can see that the view selection latency with d = 1 is exceptionally high, up to

2.5 seconds; and with d = 16, the processing time is reduced to 30 ms while the quality

(coverage percentage) can still reach above 99% on average.

Fig. 4.12 shows the exact processing time inside the hole-aware view selector compo-

nent, which contains two components as we previously introduced. From the results, it’s

obvious that the main execution time of the selection process is in the mask generation

part, which in some case (d = 16) the difference is up to 60 times. In this figure, the

optimal represents the optimal view set we can find with the limited set size, which in

our case we use brute force search to find the answer (MCP is NP-hard), and it leads to

17.8 times of processing time compares to the hole-aware algorithm with the same down-

sampling ratio. Finally, since the geometry-based method (baseline) only considers the

camera parameter, it’s way more efficient than the hole-aware algorithm, which generates

and utilizes the space information. To sum up, we recommend using d = 8 for the process

for it can be rather efficient while maintaining a certain level of quality.
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Figure 4.11: Performance of the hole-aware view selection algorithm under different

down-sampling ratios.

4.4.3 Offline vs. Online View Selection

In this part of the evaluation, we examine the performance difference between online and

offline view selection. As we previously mentioned in Sec. 4.3.2, we pre-select and store

the view sets for a quick view set appliance. Since the pre-select viewpoints are discon-

tinuous and they cannot cover all the user viewpoints, there must exist some deviance

between the results of the stored view set and the on-the-fly selected view set. The exper-

iments below show the differences, and we will analyze and discuss observations. In our

experiments, the online scenario means that the view sets are generated in run-time with

different algorithms (hole-aware or optimal aka brute force); the offline scenario means

that we select the view sets for some viewpoints with different algorithms in advance and

utilize those sets for similar viewpoint synthesis.

Table 4.4: Variables to define the range of the pre-selected viewpoints.

DoF Start End Step Size
x -0.3 0.3 0.1 7

y -0.3 0.3 0.1 7

θ -50◦ 50◦ 10◦ 11

φ -50◦ 50◦ 10◦ 11

To decide which viewpoints to store, we need to set the start, end, step variables for 4
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Figure 4.12: Results of processing time of hole-aware view selector component.

degrees of freedom as mentioned in Sec. 4.3.2. The variables are set in Table 4.4, where

we have 49 positions and 121 orientations, hence the total number of viewpoints would be

49 × 121 = 5929. These viewpoints represent the offline selection, and its performance

will be later evaluated with the user trace.

(a) (b)

Figure 4.13: Results of offline and online view selection applying different algorithms: (a)

average coverage percentage among the views; (b) minimum coverage percentage among

the views.

The results of the coverage percentage of the synthesis results using both algorithms

are shown in Fig. 4.13. Fig. 4.13(a) shows the average coverage percentage of the synthe-

sis results of both algorithms. From the figure, we can see that for both algorithms, their
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average coverages of online selected sets are higher than that of offline selected sets. The

relationship exists due to the deviation between the offline and online selection, we can

solve the problem by increasing the alignment density of pre-selected viewpoint.

Also, an intriguing observation can be made is that while the online selected sets

using optimal solution leads to better qualities than that using the proposed (hole-aware)

solution, the offline selected sets using optimal solutions don’t lead to the same outcome.

The phenomenon is because of the viewpoint specific selection, in which the selected

view set is only suitable for a particular viewpoint and cannot handle the deviations well.

That is, the optimal view sets are way too specific for the viewpoint, it does not suit to

other viewpoints even if the deviation is small. On the other hand, our proposed solution

doesn’t necessarily get the optimal view set for the viewpoint, its applicability is broader

and can be suitably used for similar viewpoints. The similar phenomenon can be observed

in Fig. 4.13(b), in which the minimum coverages of both scenarios are shown. Again,

we see that the minimum coverage of offline selected set using optimal solution is lower

than that using the proposed solution while the online scenario shows the opposite results,

showing that the deviation between online and offline scenarios using the optimal solution

is more severe than using the proposed solution.

(a) (b)

Figure 4.14: Results of the deviation between offline and online view selection using dif-

ferent algorithms: (a) deviation distribution of the views; (b) maximum deviation among

the views.

Fig. 4.14 shows the overview of the deviations (online−offline) between offline and

online selection using different methods, including their distributions and the max value

among them. From Fig. 4.14(a), we can see that the online selection is always better than

the offline selection since there are no negative values in the distribution. It is intuitive

since the viewpoint deviations always cause more uncovered areas (holes). The coverage

deviation, however, is not severe in most cases (90% of the views have the deviations
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less than 4.88%). Fig. 4.14(b) shows the max deviation throughout the whole user trace

of different algorithms. From the results, the viewpoint specific selection problem can be

further validated: the result from the optimal solution is higher than that from the proposed

solution in about 16.8%. Also, we can decrease the deviation between online and offline

selection and avoid viewpoint specific selection problem by increasing the density of the

pre-selected viewpoint alignment, which depends on the memory capacity of the server.

The specific viewpoint selection indicates that our method has more suitability to the

similar viewpoints than the optimal selection.
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Chapter 5

Conclusion and Future Work

In this thesis, we study the development of the 360◦ video and the HMD VR system. We

found that there are still some limitations in the current 360◦ HMD system, such as the

fixed focal length and the fixed viewpoint, these limitations keep users from further ex-

ploring the technology. To conquer the limitations, we study light field (LF) technology

as well as its potential application in HMD VR system. Based on its properties, we pro-

posed and designed two HMD systems to deal with the limitations mentioned above. In

the first system (auto-refocus VR system), we aim to apply dynamic focal length adapta-

tion based on the user eye gaze. We utilize LF panoramas for the real-time refocus effect,

and connect FOVE HMD for the eye gaze information collection. Also, two optimiza-

tion methods are proposed to reduce the latency of the refocusing process; the evaluations

show that the performance can reach up to 200 times faster than the unoptimized process

on average. in the second system (3DoF+ VR system), we provide the VR experience

where users’ viewpoints in HMD can move along with their (head, body) positions. The

multi-view video sequences from MPEG are used as test materials and use FOVE for

position detection. To reduce the bandwidth as well as the computation, we propose a

novel view selection algorithm for the view synthesis process that can leverage the real

space information. The results from the experiments show that the synthesis result from

our proposed algorithm is only 0.1% lower than the optimal solution while the processing

time is 18 times faster.

Our works, still, can be extended in multiple directions:

• Integration of the two proposed systems. Since the systems we proposed are both

based on the LF technology, we want to integrate them as one for the greater user

experiences. Being able to experience VR content from different viewpoints with

focal length adaptation can increase the immersion.

• System acceleration with GPUs. From the evaluations, we see that the latency
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is a significant flaw in both of our systems, we should leverage GPU toolkit and

parallel computing to accelerate the rendering and improve the performance. These

enhancements will further consolidate the systems and increase the user experience.

• 6DoF VR Expansion. 6DoF VR is the ultimate form of the VR experience, and it

allows users to stroll in the virtual scene immersively. To achieve this, we need to

scale up the light field data by capturing more light information from different po-

sitions, which leads to more complicated system design. Such improvement would

significantly boost the user experience without a doubt.

By differentiating the pros and cons of both our systems, we open up new opportuni-

ties for researchers and engineers to further develop LF applications in AR/VR system in

terms of user experience.
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