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Cloud

Why don’t we leverage the resources in between cloud and things?
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[1] https://www.openfogconsortium.org/

Cloud-to-Things Continuum Framework
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Three Research Problems
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Application: Remote Rendering

Goal: Serving as many users as possible
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Application: Content Delivery

Goal: Maximize delivered information

7



Contributions

Propose an intelligent cloud-to-things continuum framework
‘ Solve application deployment problem

* Deploy applications while considering decompositions
* 1/U approximation factor

‘ Solve delay-sensitive application optimization problem
* Adapt bitrates for game streaming applications
* Optimal solution solved in polynomial time

‘ Solve delay-insensitive application optimization problem

* Provide content delivery plans while considering user behaviors
and content representations under challenged networks

* An efficient algorithm outperforms state-of-the art algorithms
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Application Deployment Problem

Problem: Given a set of requests Q and a set
of fog devices V. Each request has three
requirements: (1) a splittable application,
(11) a target QoS, and (i11) a specified
location. Devices located at various places
have U kinds of resources. Our problem 1s
to determine which request q € Q should
be served on which device v € V without
overload the resources. Our goal 1s to
maximize number of served requests.

Challenges:

Device
Requests  capacities

S |

\_

Deployment
Algorithm

J

L 4

Deployment

Decisions

* Diverse users (requests)—2> diverse resource requirements
* Heterogeneous fog devices =2 application decomposition
* Large problem size = polynomial time algorithm
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Application Deployment Problem: Ideal Case

>

o Splittable applications :}{)
* Arbitrary size of operators ﬁ @ 9 =
Transfer link constraints to node constraints
o Grid map
* Select one of grids

o Reduced device heterogeneity

* Proportional resource levels ....

v" Variant of knapsack problem

v NP hard
1 core2 GHz 4 cores 2 GHz 8 cores 2 GHz

1 GB RAM 4 GB RAM 8 GB RAM 14



APproXimation Algorithm

N
Nl

1., Step 1: Request selection
. Step 9) Step |
* Least total required resource Device Request
first minq €Q 2ueu F (CI, U, ) | Selection Selection

°  Q:request Next ‘ % ‘?_r\\!ext
| ?
° Uu:resource type device 4 request?

| Request Decomposition )

* F:resource consumption model/ g5 \ !
2. Step 2: Device selection ®
. 5 4 Remaining
*  Round robin “ Operator

3.%Step 3: Request d Lt
€p 5. Request decomposition + 0(Q| log [QI+QIV[U])

* As large operator as possible » 1/U Approximation Factor
Q: Request set
V: Device set
U: Resource type set 15



1
U]

o Stepl: Design an upper bound solution (OPT”)

* Intuitions are similar to APX
o Step2: Prove results of OPT’ >= optimal solution (OPT)
o Step3: Derive approximation factor (APX/OPT”)

Proof: — Approximation Factor

The algorithm results in optimal solution while |U| = 1
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Validating the Approximation Factor

o OPT: formulate as ILP and optimally solve it using CPLEX
o Results of APX are always above theoretical 1/U bound

o APX == OPT while U=1
Optimal Solution

) - 2500 J
§1500 |-+ APX Z +APX
- ~1-OPT £2000 ~I-OPT ~
~ —4—-1/U Factor élSOO _ —4-1/U Factor _
EIOOO 1 o
z % E1000
5 =
500 7p)
S = 500
s .
“ 0 - , ' Z 0 . | | |
500 1000 1500 2000 2500 1 2 3 4 5
Number of Submitted Requests Number of Resource Types

Limitations: Operators, Links, Location, and Devices
—> How to make it more generalized?
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Application Deployment Problem: General Case

o Goal: Serve as many requests (users) as possible

Ideal Generalized
Operator Any Size Predefined
Resource Node Node + Link
Constraint
Location Grids Any Location
Device Proportional Any Device
Heterogeneity

Application
o
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Problem Formulation
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SSE Algorithm

: Reduce node
Node Request Selection - consumption

e Scarcest resource first

Link Source/Destination device
selection

* Shortest path first (hops and
latency)

Reduce latency

Device
Selection
A

Link Immediate device selection

* Early feature extraction

Reduce network
resource consumption

1

3

2
 Na

Request
Selection

S/D
Device

Selection

.
. —— - =)
2 ————

Immediate
Device
Selection
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Evaluation Setup

O

O

O

O

Requests

Poisson arrival / departure rates: 1 min / 10 mins

Network topology (BRITE [1])

Number of fog devices: [10, 25, 50, 75, 100]
Location of fog devices and latencies of their edges: based on BRITE

Resource capacities of fog devices

CPU: [100% ~ 800%] => random
RAM: [1 GB ~ 16 GB] = random

Bandwidth of links:

[45 kbps (LoRa), 8 Mbps (WiF1i), 25 Mbps (4G)] = Random

[1] BRITE, https://www.cs.bu.edu/brite/user manual/
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B aseline Algorithms  Designed for fog devices

* Splittable application

* Consider both node and link capacities

o Optimal Data Stream Processing Placement (ODP) algorithm [1]
* CPLEX
o Fog and Cloud Placement (FCP) algorithm [2]
* Heuristic
o Linear algorithm
* (@Greedily deploys operators to neighbor fog devices
* Considers all the constraints
o Random algorithm

*  Mimics a platform without centralized server
* Does not consider any constraint

[1] V. Cardellini, V. Grassi, F. Presti, and M. Nardelli. Optimal operator placement for distributed stream processing applications. In Proc. of ACM International
Conference on Distributed and Event-based Systems (DEBS), Irvine, CA, June 2016.

[2] M. Taneja and A. Davy. 2017. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proc. of IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). Lisbon, Portugal.
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SSE Serves More Users

o SSE outperforms others 1n terms of supported users
*  140%, 49%, and 46% compared to Linear, FCP, and ODP
* Random satisfies zero requests after running 14 hours

o Random, FCP, and ODP are too aggressive
* Overload links by up to 21, 12, and 10 links

21
600+ SSE ' ' ' ) . . N\
z %ODP A«‘S 20 - 7:; W),
=) + FCP — f
£4OO ~+ Linear 140% 49% 46% E 151 l[
~T Rand ! &
g LR .. S T SSE -
= R kPR SE——. Ao, A L 107 -I-ODP ‘10
=200 - - O 1
- FEFFFFFTEFEFFFFFFF S 5 | f FCP
S ° ~+ Linear
2 0 ¥ , , - | z 0 —F Random _
0 10 20 30 40 0 10 20 30 40

Time (hour) Time (hour)
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Summary: Application
Deployment

o Solved 1deal and general
application deployment

problem

1

* APX algorithm with o

approximation factor

* Validated by numerical
analysis

* Satisty at least 46%
more requests compared

to state-of-the-art
algorithms

o Derived resource
consumption models
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Game Streaming Applications
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Bitrate Adaptation Problem

Problem: Given a set of gamers G and a
shared bottleneck link with available
bandwidth B. Our problem 1s to determine
allocating bitrates, which do not overload
B to G . Our goal 1s to maximize gaming
experience. The gaming experience model
m(g, b) 1s affected by game types g and
allocated bitrates b.

Challenges:

Gaming
Experience

Available
Bandwidth

Models

i

\_

Bitrate
Adaptation
Algorithm

J

g

Bitrates

* Various game types and gamers =2 various gaming experience models

* Delay sensitive—> real-time algorithm
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Optimal Bitrate Adaptation Algorithms

O Quality maximization: EFF,,,
C' DGamer selection: highest gaming experience improvement first
* © Bitrate adaptation: add one unit (w = 1kbps)
o Quality fairness: EFE,,,,
C'Dgamer selection: worst gaming experience first
*“Bitrate adaptation: add one unit (w = 1kbps)

Gamer
Selection

Gamer

Residu€ ™ Bitrate
Bandwidth :
Adaptation




Optimality of the EFFy,,; Algorithm

o Lemma: EFF,, is optimal if gaming experience model m*(g, b) is
monotonic decreasing
o Proof:

° EFF,,, finds steepest slope at every iteration: p,, p,, s ...
- p; > p;+1 2 No alternative allocation

v" if it is feasible solution (monotonic decreasing) = Optimal

*  Monotonic decreasing: double deviation of m*(g, b)
> m*(g,b)"' <0

| T
“ 14 coD 'l:;;;\xxxxxg
%): ,‘;af"'.ll p,: gaming experience
8 :,;sz improvement of adding
- D1 one unit
> | | . l 33

0 500 1000 1500 2000
Bitrate (Kbps)



Optimality of the EFF,,,,, Algorithm

o Lemma: EFE,,,, 1s optimal 1f 1t allocates w to gamer u who has the
worst gaming experience

o Proof:
* EFE,,, allocates w (1kbps) to user # who has the worst gaming
experience = /
- MOS improvement = ¢
* Consider alternative user u’

- Improvement = 0 (the worst gaming experience is still /)
—> Need to allocate another w to u to achieve the same
improvement

* Hence, we cannot find an alternative leading to a better solution
- EFE,.,, is optimal
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Evaluation Setup

Batman: Overall score

/g

o Gaming experience model: user study
o Available resource = 760 Mbps (PlanetLab)

O Optimal algorithms: CPLEX 05 07 o.gBit:;e (1M3;ps1).5 17 20
(an Optimization SOlver) FGPX: Overall score

* OPT,,,
*  OPT,,,
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Gaming Experience Model

o Quadratic model

m(g, f, I;) — ozg,lf—l—ozg,2b+ag,3f2 +ag,4b2 +ay5f0+ay6

Game Frame  RBitrate
Type Rate

o MOS Scores: 1 ~7

o R-square values > 0.98
How to simplify the problem? -> focus on bitrate allocation

Batman: Overall score FGPX: Overall score CoD: Overall score

S

] 8 8
8 _ &
n %) %)
g o g g ?
g & g ] £
g e 2 o
o © @
w v w v L v

e o ™

e = o

05 0.7 09 11 13 15 1.7 20 05 07 09 11 13 15 1.7 20 05 07 09 11 13 15 17 20
Bitrate (Mbps) Bitrate (Mbps) Bitrate (Mbps) 3 7

[Hong et al. TCSVT’15, Credits: collaborators (@ Academia Sinica]



Optimal Frame Rate Selection

o Lemma: m(g, f,b) calculates optimal MOS under certain bitrate if we
have f*(g,b) , which gives us optimal frame rate

o Quadratic gaming experience model
m(g, f,b) = ag1f+agabtagsf?+a,sb*+oays5fb+aye

o Partial derivation to f
- Optimal frame rate: f*(g,b) =

o Optimal MOS:

m*(g,b) =cg.1/*(9,b) + ag2b + g 3(f*(g,b))
+&g,4b2 T ag,5f*(ga b)b T Qg 6-

—(ag,1 + g 5b)
2&9,3

m(g, f,b) - m’(g,b) <



Our Algorithms are Optimal

o The resulting MOS scores are exactly the same
o Efficient algorithms run much faster than OPT algorithms

# of Gamers Oﬁ:;gg Ef/ig;g # of Gamers O\I;V:;Zgn E\F);,F(;?SL?
00 | Same
200 5.15 5.15 5.01 5.01
400 5.15 5.15 4 4.91 4.91
800 4.49 4.49 8 491 491
IMOS Scores]
OPT,. EFF, ., OPT,. EFF,,.,

# of Gamers Mean Mgax Mean Ni]ax # of Gamers Mean | Max | Mean | Max
100 0.02 | 0.03 | 0.090 | 0.097 | 0.02 | 0.01 [0.009 | 0.009
200 0.15 | 0.16 | 0.102 | 0.103 2 0.36 | 0.37 |0.015]0.016
400 0.95 [0.96 | 0.153 | 0.157 4 4.47 | 448 |0.022|0.023
300 0.248 3 0.029

21X faster [Running Time] 4K+X faster
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Summary: Delay-Sensitive
Applications

O

Solved bitrate adaptation problem
*  Two optimal algorithms
*  Qutperform baselines by up to

Global Optimizer

ER

Provider

Application |
Deployment
Problem

Delay-Sensitive
Application
Optimization
Problem

ccific Optimizer

Delay-Insensitive
Application
Optimization
Problem

--------------------------------------

Codec Parameter Selector

30% and 46%, respectively | s & | |- = ~ ﬂg—gg—bl%\
. . . o = : 1trate ptima
<
Solved bandwidth estimation é E |* Adaptation 4 Frame Rate
0 w | :

e > R0% accuracy Sal | KAlgorlthm y \Calculator )
Solved real-time codec reconfiguration &~ ( """ '
[Hong et al. TCSVT’15, Credits: collaborators (@ NCTU] Cod Gaming

0acc .
Derlved gamlng eXperlenCC mOdels Reconﬁgura‘[or Experlence
[Hong et al. TCSVT’15, Credits: collaborators (@ Academia Sinica] \_ J Model
/\‘\:5)/ Gom?ng %gwhere
Our Testbed
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Content Delivery Under Challenged Network
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Distribution Planning Problem

Problem: Given a set of contents N and a set
of users U. FEach content has L
representations. Each user has € contacts

User User
Experience Available Interests and

(run 1nto fog devices). Each contact has R Models Resources Contacts
resources. Our problem is to determine .' ‘
delivering which representation I € L of " N
which content n € N to which user u € U Distribution Planning
at which contact c€C without Algorithm
overloading the resources R. Our goal 1s \_ _ Y,
to maximize user experience. ‘

Plans
Challenges:

* Definition of user experience =2 user study
* Various user behaviors = individual distribution plans
* Limited resources and large size of contents = multiple representations
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Distribution Planning Problem Formulation

Decision

e |

(la)

(1b)

(Ic)

(1d)

(le)

Objective: = UE
Maximize User Experience

Resource Budgets R

Layer Dependency
Viewing Probability Checker

Duplication Avoidance
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Dynamic Programming

o Termination: (1b) ~ (1e)

o Recursion & Memorization:

DP(i,R{,R,, ..., R;) = max{
L) R1 - b[i],Rz,RB ) T UE )
L) Rl’ RZ - b[l],R3

DP (i — -
DP (i — -

DP (i — -

DP (i — 1,R,))

) + UE,

~) Rl) Rz,R3 T b[l] ) Ll UE"

o Time & Space complexity: O(NL IIR,)

(1a)

(1b)

(Ic)

(1d)

(Te)

Objective: | UE
Maximize User Experience

Resource Budgets R

Layer Dependency
Viewing Probability Checker

Duplication Avoidance

DP can optimally solve the problem under delay-tolerable environment

No. Contents 1 2 3 4 5 6 7

I(:{ungwing Time [0.08 |[0.11 0.19 0.61 1.8 111.2 [457.2

sec

I(\/Ien)mry Usage | 21 32 103 269 1918 10197 |>64GB 477
MB




Algorithm: Contact-Driven Round Robin

(CDRR)

1. User Selection

R Round Robin C&%S;ep : User
2. Content Selection Selection
R Higher user
experience using oD 2
less resources first — ‘W‘"@ Content
Selection
UE More contents for
popular users Step 3
, -2 Contact
3. Contact Selection Selection

R Unpopular fog

Z

o

Total User Experience

tent DP

devices first e

=

CDRR

Perf. Gap

043

0.42

3%

0.36

0.34

6%

0.33

0.31

6%

0.31

0.29

6%

O(UNLlog(UNL) + UNLC)

0.27

0.25

7%

0.29

0.27

7%

N Q| | | W DI =

0.29

0.27

7%

&

Audio 1

=] - E

Text 1 Text 2

DP vs CDRR
Performance
Gap: 7%
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Evaluation Setup

o User experience: user study
o Trace: a real testbed

CSI: Deliver to users

o Baseline algorithms having different

. . . trajectories
* CSI[1]: Consider trajectories
of users User Behaviors
*  Epidemic [2]: Classic content
delivery algorithm in
challenged networks Jpidemie:
Classic Algorithm each other

[1] W. Hsu, D. Dutta, and A. Helmy, “CSI: A paradigm for behavior- oriented profile-cast services in mobile networks,” Ad Hoc
Networks, vol. 10, no. 8, pp. 1586—-1602, 2012. 5 O
[2] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Duke University, Tech. Rep., 2000.



User Experience of

Different Representations

o Definition of user experience:

understanding level

o 182 participants (recruited)

o Content: Apple Daily News

o S-layer representations: text, audio, low-,

120 participants (filtered) with 587
samples

medium-, and high- resolution videos

CROWDSOURCED USER EXPERIENCE SCORES

Article | Audio | 240p Video | 360p | 480p
Average 55% 68% 71% 74% 77%
No. Samples 112 112 134 104 125

BRI

=

eecco REFE(F 4G £F%9:32 @ % 14% 0 )
& nmsl.cs.nthu.edu.tw

Today, China Post holds a recruitment with 30000~
43000 NTD monthly salary. It attracts 40775
applications, including 26 PhDs and 2880 masters,
which sets a new high. There are 1571 vacancies
and 90% of the applyer attennding the interview.

* required field.

Age: ( ) * Gender: OFemale OMale *

What's the understanding level? (the higher the better):
01020304 05*

Which company holds the recruitment?:

OChina Post OChina Air OI do not know *

Are there many masters applying for the job?:

OYes ONo OI do not know *

How many people attending the interview?:

0>40,000 ©<40,000 O I do not know *

What did China Post hold?: 51
ORecruitment OExhibition O I do not know *



Implementation

o Android Application
. 15 Users

o Location: 3 rural villages + a university
o Content: 46 news from apple daily

8 Dev1ces and 1
Distribution Server

I

- ;

One Device
for Each
Village

Village 2 e

plily

Village 3

Village 1

A 3/5

* I A week after 11 ‘ ﬂ

Saneamientodeaguas  ..commeiciakilighis-were,

residuales saub’leam_i mmm._.a

s 3/5 3;5
; B g nsge
ioﬁs
' P 7T
| g

"L\

JohrrKing, Jackie
Kucinich & Juana
In the past year, Taiwan Summaers.discuss.the.d|
has been hit by a ... Ohio e

3/5
nsioe
I iﬁ!k‘ 7 J

q
I
-
-t

Jahn King, Jackie ~ What may be the world's
Cifch & Juanga § 1" 1(  oldest fragments of the
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CDRR Results in Higher User Experience
Using Less Energy

o CDRR Outperforms others:
* User experience: 1.1 times (CSI) and 2.7 times (Epidemic)
* Energy efficiency: 1.2 times (CSI) 1.4 times (Epidemic)

Because of detailed individual plans

[S—
W

___ICDRR ___|ICDRR

oS0 ICST 2 ICSI
S - - Bl Epidemic & Bl Epidemic
.= 60" - ; - : 5,1- ) - :
:‘40 _ . ] — _
>y
2 20.5 ]
- =
520 H &
o LU LU [T [V [V (] ol LM [T (L [T 1] |
1 2 3 4 5 6 Avg 1 2 3 4 5 6 Avg.
Days Days
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. 4+ ‘ Global Optimizer
Summary: Delay-Insensitive  §
o o \ Deployment
Application
Application S; ecific Optimizer
o Solved distribution planning problem & pay-snsive | Dl i
. . Optimization Optimization
o Derived user experience models of Users Problem Problem
different representations
O EValuated our algOrlﬂ’lm Wlth I'Gal Content | Contact User
implementation Matcher | Predictor | Experience
* Outperform state-of-the-art and ‘ ‘ ‘
classic algorithms by 110% and [ Distribution Planning ]
270% in terms of user experience, Algorithm
respectively

Our Testbed 54



\'\
A

Global Optimizer

Application
Deployment

Ag enda Proider

. Problem

Application Specific Optimizer

Delay-Sensitive Delay-Insensitive
. Application Application
I. Introduction Optimization T
. i Users ! Problem ’ Problem
L. Application Deployment Problem

L11. Delay-Sensitive Application Optimization Problem

['V.Delay-Insensitive Application Optimization Problem

V. Conclusion & Future Work
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Conclusion

o Help providers to realize the cloud-to-things continuum platform

@ A performance guaranteed deployment algorithm makes providers’
life easier to estimate costs/benefits and formulate prices

o Help users to have optimized user experience
‘ Game streaming applications with optimal gaming experience
. Content delivery applications with maximized understanding level

Provider
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Future Work: LITE[s.\|

Testbed in NTHU
o 8 Smart Street Lamps in NTHU

o Street Lamp

* Fog devices: Raspberry Pis and IPCs
* Sensors: camera, air pollution sensors, ...

*  Communications: ethernet, WiF1 mesh,
LoRa, Zigbee, and Bluetooth

o Analytic applications: object recognition, car ¥
plate recognition, ...

& )

AN 1,

docker Tens‘i kubernetes
Application
Global Optimizer
Vlrm.ahz.atm.n/ Management pphcatl.on. Specific
Containerization Optimizer




Killer Applications of Our Platform

o Analytic Applications

*  Complicated deep learning
models
—> huge amount of resources
and data 1s required

o IoT Applications [1]

* Low end devices
= need longer time torun  —YC 5
complicated applications

Intelligent IoT application with complicated analytics:
¢.g., Human tracking applications on wearable glasses

[1] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar, and P. Hui, “Dandelion: A Unified Code Offloading System for Wearable 5 8
Computing,” IEEE Transactions on Mobile Computing, 2018.



Ecosystem

Energy DeVelOp erS
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For Application Developers
Application
o Challenges “Ope
* High learning curve to = ‘6 O
implement multi-operator | 2P
applications =2
programming model

rator) = ° =

TrARY AR 0
ML 1IH NG« NG - ) 1 ¢
Operator
Ly
ERE ‘

* Privacy sensitive data > MS
data management and

protection approaches %&
\ App ion

Provider
rovt Developers

Models 60



Programing Model

o Decomposition
*  Dynamically split applications
into any number of smaller Appllcatlon
operators Ope

o Communication

* Automatically handle the
communications between
operators

o Performance Optimization
* Stream processing
* Parallel programming




Data Management and Protection Approaches

o Traimning as a Service (TaaS)
* Help developers to train

their models

o Data analytic APIs

* Help developers analyze
the data and figure out
some characteristics

* Help developers to figure
out root cause of low

accuracy

g

Users

W1, Wy, W3, ...
Model Parameters

- Parameters
\{
App

E [ ]
Provider

ion
Developers
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Fog similar concepts comparisons
Timeline (from WSN to clout-to-things continuum)
Benefits of Cloud-to-Things Continuum



Cloud, Distributed Cloud, Cyber Foraging,
CloudLet, and Fog

Low Location Awareness | Virtualization High
Latency | and Mobility Support Support Heterogeneity

Cloud

Distributed Cloud [1]

Cyber Foraging [2]

CloudLet and MEC [3,4]

 « &> X
N NP B X
SNIENIENEN
NP B XX

Fog [5]

[1] P. Endo, A. de Almeida Palhares, N. Pereira, G. Goncalves, D. Sadok, J. Kelner, B. Melander, and J. Mangs, “Resource

Allocation for Distributed Cloud: Concepts and Research Challenges,” IEEE Network, 25(4), 42-46, 2011.

[2] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal communications, 8(4):10—17, 2001.

[3] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The Case for VM-based Cloudlets in Mobile Computing. /[EEE

pervasive Computing, 8(4), 14-23, 2009.

[4] Mobile-edge computing. https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge Computing -
_Introductory Technical White Paper V1%2018-09-14.pdf.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet of Things” in Proc. of ACM

SIGCOMM workshop on Mobile Cloud Computing (MCC), Helsinki, Finland, 2012. 67



Timeline
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Benefits of Cloud-to-Things Continuum
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Application Deployment Problem

Knapsack problem variations
Approximation factor proof
Resource consumption model



Knapsack Problem Variations

Subset Sum Problem (SSP): weight = profit
Bounded Knapsack Problem (BKP): duplicated items with a boundary
Unbounded Knapsack Problem (UKP): duplicated items without a boundary

o O O O O O O

O O O O O

Multi ¢
Multip]

1mensional
e Knapsaci

Multip]

| Knapsack Problem (d-KP): multiple constraints
K Problem (MKP): multiple knapsacks

e Knapsaci

K Problem with Identical Capacities (MKP-I): knapsacks have

the same capacities

Multiple-Choice Knapsack Problem (MCKP): items have variations (diff weight
& profits), need to pick one variation of each item

Quadratic Knapsack Problem (QKP): two items result in a weight & profit

Bin Packing (BP): use least number of knapsack to pack all items
MKP+SSP -> MSSP

MKP-I + SSP -> MSSP-I

MCKP+d-KP -> MMKP

[1] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems,” Springer, 2004

[2] Silvano Martello, “Knapsack Problems: Algorithms and Computer Implementations,” Wiley & Sons, 1990

[3] C. Wilbaut, S. Hanafi, and S. Salhi, “A Survey of Effective Heuristics and Their Application to a Variety of Knapsack 7 1
Problems. IMA Journal of Management Mathematics, 19(3), 227-244, 2008.



Knapsack Variation Graph

KP

1

ConstIHaint Knapsack Pro

fit

Obje

ctive

QKP ) UKP ) BKP | (MCKP, | d-KP ) | MKP 889 @

OWith Classic Solutions
OWithout Classic Solutions

[1] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems,” Springer, 2004
[2] Silvano Martello, “Knapsack Problems: Algorithms and Computer Implementations,” Wiley & Sons, 1990
[3] C. Wilbaut, S. Hanafi, and S. Salhi, “A Survey of Effective Heuristics and Their Application to a Variety of Knapsack

MKP- SSP-

Problems. IMA Journal of Management Mathematics, 19(3), 227-244, 2008.
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Approximation Factor Proot

o Stepl: Design an upper bound solution (OPT”)

* Intuitions are similar to APX
o Step2: Prove results of OPT’ >= optimal solution (OPT)
o Step3: Derive approximation factor (APX/OPT”)
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Stepl: Design an Upper Bound Solution (OPT?)

CPU: 5% CPU:20% CPU: 40%
RAM: 5% RAM: 20% RAM: 40%

g

o Similar intuitions with APX
o Differences y .
erge devices '

* Merge all the fog devices
*  Sum up different type of resources [CPU: 45%]
. . RAM: 45%
o Sort requests by total required resources

Sum up
resources

Total: 90%]

CPU: 70%
RAM: 10%

74



Step2: Prove that OPT’ 1s Upper Bound

o OPT: H satisfied requests (i1, 72, - - - Fer)
o OPT’:H'requests (r{,r,," - r;;,), which may/may not be satisfied
* Results are_sorted by total required resources

H
Y R 2 Y R

h=1uecU keV ueU Device Capacities

Contradiction —

1 ‘ZZF(r,’z,u,---)>ZZRk,u

h=1 ueU keVueU
H<H > F(rju-)< ) Fipou,-+) VI<h<H
OPT” 1s an ueu ueu
upper bound

solution

Assu > H’
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Step3: Derive Approximation Factor

o APX: H satisfied requests (r1,72, - - - rx)

H
Z Z F(rp,u,--+) > Z Z Ry . /|U| (1) Device Request

o h=1ueU keV ueU Selection Selection

H A Next ; Next
B=A device? A‘ request?
H’ R D . :)
equest Decomposition
Ve Sk o  [owspen

H,-h=1 uel keV ueU \:g Q
<

Remaining
Operator

— @

ZF(rh,u,---)SZF(rh+1,u,---) YVi1<h<H (3)

uelu uelu
Dand = W T
B> A H > H
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Remove the Proportional Heterogeneity Assumption

o APX: H satisfied requests (r1,72, - - - rx) R
. evuc
Z ZF(rh,u,---) > me Ryueu L (1) L= ,
| =L ey keEV Z min 2, eu
H A kEV
— — B=A
ZZF(r,’l,u,---)'SZZRk,u (2)
Ah=1 ueU keV ueU
H —

ZF(rhu )<ZF(rh+1u ) V1<h<H (3)

uelu uelu
H 1
DadQmp 7277 W 57 » e
B>A H’
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Resource Consumption Models

o Input:

L

* Applications Applic a Cizﬁ;c;on -

* Target QoS Target QoS \__Models JRequired

* Hardware specifications T Resources
o Output: required resources Hardware

CPU load Spem{lcatlon

* RAM usage ﬁ

* Network throughput
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Testbed & ¢

kubernetes docker Tensor

o Fog devices: 5 Raspberry PI3s + 5
PCs (17/8GB RAM)

Docker + Kubernetes

o Server: a tiny PC (15/8GB RAM)

 Kubernetes

o Switch
°  Private networks

o Analytic applications (1mplemented
with TensorFlow)
*  Air quality monitor (QoS: 0.25 -4 Hz)
*  Sound classifier (QoS: 6/60 — 10/60 Hz)
*  Object recognizer (QoS: 5/60 — 9/60 Hz)




Derived Models on Raspberry Pls

Applications CPU Load Network Throughput

Air Quality Monitor | 0.99 (0.000023) | 0.99 (0.000001)

o Sample figures from the object recognizer
* Constant model for RAM
* Power models for CPU and network throughput

Sound Classifier 0.85 (0.023263) [ 0.84 (0.069494)

Object Recognizer |0.99 (0.012540) | 0.97 (0.004982)

How about new devices?

120 ' ' ' ' ' i ' ! 200
—Samples
0 « Model || 3
100 - - o
o = =
-
é % 150 - = 150 4
o 801 < ~
C%D ] ~—
A %D -
g 60 . « Samples)| & 100 élOO « Samples
~ —Model s o0 —Model
@) ] z
40 - : § 50 1 5
H
50 4
20 T T T T 0 T T T T T T T T
6/60 7/60 8/60 9/60 10/60 6,60 7/60 8/60 9/60 10/60 6/60 7/60 8/60 0/60 10/60
QoS Parameter QoS Parameter QoS Parameter
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Bootstrapping Online Regression

o If PC1s anew type of fog device adding to our platform
o Bootstrap from Raspberry PIs’ system models

N

CPU Usage Error (%)
-

-

o 15 Iterations

o Error: CPU = 2% and RAM = 13% on average

N

(O

12345678 9101112131415
Iterations

100

RAM Usage Error (%)

-

o0
-

A
-

N
-

[\
-

T 7T

12345678 9101112131415

Iterations
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SSE 1s Resource Efficient and Real-Time
Analytlcs Friendly

Turns off 6% and 12% fog devices compared to ODP and FCP,
respectively

o Use fewer CPU/RAM/bandwidth to satisfy more requests
o Lower latency compared to others

oo
-

N
(-}

——SSE

. | S
& =
S ——ODP | |
% 60 =2 30
[«D] A +~
A Py = ~ FCP _
e | -
240 % = = 20
= S
5 BN 8o
220 ~1-ODP| | £
z i FCP 2
O . . : . Q'fc O‘ ) - [ : : :
0 10 20 30 40 CPU RAM Bandwidth 0 5 10 15 20
Time (hour) Latency (ms)
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Running Time

No. Devices | 10 | 25 30 75 100 | 150

SSE 1.07 | 2.41 | 5.36 8.88 9.78 | 13.52

ODP 2.37 | 22.66 | 101.93 | 382.83 | >500 | >500

FCP 0.07 | 0.10 | 0.21 0.27 031 | 0.46

Requests 500 1000 1500 2000 2500

U APX | OPT | APX-{"OPT { APX;| OPT | APX | OPT | APX | OPT

1 0.25 | 1,76 |/071 | 3.35 1132525 | 1.92 | 7.27 | 3.46 | 12.67

2 0.42 | 214/ 106 | 4.87 249 1979 7| 3.69 | 1643 | 541 | >500

3 1.01 | 2:647| 2.73| 7.86-| 4.44 | 203.65 | 6.81 | >500 | 8.74 | >500

4 1.94 | 327} 461, >500['7.57 |->500<] 10.16 | >500 | 12.52 | >500

5 2.63 | 533 [(/5.76 | >500 | 8.88 =500~ | 11.88 | >500 | 15.21 | >500
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Any Size of Operators

o A sound classifier application (4-layer NN model)
* 348 operators

Sigmoid
Tanh
-
add__ >
add 1C O

Fifo queue

MatMul
P -

~|save |
- Fifo queue —~C_F
“Isave
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Delay-Sensitive Application Problem

Optimality Proof
Problem Formulation
Bandwidth Estimator
Gaming Experience Model
Performance Comparing to Baselines
Running Time of our Algorithms



Optimality of the EFFy,,; Algorithm

o Lemma: EFF,,, is optimal if m”(g, b) is monotonic decreasing
o  Proof:

°  EFF,,, finds steepest slope at every iteration: py, p,, s ...
- p; > p;+1 2 No alternative allocation

v" if it is feasible solution (monotonic decreasing) = Optimal

*  Monotonic decreasing: double deviation of m*(g, b) (negative)
> m*(g,b)"'=2ay,4 — oy 5/2043 < 0

i [ E Our models satisfy this equation
w - | ® FGPX et l 2222
-4~ CoD l':; 22 \‘
_ 2 L
.1 ] P, quality improvement
& :/;sz of adding one unit
=] P1
© [ [ | | [ 86

0 500 1000 1500 2000
Bitrate (Kbps)



Optimality of the EFF,,,,, Algorithm

o Lemma: EFE,,,, 1s optimal 1f 1t allocates w to gamer u who has the
worst MOS

o Proof:

* EFE,,, allocates w (1kbps) to user u who has the worst MOS (/)
- MOS improvement = ¢

* Consider alternative u’
- MOS improvement = 0 (the worst MOS is still /)
- Need to allocate another w to u to achieve the same MOS
improvement

* Hence, we cannot find an alternative leading to a better solution
- EFE, ,, is optimal

87



Bitrate Adaptation Problem Formulation

Decision
v Variables o
mazimize ) mp,ggs  OOevel o
—1 ST Gaming Experience Maximization
U
S.t.: g Yu < R; Bandwidth Constraint
u=1

1<z, <F 1<y, <B,V1I<u<U.

b < Y < ky, V1< <U;

U Objective 2:

marimaize 151_1111 Mp.,,xw,yu Quality Fairness
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Bandwidth Estimator

o WBest|[1]

* Estimate bandwidth capacity by sending probing packets

S/3C T = S/C .
= s/Cm capacity S

Sender (S} —R|Receiver ¢ = .
C,=C
C,=3C C,;=3C packet dispersion time

o Our bandwidth estimator

* Leverage existing video packets as probing packets
-> Avoid additional network overhead

[1] M. Li, M. Claypool, and R. Kinicki, “WBest: A bandwidth estimation tool for IEEE 802.11 wireless networks,”

IEEE Conference on Local Computer Networks, 2008.
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The Bandwidth Estimator 1s Accurate

o Send W packets and select the median value as estimated
bandwidth capacity

o W={100, 200, 300, 400, 500}
* W =100 - accuracy < 50%
* W=200~ 500 - 80% < accuracy < 85%
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Gaming Experience User Study

o Gaming experience =2 Mean Opinion Scores (MoS): 1~7
o 101 Subjects
o 3 type of games = {Batman, FGPX, CoD}
o Bitrate = {0.5, 1, 2} Mbps
o Frame rate = {10, 20 , 30} fps
o Game sessions = 2 ~ 4 minutes
Batman: Overall score FGPX: Overall score CoD: Overall score
8 3 2.8 3 2.6
g 23 a4 g5 a4
- o 2 3.7 . = 3.6
05 1 2 05 1 2 05 1 5
Bitrate (Mbps) Bitrate (Mbps) Bitrate (Mbps)

[Hong et al. TCSVT’15, Credits: collaborators (@ Academia Sinica]
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C O de C Rec Onﬁguration [Hong et al. TCSVT’135, Credits: collaborators (@ NCTU]

o Migration from ffmpeg to live555

* ffmpeg does not have an interface for dynamically
reconfiguring video codecs

* live355 offers a more comprehensive RTCP
implementation, which allows us to measure and
collect the network flow statistics
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Our Algorithms Outperform Baselines: Setup

o Optimal algorithms: CPLEX

o 0 P 1 a v g Batman: Overall score FGPX: Overall score CoD: Overall score

8 32 s 28 8 26
* OPTym - £ ¢

§2 36 &2 34 g2 34
° ° 0E> qE) qE)
o Baseline algorithms

o 37 o 37 ° | 36

0.5 1 2 0.5 1 2 0.5 1 2
Bitrate (Mbps) Bitrate (Mbps) i ( )

* Base,,: equally allocate

* Base,,.,: proportionally (to average MOS scores) allocate
o Bottleneck link capacity R = 760 Mbps (PlanetLab)
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Our Algorithms Outperform Baselines

O EFF,,  results in the best average MOS scores

o EFE,,,, results in the best worst MOS scores
Outperforms baselines by up to 46%

5

4

3

I

2

Average Mos Score

1

0

250

—

e

EFF.q

EFFmm
= Basegq

m Baseom

500 1000
Number of Gamers

2000

@

4000

30%

Worst Mos Score

o

4

3

2

1

0

Outperforms baselines by up to 30%

250

500

1000
Number of Gamers

EFFayvg
EFFmm

= Baseg

2000

4000

46%
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Our Algorithms run in Realtime

o 4000 gamers ~ 1 second

Table 5.5: Running Time in Seconds

EFF,,, EFF,, . .
# of Gamers

Mean | Max | Mean | Max
500 0.18110.183]0.179]0.184
1000 0.29610.29910.28710.290
2000 0.52310.531]0.520(0.533
4000 1.000(1.10411.060|1.066
8000 1.67711.681]1.6541.661
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Delay-Insensitive Application Problem

Dynamic programming problem
CDRR: Practical concerns
Block diagram
Energy consumption measurement



1,2,3,4, ...

Items picked (i

Dynamic Programming

d(i,j) = maX{, uy)+d@i —1,j —wy))}

\Weight restriction j (j=1,2, ... , W)

1 2| 3| 4| 5| s 7| 8| 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
(1| {1y {1y {1y {1} {1} {1 | {1}y {1} {1} | {1}

2| 1 1| (1 1 1 1| (7| 8| 8 8| 8
(1| {1y {1y {1y| {1} {1} {2} | {21} | {21} | {21} | {21}

3| 1 1 1| (o) 5| s| (). 8| s 8| 11
{1 | {1y {1y {3}| {31} {3.1} {2} ‘{“2"?‘}" {21}y | {21} {3,2}

4| 1 2| 3| 4| 5| s 71 8| 9 10| 11
{1y | {4y | {41} | {3}| {31} | {43} | {431} | {21} | {42} | {421} | {3,2}

Complexity: O(IW)
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Practical Concerns

o Planed contents are downloaded or plans are not receirved
* Determining the downloading order

* Next outstanding representation of each content
probability )
content size

o Video size 1s too large

(sorted by viewing

* Segmenting video layers
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Block Diagram

o Content Matcher

* Topia Term Extractor ——— Dustribution Server_
- | Content |
o | |
Google Bayesian | # Matchor :
o Contact Predictor l iultimeda -1 [Ranks |
| w ——
*  Frequency-based approach Distribution Distribution |
q y p p : Plannin g Plans :
| @ Algorithm : -
: Profiles TContacts | MOblle
: Contact : Users
: " Predictor :
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Prediction Accuracy

17% gap
1 |  [=Qur
——(racle
0.81 i
, 0.6
-
04

0.2

0

0O 02 04 06 08 1
User Experience
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DP vs CDRR

Running Time (sec) Total User Experience
No. No.
DP CDRR
Content Content | DP | CDRR | Perf. Gap
Mean | Max | Mean | Max
1 0.08 0.08 | 0.05 | 0.05 1 0.43 0.42 3%
2 0.11 0.11 0.06 | 0.07 2 0.36 0.34 6%
3 0.19 | 0.19 | 0.63 | 0.66 3 0.33 0.31 6%
4 0.6 0.61 0.07 | 0.07 4 0.31 0.29 6%
5 1.8 1.8 0.07 | 0.08 5 0.27 0.25 7%
6 110.2 | 111.2 | 0.08 | 0.08 6 0.29 0.27 7%
7 269.4 | 457.2 | 0.08 | 0.09 7 0.29 0.27 7%
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How to Know the Energy Consumptions?

o Power meter: Agilent 66321D
o Read trace:

o Downloaded news

o Downloaded plan

o Uploaded user profiles

* 1-day distribution plan only consumes
up to 153 J, which 1s 0.3%




Fog Testbed and Performance Measurement



Requests

Tensor Application
Global Optimizer
Vlrtu.ahz.atlo.n/ Management Appllcatlf)n. Specific
Containerization Optimizer

Virtualization & * Management
Resource & Deployment

Reservation docker kubernetes 104




Distributed Analytics Result in Better

Performance for Complex Analytics

> Air pollution monitor: too simple to benefit from distributed
analytics

> Object recognizer:

®* One more device gives 35.5% and 54.1% improvements

2500

~]
)

o)
)

Air pollution monitor | 1 Object recognizer

[\
]
S
o

W
O

1500 -

[a—
-
-]
)
1
e} o
1 1 1

No. Processed Data/min

_ N W B
o

=)

W
-
)
No. Processed Images/min

o
O

1 Device 2 Devices 3 Devices 1 Device 2 Devices 3 Devices

105

We only consider the object recognizer in the following results



Device 1 Cut Device 2

Cut on Equal Complexity Point Results 1n
Better Performance

> Setup: run object recognizer on two fog devices (different cut
points)
> Cut point 4&5 result 1n the most no. processed 1images

> Two fog devices consume the same CPU resources on cut
pOiIlt 4&5 Equal Complexity Point
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Device 1 Cut Device 2

Cut Points Affect Network.()verhead

> Put more computations on device 1 can reduce network
overhead
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[.ow Virtualization Overhead

> Setup: with and without Docker
» Overhead from Docker

® [ .essthan 5%
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LLow Communication Overhead

> Setup: without Docker and distributed speedup
> Overhead from distributed computing using TensorFlow
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