
Optimal Resource Allocation for
Analytics and Multimedia
Applications in Cloud-to-Things
Continuum Platforms

���

Department of Computer Science, National Tsing Hua University, Taiwan

Agenda

2

I. Introduction
II. Application Deployment Problem
III.Delay-Sensitive Application Optimization Problem
IV.Delay-Insensitive Application Optimization Problem
V. Conclusion & Future Work

Cloud

3

Things

Why don’t we leverage the resources in between cloud and things?

Cloud

Cloud-to-Things Continuum Platform

4

Fo
g

D
ev

ic
es

Resource
Management

1TB
SSD

PM 2.5

Cat7 Gigi

Xeon
E-2176

Provider
Intruder
Detector
Fugitive
Tracking

User 2 User 1

Virtualization

Computing Networks Storage Sensors
Hardware Platform Infrastructure

Sensors and Actuators

Node Management (OOB)

Node Management (IB)

Hardware Security

Protocol Abstraction

Cloud-to-Things Continuum Framework [1]

[1] https://www.openfogconsortium.org/

Application Support
Application Service

Intelligent Framework

6

Global Optimizer
Application Specific

Optimizer
Virtualization/

Containerization

Application

Controller

Virtualization/Containerization Management
Computing Networks Storage Sensors

Hardware Security Module

Devices
V/C V/C

Management

VM/Container

Three Research Problems

7

Application
Deployment

Problem

Application Specific Optimizer

Delay-Insensitive
Application

Optimization
Problem

Delay-Sensitive
Application

Optimization
Problem

Global Optimizer

Goal: Serving as many users as possible

Provider

Application: Remote Rendering
Goal: Reduce latency

Application: Content Delivery
Goal: Maximize delivered information

Users

Various Applications

Ongoing Applications

Contributions

8

Propose an intelligent cloud-to-things continuum framework
o Solve application deployment problem

• Deploy applications while considering decompositions
• 1/U approximation factor

o Solve delay-sensitive application optimization problem
• Adapt bitrates for game streaming applications
• Optimal solution solved in polynomial time

o Solve delay-insensitive application optimization problem
• Provide content delivery plans while considering user behaviors

and content representations under challenged networks
• An efficient algorithm outperforms state-of-the art algorithms

Agenda

9

I. Introduction
II. Application Deployment Problem
III.Delay-Sensitive Application Optimization Problem
IV.Delay-Insensitive Application Optimization Problem
V. Conclusion & Future Work

Agenda: Application Deployment Problem

10

o Problem Statement
o Proposed Algorithm: Ideal Case
o Proposed Algorithm: General Case
o Evaluation & Summary

Various Deployment Decisions

11

Fo
g

D
ev

ic
es

Resource
Management

1TB
SSD

PM 2.5

Cat7 Gigi

Xeon
E-2176

Provider
Suffer From
High Latency

Suffer From
Limited Computation Resource

Fugitive
Tracking

User

Fugitive
Tracking Fugitive

Tracking
(operator 3)

Fugitive
Tracking

(operator 1)

Fugitive
Tracking

(operator 2)

Application Deployment Problem

12

Problem: Given a set of requests ! and a set
of fog devices ". Each request has three
requirements: (i) a splittable application,
(ii) a target QoS, and (iii) a specified
location. Devices located at various places
have # kinds of resources. Our problem is
to determine which request $ ∈ ! should
be served on which device & ∈ " without
overload the resources. Our goal is to
maximize number of served requests.

Challenges:
• Diverse users (requests)à diverse resource requirements
• Heterogeneous fog devices à application decomposition
• Large problem size à polynomial time algorithm

Deployment
Algorithm

Device
Capacities

Deployment
Decisions

Requests

Agenda: Application Deployment Problem

13

o Problem Statement
o Proposed Algorithm: Ideal Case
o Proposed Algorithm: General Case
o Evaluation & Summary

Application Deployment Problem: Ideal Case

14

o Splittable applications
• Arbitrary size of operators

o Transfer link constraints to node constraints
o Grid map

• Select one of grids
o Reduced device heterogeneity

• Proportional resource levels

4 cores 2 GHz
4 GB RAM

…

8 cores 2 GHz
8 GB RAM

…

1 core 2 GHz
1 GB RAM

…

X2X4 ü Variant of knapsack problem
ü NP hard

APproXimation Algorithm (APX)

15

1. Step 1: Request selection
• Least total required resource

first
• q: request
• u: resource type
• F: resource consumption model

2. Step 2: Device selection
• Round robin

3. Step 3: Request decomposition
• As large operator as possible

Request
Selection

Device
Selection

Request Decomposition

Remaining
Operator

Next
request?

Next
device

• O(|Q| log |Q|+|Q||V||U|)
• 1/U Approximation Factor
Q: Request set
V: Device set
U: Resource type set

Step 2 Step 1

Step 3

Proof: !|#| Approximation Factor

16

o Step1: Design an upper bound solution (OPT’)
• Intuitions are similar to APX

o Step2: Prove results of OPT’ >= optimal solution (OPT)
o Step3: Derive approximation factor (APX/OPT’)

The algorithm results in optimal solution while |U| = 1

Validating the Approximation Factor

17

o OPT: formulate as ILP and optimally solve it using CPLEX
o Results of APX are always above theoretical 1/U bound
o APX == OPT while U=1

Limitations: Operators, Links, Location, and Devices
à How to make it more generalized?

Optimal Solution

Agenda: Application Deployment Problem

18

o Problem Statement
o Proposed Algorithm: Ideal Case
o Proposed Algorithm: General Case
o Evaluation & Summary

Application Deployment Problem: General Case

19

o Goal: Serve as many requests (users) as possible

O
perators

D
evices

Application

Ideal Generalized

Operator Any Size Predefined

Resource
Constraint

Node Node + Link

Location Grids Any Location

Device
Heterogeneity

Proportional Any Device

Problem Formulation

20

Node

Link

Decision variable
Throughput maximization

Objective

Constraints
Node

Link

SSE Algorithm

21

o Request Selection
• Scarcest resource first

o Source/Destination device
selection
• Shortest path first (hops and

latency)
o Immediate device selection

• Early feature extraction

Reduce node
resource consumption

Request
Selection

1
2

3
4

S/D
Device

Selection

1

4

Immediate
Device

Selection

1

4

2

3

Reduce latency

Reduce network
resource consumption

D
ev

ic
e

Se
le

ct
io

n

Node

Link

Link

Agenda: Application Deployment Problem

22

o Problem Statement
o Proposed Algorithm: Ideal Case
o Proposed Algorithm: General Case
o Evaluation & Summary

Evaluation Setup

23

o Requests
• Poisson arrival / departure rates: 1 min / 10 mins

o Network topology (BRITE [1])
• Number of fog devices: [10, 25, 50, 75, 100]
• Location of fog devices and latencies of their edges: based on BRITE

o Resource capacities of fog devices
• CPU: [100% ~ 800%] à random
• RAM: [1 GB ~ 16 GB] à random

o Bandwidth of links:
• [45 kbps (LoRa), 8 Mbps (WiFi), 25 Mbps (4G)] à Random

[1] BRITE, https://www.cs.bu.edu/brite/user_manual/

Baseline Algorithms

24

o Optimal Data Stream Processing Placement (ODP) algorithm [1]
• CPLEX

o Fog and Cloud Placement (FCP) algorithm [2]
• Heuristic

o Linear algorithm
• Greedily deploys operators to neighbor fog devices
• Considers all the constraints

o Random algorithm
• Mimics a platform without centralized server
• Does not consider any constraint

[1] V. Cardellini, V. Grassi, F. Presti, and M. Nardelli. Optimal operator placement for distributed stream processing applications. In Proc. of ACM International
Conference on Distributed and Event-based Systems (DEBS), Irvine, CA, June 2016.
[2] M. Taneja and A. Davy. 2017. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proc. of IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). Lisbon, Portugal.

• Designed for fog devices
• Splittable application
• Consider both node and link capacities

SSE Serves More Users
o SSE outperforms others in terms of supported users

• 140%, 49%, and 46% compared to Linear, FCP, and ODP
• Random satisfies zero requests after running 14 hours

o Random, FCP, and ODP are too aggressive
• Overload links by up to 21, 12, and 10 links

25

46%49%140%
12

10

21

Summary: Application
Deployment

26

o Solved ideal and general
application deployment
problem
• APX algorithm with !"

approximation factor
• Validated by numerical

analysis
• Satisfy at least 46%

more requests compared
to state-of-the-art
algorithms

o Derived resource
consumption models

Our Testbed

Agenda

27

I. Introduction
II. Application Deployment Problem
III.Delay-Sensitive Application Optimization Problem
IV.Delay-Insensitive Application Optimization Problem
V. Conclusion & Future Work

Agenda: Delay-Sensitive Application Optimization
Problem

28

o Problem Statement
o Proposed Algorithm
o Evaluations & Summary

Game Streaming Applications

29

Fo
g

D
ev

ic
es

1TB
SSD

PM 2.5

Cat7 Gigi

Xeon
E-2176 Provider

Goal: Maximize gaming experience by adapting to network dynamics

Bitrate Adaptation Problem

30

Challenges:
• Various game types and gamers à various gaming experience models
• Delay sensitiveà real-time algorithm

Problem: Given a set of gamers ! and a
shared bottleneck link with available
bandwidth ". Our problem is to determine
allocating bitrates, which do not overload
" to ! . Our goal is to maximize gaming
experience. The gaming experience model
#(%, ') is affected by game types % and
allocated bitrates '.

Bitrate
Adaptation
Algorithm

Available
Bandwidth

Bitrates

Gaming
Experience

Models

Agenda: Delay-Sensitive Application Optimization
Problem

31

o Problem Statement
o Proposed Algorithm
o Evaluations & Summary

o Quality maximization: !""#$%
• Gamer selection: highest gaming experience improvement first
• Bitrate adaptation: add one unit (w = 1kbps)

o Quality fairness: !""&&
• Gamer selection: worst gaming experience first
• Bitrate adaptation: add one unit (w = 1kbps)

Optimal Bitrate Adaptation Algorithms

32

Gamer
Selection

Bitrate
Adaptation

Gamer

Residue
Bandwidth

Optimality of the !""#$%Algorithm

33

o Lemma: !""#$% is optimal if gaming experience model is
monotonic decreasing

o Proof:
• !""#$% finds steepest slope at every iteration: '(, '*, '+ …

à '- > '-/(à No alternative allocation
ü if it is feasible solution (monotonic decreasing) à Optimal

• Monotonic decreasing: double deviation of
à < 0

'(
'*

'2: gaming experience
improvement of adding

one unit

3∗(6, 7)
3∗(6, 7)′′

3∗(6, 7)

Optimality of the !""##Algorithm

34

o Lemma: !""## is optimal if it allocates w to gamer u who has the
worst gaming experience

o Proof:
• !""## allocates w (1kbps) to user u who has the worst gaming

experience = l
à MOS improvement = q

• Consider alternative user $%
à Improvement = 0 (the worst gaming experience is still l)
à Need to allocate another w to u to achieve the same
improvement

• Hence, we cannot find an alternative leading to a better solution
à !""## is optimal

Agenda: Delay-Sensitive Application Optimization
Problem

35

o Problem Statement
o Proposed Algorithm
o Evaluations & Summary

Evaluation Setup

36

o Gaming experience model: user study
o Available resource = 760 Mbps (PlanetLab)
o Optimal algorithms: CPLEX

(an optimization solver)
• !"#$%&
• !"#''

Gaming Experience Model

37

o Quadratic model

o MOS Scores: 1 ~ 7
o R-square values > 0.98

[Hong et al. TCSVT’15, Credits: collaborators @ Academia Sinica]

Game
Type

Frame
Rate

Bitrate

How to simplify the problem? à focus on bitrate allocation

Optimal Frame Rate Selection

38

o Lemma: calculates optimal MOS under certain bitrate if we
have , which gives us optimal frame rate

o Quadratic gaming experience model

o Partial derivation to f
à Optimal frame rate:

o Optimal MOS:

! ", $, % → !∗(", %)

!∗(", %)

Our Algorithms are Optimal

39

o The resulting MOS scores are exactly the same
o Efficient algorithms run much faster than OPT algorithms

[MOS Scores]

[Running Time]21X faster 4K+X faster

Same

Summary: Delay-Sensitive
Applications

40

o Derived gaming experience models
[Hong et al. TCSVT’15, Credits: collaborators @ NCTU]

[Hong et al. TCSVT’15, Credits: collaborators @ Academia Sinica]

o Solved bitrate adaptation problem
• Two optimal algorithms
• Outperform baselines by up to

30% and 46%, respectively
o Solved bandwidth estimation

• > 80% accuracy
o Solved real-time codec reconfiguration

B
an

dw
id

th

Es
tim

at
or

Gaming
Experience

Model

Codec
Reconfigurator

Codec Parameter Selector

Bitrate
Adaptation
Algorithm

Optimal
Frame Rate
Calculator

Our Testbed

!∗($, &)

Agenda

41

I. Introduction
II. Application Deployment Problem
III.Delay-Sensitive Application Optimization Problem
IV.Delay-Insensitive Application Optimization Problem
V. Conclusion & Future Work

Agenda: Delay-Insensitive Application
Optimization Problem

42

o Problem Statement
o Proposed Algorithm
o Evaluation & Summary

Content Delivery Under Challenged Network

43

Fo
g

D
ev

ic
es

1TB
SSD

PM 2.5

Cat7 Gigi

Xeon
E-2176 Provider

N
o

N
et

w
or

k
A

cc
es

s

Video

Interm
ittent

N
etw

ork A
ccess

Text

Read Content
Without the Internet

Audio

Distribution Planning Problem

44

Challenges:
• Definition of user experience à user study
• Various user behaviors à individual distribution plans
• Limited resources and large size of contents à multiple representations

Problem: Given a set of contents ! and a set
of users ". Each content has $
representations. Each user has % contacts
(run into fog devices). Each contact has &
resources. Our problem is to determine
delivering which representation ' ∈ $ of
which content) ∈ ! to which user * ∈ "
at which contact + ∈ % without
overloading the resources &. Our goal is
to maximize user experience.

Distribution Planning
Algorithm

Available
Resources

Plans

User
Interests and

Contacts

User
Experience

Models

Agenda: Delay-Insensitive Application
Optimization Problem

45

o Problem Statement
o Proposed Algorithm
o Evaluation & Summary

Distribution Planning Problem Formulation

46

Objective:
Maximize User Experience

Decision
Variable

Layer Dependency

Duplication Avoidance

Viewing Probability Checker

UE

RResource Budgets

Dynamic Programming

47

Objective:
Maximize User Experience

Layer Dependency

Duplication Avoidance

Viewing Probability Checker

UEo Termination: (1b) ~ (1e)
o Recursion & Memorization:

o Time & Space complexity: O(NL Π&')

)* +, &-, &., … , &0 = max{
)* + − 1, &- − 8 + , &., &9 … + ;<,
)* + − 1, &-, &. − 8 + , &9 … + ;<,
)* + − 1, &-, &., &9 − 8 + … + ;<,
…
)* + − 1, => }

UE

UE

UE

No. Contents 1 2 3 4 5 6 7
Running Time
(sec)

0.08 0.11 0.19 0.61 1.8 111.2 457.2

Memory Usage
(MB)

21 32 103 269 1918 10197 > 64GB

DP can optimally solve the problem under delay-tolerable environment

RResource Budgets

Algorithm: Contact-Driven Round Robin
(CDRR)

48

1. User Selection
• Round Robin

2. Content Selection
• Higher user

experience using
less resources first

• More contents for
popular users

3. Contact Selection
• Unpopular fog

devices first

User
Selection

Step 1

Content
Selection

Text 1

Audio 1

Text 2

Contact
Selection

Step 2

Step 3
UE

R

R

! "#$%&' "#$ + "#$)

R

DP vs CDRR
Performance
Gap: 7%

Agenda: Delay-Insensitive Application
Optimization Problem

49

o Problem Statement
o Proposed Algorithm
o Evaluation & Summary

Evaluation Setup

50

o User experience: user study
o Trace: a real testbed
o Baseline algorithms

• CSI [1]: Consider trajectories
of users

• Epidemic [2]: Classic content
delivery algorithm in
challenged networks

[1] W. Hsu, D. Dutta, and A. Helmy, “CSI: A paradigm for behavior- oriented profile-cast services in mobile networks,” Ad Hoc
Networks, vol. 10, no. 8, pp. 1586–1602, 2012.
[2] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Duke University, Tech. Rep., 2000.

User Behaviors

Classic Algorithm

CSI: Deliver to users
having different
trajectories

Epidemic:
Broadcast to
each other

User Experience of
Different Representations

51

o Definition of user experience:
understanding level

o 182 participants (recruited)
• 120 participants (filtered) with 587

samples
o Content: Apple Daily News
o 5-layer representations: text, audio, low-,

medium-, and high- resolution videos

Implementation

52

o Android Application
• 15 Users

o Fog device: 11 Raspberry PIs
o Location: 3 rural villages + a university
o Content: 46 news from apple daily

CDRR Results in Higher User Experience
Using Less Energy

53

o CDRR Outperforms others:
• User experience: 1.1 times (CSI) and 2.7 times (Epidemic)
• Energy efficiency: 1.2 times (CSI) 1.4 times (Epidemic)

Because of detailed individual plans

Summary: Delay-Insensitive
Application

54

o Solved distribution planning problem
o Derived user experience models of

different representations
o Evaluated our algorithm with real

implementation
• Outperform state-of-the-art and

classic algorithms by 110% and
270% in terms of user experience,
respectively

Content
Matcher

Distribution Planning
Algorithm

Contact
Predictor

Our Testbed

User
Experience

Agenda

55

I. Introduction
II. Application Deployment Problem
III.Delay-Sensitive Application Optimization Problem
IV.Delay-Insensitive Application Optimization Problem
V. Conclusion & Future Work

Conclusion

56

o Help providers to realize the cloud-to-things continuum platform
• A performance guaranteed deployment algorithm makes providers’

life easier to estimate costs/benefits and formulate prices
o Help users to have optimized user experience

• Game streaming applications with optimal gaming experience
• Content delivery applications with maximized understanding level

Future Work:
Testbed in NTHU

57

o 8 Smart Street Lamps in NTHU
o Street Lamp

• Fog devices: Raspberry Pis and IPCs
• Sensors: camera, air pollution sensors, …
• Communications: ethernet, WiFi mesh,

LoRa, Zigbee, and Bluetooth
o Analytic applications: object recognition, car

plate recognition, …

Killer Applications of Our Platform

58

o Analytic Applications
• Complicated deep learning

models
à huge amount of resources
and data is required

o IoT Applications [1]
• Low end devices

à need longer time to run
complicated applications
Intelligent IoT application with complicated analytics:
e.g., Human tracking applications on wearable glasses

[1] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar, and P. Hui, “Dandelion: A Unified Code Offloading System for Wearable
Computing,” IEEE Transactions on Mobile Computing, 2018.

Fog
Devices

Ecosystem

59

Provider

Users

Requests

Publish

Application
Developers

For Application Developers

60

o Challenges
• High learning curve to

implement multi-operator
applications à
programming model

• Privacy sensitive data à
data management and
protection approaches

Operator

Operator
Operator

Operator

Application

Provider Application
Developers

Model Parameters

Models

Programing Model

61

Operator

Operator
Operator

Operator

Application

o Decomposition
• Dynamically split applications

into any number of smaller
operators

o Communication
• Automatically handle the

communications between
operators

o Performance Optimization
• Stream processing
• Parallel programming

Data Management and Protection Approaches

62

o Training as a Service (TaaS)
• Help developers to train

their models
o Data analytic APIs

• Help developers analyze
the data and figure out
some characteristics

• Help developers to figure
out root cause of low
accuracy

Provider Application
Developers

Models

Model Parameters
!",!$, !%,…

Models+
Parameters

Users

Publications

63

Journal Articles
- H. Hong, C. Hsu, T. Tsai, C. Huang, K. Chen, and C. Hsu, “Enabling Adaptive Cloud Gaming in an

Open-Source Cloud Gaming Platform,” IEEE Transactions on Circuits and Systems for Video
Technology (TCSVT), vol. 25, no. 12, December, 2015.

- H. Hong, T. El-Ganainy, C. Hsu, K. Harras, and M. Hefeeda, “Disseminating Multi-layer Multimedia
Content over Challenged Networks,” IEEE Transactions on Multimedia (TMM), vol.20, no.2,
February, 2017.

Conference Papers
- H. Hong, P. Tsai, A. Cheng, M. Uddin, N. Venkatasubramanian, and C. Hsu, “Supporting Internet-of-

Things Analytics in a Fog Computing Platform,” in Proc. of IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Hong Kong, December, 2017. (Best Paper Award)

- H. Hong, P. Tsai, and C. Hsu, “Dynamic Module Deployment in a Fog Computing Platform,” in Proc.
of IEEE Asia-Pacific Network Operations and Management Symposium (APNOMS), Kanazawa,
Japan, October, 2016. (Best Paper Award)

Demo Paper
- H. Hong, S. Wang, C. Tan, T. El-Ganainy, K. Harras, C. Hsu and M. Hefeeda, “Challenged Content

Delivery Network: Eliminating the Digital Divide,” in Proc. of ACM Multimedia Demo Paper (MM
Demo), Brisbane, Australia, Oct., 2015.

PhD Symposium
- Hua-Jun Hong, “From Cloud Computing to Fog Computing: Unleash the Power of Edge and End

Devices,” in Proc. of IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), Hong Kong, December, 2017.

Other Publications

64

Book Chapter
- C. Hsu, H. Hong, T. El-Ganainy, K. Nahrstedt, and N. Venkatasubramanian, “Multimedia Fog Computing: Minions in the Cloud

and Crowd,” ACM Frontiers of Multimedia Research, Chapter 10, Association for Computing Machinery and Morgan &
Claypool, January 2018.

Journal Articles
- H. Hong, C. Fan, Y. Lin, and C. Hsu, “Optimizing Cloud-Based Video Crowdsensing,” IEEE Internet of Things Journal (JIoT),

vol. 3, no. 3, January, 2016.
- H. Hong, D. Chen, C. Huang, K. Chen, and C. Hsu, “Placing Virtual Machines to Optimize Cloud Gaming Experience,” IEEE

Transactions on Cloud Computing (TCC), vol. 3, no. 1, 2014.
Conference and Workshop Papers
- M. Rahman, A. Rahman, A. Afrin, H. Hong, P. Tsai, M. Uddin, N. Venkatasubramanian, and C. Hsu, “Adaptive Sensing Using

Internet-of-Things with Constrained Communications,” in Proc. of ACM Adaptive and Reflective Middleware (ARM), Las
Vegas, NV, USA, December, 2017.

- P. Tsai, H. Hong, A. Cheng, and C. Hsu, “Distributed Analytics in Fog Computing Platforms Using TensorFlow and
Kubernetes,” in Proc. of IEEE Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea,
September, 2017.

- Y. Chen, H. Hong, S. Yao, A. Khunvaranont, and C. Hsu, “Gamifying Mobile Applications for Smartphone Augmented
Infrastructure Sensing,” in Proc. of IEEE Annual Workshop on Network and Systems Support for Games (NetGames), Taipei,
Taiwan, June, 2017.

- H. Hong, Y. Lin, J. Chuang, and C. Hsu, “Animation Rendering on Multimedia Fog Computing Platforms,” in Proc. of IEEE
International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg, December, 2016.

- T. Fan-Chiang, H. Hong, C. Hsu, “Segment-of-Interest Driven Live Game Streaming: Saving Bandwidth without Degrading
Experience,” in Proc. of IEEE Annual Workshop on Network and Systems Support for Games (NetGames), Zagreb, Croatia,
December, 2015.

- H. Hong, C. Lee, K. Chen, C. Huang, and C. Hsu, “GPU Consolidation for Cloud Games: Are We There Yet?,” in Proc. of
IEEE Annual Workshop on Network and Systems Support for Games (NetGames), Nagoya, Japan, December, 2014.

Poster and Demo Papers
- Y. Hsieh, H. Hong, P. Tsai, Y. Wong, Q. Zhu, M. Uddin, N. Venkatasubramanian, and C. Hsu, “Managed Edge Computing on

Internet-of-Things Devices for Smart City Applications,” in Proc. of IEEE/IFIP Network Operations and Management
Symposium (NOMS), Taipei, Taiwan, April, 2018.

- Q. Zhu, M. Uddin, N. Venkatasubramanian, C. Hsu, and H. Hong, “Enhancing Reliability of Community Internet-of-Things
Deployments with Mobility,” in Proc. of IEEE INFOCOM, Honolulu, HI, USA, April, 2018.

- H. Hong, D. Chen, C. Huang, K. Chen, and C. Hsu, “QoS-Aware Virtual Machine Placement for Cloud Games,” in Proc. of
ACM Annual Workshop on Network and Systems Support for Games (NetGames), Denver, CO, December 2013.

Q&A
hua.j.hong@gmail.com

Introduction

Fog similar concepts comparisons
Timeline (from WSN to clout-to-things continuum)

Benefits of Cloud-to-Things Continuum

Cloud, Distributed Cloud, Cyber Foraging,
CloudLet, and Fog

67

Low
Latency

Location Awareness
and Mobility Support

Virtualization
Support

High
Heterogeneity

Cloud ✕ ✕ ✓ ✕
Distributed Cloud [1] △ △ ✓ ✕
Cyber Foraging [2] ✓ △ ✕ △

CloudLet and MEC [3,4] ✓ ✓ ✓ △
Fog [5] ✓ ✓ ✓ ✓

[1] P. Endo, A. de Almeida Palhares, N. Pereira, G. Goncalves, D. Sadok, J. Kelner, B. Melander, and J. Mangs, “Resource
Allocation for Distributed Cloud: Concepts and Research Challenges,” IEEE Network, 25(4), 42-46, 2011.
[2] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal communications, 8(4):10–17, 2001.
[3] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The Case for VM-based Cloudlets in Mobile Computing. IEEE
pervasive Computing, 8(4), 14-23, 2009.
[4] Mobile-edge computing. https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-
_Introductory_Technical_White_Paper_V1%2018-09-14.pdf.
[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet of Things” in Proc. of ACM
SIGCOMM workshop on Mobile Cloud Computing (MCC), Helsinki, Finland, 2012.

Timeline

Benefits of Cloud-to-Things Continuum

69

Application Deployment Problem

Knapsack problem variations
Approximation factor proof

Resource consumption model

Knapsack Problem Variations

71

o Subset Sum Problem (SSP): weight = profit
o Bounded Knapsack Problem (BKP): duplicated items with a boundary
o Unbounded Knapsack Problem (UKP): duplicated items without a boundary
o Multi dimensional Knapsack Problem (d-KP): multiple constraints
o Multiple Knapsack Problem (MKP): multiple knapsacks
o Multiple Knapsack Problem with Identical Capacities (MKP-I): knapsacks have

the same capacities
o Multiple-Choice Knapsack Problem (MCKP): items have variations (diff weight

& profits), need to pick one variation of each item
o Quadratic Knapsack Problem (QKP): two items result in a weight & profit
o Bin Packing (BP): use least number of knapsack to pack all items
o MKP+SSP -> MSSP
o MKP-I + SSP -> MSSP-I
o MCKP+d-KP -> MMKP

[1] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems,” Springer, 2004
[2] Silvano Martello, “Knapsack Problems: Algorithms and Computer Implementations,” Wiley & Sons, 1990
[3] C. Wilbaut, S. Hanafi, and S. Salhi, “A Survey of Effective Heuristics and Their Application to a Variety of Knapsack
Problems. IMA Journal of Management Mathematics, 19(3), 227-244, 2008.

Knapsack Variation Graph

72

KP

MKPd-KP

Item

MKP-I

SSP

MSSP

MSSP-I

BP

ProfitConstraint Knapsack Objective

QKP UKP BKP MCKP

MMKP dMKP

With Classic Solutions
Without Classic Solutions

[1] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems,” Springer, 2004
[2] Silvano Martello, “Knapsack Problems: Algorithms and Computer Implementations,” Wiley & Sons, 1990
[3] C. Wilbaut, S. Hanafi, and S. Salhi, “A Survey of Effective Heuristics and Their Application to a Variety of Knapsack
Problems. IMA Journal of Management Mathematics, 19(3), 227-244, 2008.

Approximation Factor Proof

73

o Step1: Design an upper bound solution (OPT’)
• Intuitions are similar to APX

o Step2: Prove results of OPT’ >= optimal solution (OPT)
o Step3: Derive approximation factor (APX/OPT’)

Step1: Design an Upper Bound Solution (OPT’)

74

o Similar intuitions with APX
o Differences

• Merge all the fog devices
• Sum up different type of resources

o Sort requests by total required resources

CPU: 5%
RAM: 5%

CPU: 20%
RAM: 20%

CPU: 40%
RAM: 40%

Merge devices

CPU: 45%
RAM: 45%

Total: 90%

Sum up
resources

CPU: 70%
RAM: 10%

Step2: Prove that OPT’ is Upper Bound

75

o OPT:
o OPT’: , which may/may not be satisfied

• Results are sorted by total required resources

Assume

Contradiction

OPT’ is an
upper bound

solution

Device Capacities

Step3: Derive Approximation Factor

76

o APX: H satisfied requests

A
B

(1)

(2)

(1) and (2)
!
!" ≥

1
%
&
'

!
!" ≥

1
%

B≥ A

B≥ A

!
!" ≥

1
%

H’ ≥ !̇

(3)

o APX: H satisfied requests

Remove the Proportional Heterogeneity Assumption

77

A
B

(1)

(2)

(1) and (2)
!
!" ≥

1
%
&
'

!
!" ≥

1
%

B≥ A

B≥ A

!
!" ≥

1
%

H’ ≥ !̇

(3)

L=L
%

Resource Consumption Models

78

o Input:
• Applications
• Target QoS
• Hardware specifications

o Output: required resources
• CPU load
• RAM usage
• Network throughput

Resource
Consumption

Models
Applications

Target QoS Required
Resources

Hardware
Specification

Testbed

79

o Fog devices: 5 Raspberry PI3s + 5
PCs (i7/8GB RAM)
• Docker + Kubernetes

o Server: a tiny PC (i5/8GB RAM)
• Kubernetes

o Switch
• Private networks

o Analytic applications (implemented
with TensorFlow)
• Air quality monitor (QoS: 0.25 – 4 Hz)
• Sound classifier (QoS: 6/60 – 10/60 Hz)
• Object recognizer (QoS: 5/60 – 9/60 Hz)

Derived Models on Raspberry PIs

80

o Sample figures from the object recognizer
• Constant model for RAM
• Power models for CPU and network throughput

R
A

M
 U

sa
ge

 (M
B

)

How about new devices?

Bootstrapping Online Regression

81

o If PC is a new type of fog device adding to our platform
o Bootstrap from Raspberry PIs’ system models
o 15 Iterations
o Error: CPU = 2% and RAM = 13% on average

o Turns off 6% and 12% fog devices compared to ODP and FCP,
respectively

o Use fewer CPU/RAM/bandwidth to satisfy more requests
o Lower latency compared to others

SSE is Resource Efficient and Real-Time
Analytics Friendly

82

Running Time

83

Any Size of Operators

84

o A sound classifier application (4-layer NN model)
• 348 operators

Delay-Sensitive Application Problem

Optimality Proof
Problem Formulation
Bandwidth Estimator

Gaming Experience Model
Performance Comparing to Baselines

Running Time of our Algorithms

Optimality of the !""#$%Algorithm

86

o Lemma: !""#$% is optimal if is monotonic decreasing
o Proof:

• !""#$% finds steepest slope at every iteration: '(, '*, '+ …
à '- > '-/(à No alternative allocation
ü if it is feasible solution (monotonic decreasing) à Optimal

• Monotonic decreasing: double deviation of (negative)
à

Our models satisfy this equation
< 0

'(
'*

'2: quality improvement
of adding one unit

3∗(6, 7)

3∗(6, 7)

3∗(6, 7)′′

Optimality of the !""##Algorithm

87

o Lemma: !""## is optimal if it allocates w to gamer u who has the
worst MOS

o Proof:
• !""## allocates w (1kbps) to user u who has the worst MOS (l)

à MOS improvement = q
• Consider alternative $%

à MOS improvement = 0 (the worst MOS is still l)
à Need to allocate another w to u to achieve the same MOS
improvement

• Hence, we cannot find an alternative leading to a better solution
à !""## is optimal

Bitrate Adaptation Problem Formulation

88

Decision
Variables

Objective 1:
Gaming Experience Maximization

Bandwidth Constraint

Objective 2:
Quality Fairness

Bandwidth Estimator

89

o WBest [1]
• Estimate bandwidth capacity by sending probing packets

o Our bandwidth estimator
• Leverage existing video packets as probing packets

à Avoid additional network overhead

C = "
#

capacity

packet dispersion time

s/3C
s/C

Sender S

= s/C

R

C1=3C
C2=C

C3=3C

Receiver

[1] M. Li, M. Claypool, and R. Kinicki, “WBest: A bandwidth estimation tool for IEEE 802.11 wireless networks,”
IEEE Conference on Local Computer Networks, 2008.

The Bandwidth Estimator is Accurate

90

o Send W packets and select the median value as estimated
bandwidth capacity

o W = {100, 200, 300, 400, 500}
• W = 100 à accuracy < 50%
• W = 200 ~ 500 à 80% < accuracy < 85%

Gaming Experience User Study

91

o Gaming experience à Mean Opinion Scores (MoS): 1~7
o 101 Subjects
o 3 type of games = {Batman, FGPX, CoD}
o Bitrate = {0.5, 1, 2} Mbps
o Frame rate = {10, 20 , 30} fps
o Game sessions = 2 ~ 4 minutes

[Hong et al. TCSVT’15, Credits: collaborators @ Academia Sinica]

Codec Reconfiguration

92

o Migration from ffmpeg to live555
• ffmpeg does not have an interface for dynamically

reconfiguring video codecs
• live555 offers a more comprehensive RTCP

implementation, which allows us to measure and
collect the network flow statistics

[Hong et al. TCSVT’15, Credits: collaborators @ NCTU]

Our Algorithms Outperform Baselines: Setup

93

o Optimal algorithms: CPLEX
• !"#$%&
• !"#''

o Baseline algorithms
• ()*+,-: equally allocate
• ()*+./0': proportionally (to average MOS scores) allocate

o Bottleneck link capacity R = 760 Mbps (PlanetLab)

Our Algorithms Outperform Baselines

94

o !""#$% results in the best average MOS scores
• Outperforms	baselines	by	up	to	30%

o !"":: results in the best worst MOS scores
• Outperforms	baselines	by	up	to	46%

30% 46%

Our Algorithms run in Realtime

95

o 4000 gamers ~ 1 second

Delay-Insensitive Application Problem

Dynamic programming problem
CDRR: Practical concerns

Block diagram
Energy consumption measurement

97

! ", $ = max{! " − 1, $, ,- + ! " − 1, $ − /-)}

Target

Complexity: O(IW)

Dynamic Programming

Practical Concerns

98

o Planed contents are downloaded or plans are not received
• Determining the downloading order
• Next outstanding representation of each content

(sorted by viewing probability
content size)

o Video size is too large
• Segmenting video layers

Block Diagram

99

o Content Matcher
• Topia Term Extractor
• Google Bayesian

o Contact Predictor
• Frequency-based approach

Prediction Accuracy

100

17% gap

DP vs CDRR

101

How to Know the Energy Consumptions?

102

o Power meter: Agilent 66321D
o Read trace:

o Downloaded news
o Downloaded plan
o Uploaded user profiles

• 1-day distribution plan only consumes
up to 153 J, which is 0.3%

Fog Testbed and Performance Measurement

Testbed

104

Devices

Server

Provider

Fog Users

Requests

R
es

ul
ts

Virtualization &
Resource

Reservation

Management
& Deployment

Distributed Analytics Result in Better
Performance for Complex Analytics
▸Air pollution monitor: too simple to benefit from distributed

analytics
▸Object recognizer:

• One more device gives 35.5% and 54.1% improvements

105We only consider the object recognizer in the following results

Object recognizerAir pollution monitor

Cut on Equal Complexity Point Results in
Better Performance
▸Setup: run object recognizer on two fog devices (different cut

points)
▸Cut point 4&5 result in the most no. processed images
▸Two fog devices consume the same CPU resources on cut

point 4&5

106

Equal Complexity Point

CutDevice 1 Device 2

Cut Points Affect Network Overhead

▸Put more computations on device 1 can reduce network
overhead

107

CutDevice 1 Device 2

Low Virtualization Overhead
▸Setup: with and without Docker
▸Overhead from Docker

• Less than 5%

108
No.

Low Communication Overhead
▸Setup: without Docker and distributed speedup
▸Overhead from distributed computing using TensorFlow

• 10%

109

10%

