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Cloud
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Things

Why don’t we leverage the resources in between cloud and things?

Cloud



Cloud-to-Things Continuum Platform
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Virtualization

Computing Networks Storage Sensors
Hardware Platform Infrastructure

Sensors and Actuators

Node Management (OOB)

Node Management (IB)

Hardware Security

Protocol Abstraction

Cloud-to-Things Continuum Framework [1]

[1] https://www.openfogconsortium.org/

Application Support
Application Service



Intelligent Framework
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VM/Container



Three Research Problems
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Application 
Deployment

Problem

Application Specific Optimizer

Delay-Insensitive
Application

Optimization 
Problem 

Delay-Sensitive
Application

Optimization 
Problem

Global Optimizer

Goal: Serving as many users as possible

Provider

Application: Remote Rendering
Goal: Reduce latency

Application: Content Delivery
Goal: Maximize delivered information

Users

Various Applications

Ongoing Applications



Contributions
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Propose an intelligent cloud-to-things continuum framework
o Solve application deployment problem

• Deploy applications while considering decompositions
• 1/U approximation factor 

o Solve delay-sensitive application optimization problem
• Adapt bitrates for game streaming applications
• Optimal solution solved in polynomial time

o Solve delay-insensitive application optimization problem
• Provide content delivery plans while considering user behaviors 

and content representations under challenged networks
• An efficient algorithm outperforms state-of-the art algorithms
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Various Deployment Decisions
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Application Deployment Problem
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Problem: Given a set of requests ! and a set
of fog devices ". Each request has three
requirements: (i) a splittable application,
(ii) a target QoS, and (iii) a specified
location. Devices located at various places
have # kinds of resources. Our problem is
to determine which request $ ∈ ! should
be served on which device & ∈ " without
overload the resources. Our goal is to
maximize number of served requests.

Challenges:
• Diverse users (requests)à diverse resource requirements
• Heterogeneous fog devices à application decomposition
• Large problem size à polynomial time algorithm

Deployment
Algorithm

Device 
Capacities

Deployment
Decisions

Requests
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Application Deployment Problem: Ideal Case

14

o Splittable applications
• Arbitrary size of operators

o Transfer link constraints to node constraints
o Grid map

• Select one of grids
o Reduced device heterogeneity

• Proportional resource levels

4 cores 2 GHz
4 GB RAM

…

8 cores 2 GHz
8 GB RAM

…

1 core 2 GHz
1 GB RAM

…

X2X4 ü Variant of knapsack problem  
ü NP hard



APproXimation Algorithm (APX)
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1. Step 1: Request selection
• Least total required resource 

first
• q: request
• u: resource type
• F: resource consumption model

2. Step 2: Device selection 
• Round robin

3. Step 3: Request decomposition 
• As large operator as possible

Request 
Selection

Device 
Selection

Request Decomposition

Remaining 
Operator

Next
request?

Next
device

• O(|Q| log |Q|+|Q||V||U|)
• 1/U Approximation Factor
Q: Request set
V: Device set
U: Resource type set

Step 2 Step 1

Step 3



Proof: !|#| Approximation Factor
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o Step1: Design an upper bound solution (OPT’)
• Intuitions are similar to APX

o Step2: Prove results of OPT’ >= optimal solution (OPT)
o Step3: Derive approximation factor (APX/OPT’)

The algorithm results in optimal solution while |U| = 1



Validating the Approximation Factor
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o OPT: formulate as ILP and optimally solve it using CPLEX
o Results of APX are always above theoretical 1/U bound
o APX == OPT while U=1

Limitations: Operators, Links, Location, and Devices 
à How to make it more generalized?

Optimal Solution
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Application Deployment Problem: General Case
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o Goal: Serve as many requests (users) as possible

O
perators

D
evices

Application

Ideal Generalized

Operator Any Size Predefined

Resource
Constraint

Node Node + Link

Location Grids Any Location

Device
Heterogeneity

Proportional Any Device



Problem Formulation
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Node

Link

Decision variable 
Throughput maximization

Objective 

Constraints
Node

Link



SSE Algorithm
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o Request Selection
• Scarcest resource first

o Source/Destination device 
selection
• Shortest path first (hops and 

latency) 
o Immediate device selection

• Early feature extraction

Reduce node 
resource consumption

Request 
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Evaluation Setup
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o Requests 
• Poisson arrival / departure rates: 1 min / 10 mins

o Network topology (BRITE [1])
• Number of fog devices: [10, 25, 50, 75, 100]
• Location of fog devices and latencies of their edges: based on BRITE

o Resource capacities of fog devices
• CPU: [100% ~ 800%] à random
• RAM: [1 GB ~ 16 GB] à random

o Bandwidth of links:
• [45 kbps (LoRa), 8 Mbps (WiFi), 25 Mbps (4G)] à Random

[1] BRITE, https://www.cs.bu.edu/brite/user_manual/



Baseline Algorithms
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o Optimal Data Stream Processing Placement (ODP) algorithm [1]
• CPLEX

o Fog and Cloud Placement (FCP) algorithm [2]
• Heuristic

o Linear algorithm
• Greedily deploys operators to neighbor fog devices
• Considers all the constraints

o Random algorithm
• Mimics a platform without centralized server
• Does not consider any constraint

[1] V. Cardellini, V. Grassi, F. Presti, and M. Nardelli. Optimal operator placement for distributed stream processing applications. In Proc. of ACM International 
Conference on Distributed and Event-based Systems (DEBS), Irvine, CA, June 2016.
[2] M. Taneja and A. Davy. 2017. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proc. of IFIP/IEEE Symposium on 
Integrated Network and Service Management (IM). Lisbon, Portugal.

• Designed for fog devices
• Splittable application
• Consider both node and link capacities



SSE Serves More Users
o SSE outperforms others in terms of supported users

• 140%, 49%, and 46% compared to Linear, FCP, and ODP
• Random satisfies zero requests after running 14 hours

o Random, FCP, and ODP are too aggressive
• Overload links by up to 21, 12, and 10 links

25

46%49%140%
12

10

21



Summary: Application 
Deployment
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o Solved ideal and general 
application deployment 
problem
• APX algorithm with !"

approximation factor
• Validated by numerical 

analysis
• Satisfy at least 46% 

more requests compared 
to state-of-the-art 
algorithms

o Derived resource 
consumption models

Our Testbed
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Game Streaming Applications
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Goal: Maximize gaming experience by adapting to network dynamics 



Bitrate Adaptation Problem

30

Challenges:
• Various game types and gamers à various gaming experience models
• Delay sensitiveà real-time algorithm

Problem: Given a set of gamers ! and a
shared bottleneck link with available
bandwidth ". Our problem is to determine
allocating bitrates, which do not overload
" to ! . Our goal is to maximize gaming
experience. The gaming experience model
#(%, ') is affected by game types % and
allocated bitrates '.

Bitrate 
Adaptation 
Algorithm

Available
Bandwidth

Bitrates

Gaming 
Experience 

Models
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o Problem Statement 
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o Evaluations & Summary



o Quality maximization: !""#$%
• Gamer selection: highest gaming experience improvement first
• Bitrate adaptation: add one unit (w = 1kbps)

o Quality fairness: !""&&
• Gamer selection: worst gaming experience first
• Bitrate adaptation: add one unit (w = 1kbps)

Optimal Bitrate Adaptation Algorithms

32

Gamer 
Selection

Bitrate 
Adaptation

Gamer

Residue 
Bandwidth



Optimality of the !""#$%Algorithm
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o Lemma: !""#$% is optimal if gaming experience model                is 
monotonic decreasing

o Proof:
• !""#$% finds steepest slope at every iteration: '(, '*, '+ …

à '- > '-/( à No alternative allocation 
ü if it is feasible solution (monotonic decreasing) à Optimal

• Monotonic decreasing: double deviation of                
à < 0

'(
'*

'2: gaming experience 
improvement of adding 

one unit

3∗(6, 7)
3∗(6, 7)′′

3∗(6, 7)



Optimality of the !""##Algorithm
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o Lemma: !""## is optimal if it allocates w to gamer u who has the 
worst gaming experience

o Proof: 
• !""## allocates w (1kbps) to user u who has the worst gaming 

experience = l
à MOS improvement =  q

• Consider alternative user $%
à Improvement = 0  (the worst gaming experience is still l)
à Need to allocate another w to u to achieve the same 
improvement

• Hence, we cannot find an alternative leading to a better solution
à !""## is optimal 
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o Problem Statement 
o Proposed Algorithm
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Evaluation Setup
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o Gaming experience model: user study
o Available resource = 760 Mbps (PlanetLab)
o Optimal algorithms: CPLEX 

(an optimization solver)
• !"#$%&
• !"#''



Gaming Experience Model
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o Quadratic model

o MOS Scores: 1 ~ 7
o R-square values > 0.98

[Hong et al. TCSVT’15, Credits: collaborators @ Academia Sinica]

Game
Type

Frame
Rate

Bitrate

How to simplify the problem? à focus on bitrate allocation 



Optimal Frame Rate Selection
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o Lemma:                 calculates optimal MOS under certain bitrate if we 
have             , which gives us optimal frame rate  

o Quadratic gaming experience model

o Partial derivation to f
à Optimal frame rate:

o Optimal MOS:

! ", $, % → !∗(", %)

!∗(", %)



Our Algorithms are Optimal
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o The resulting MOS scores are exactly the same
o Efficient algorithms run much faster than OPT algorithms

[MOS Scores]

[Running Time]21X faster 4K+X faster

Same



Summary: Delay-Sensitive
Applications
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o Derived gaming experience models
[Hong et al. TCSVT’15, Credits: collaborators @ NCTU]

[Hong et al. TCSVT’15, Credits: collaborators @ Academia Sinica]

o Solved bitrate adaptation problem
• Two optimal algorithms
• Outperform baselines by up to 

30% and 46%, respectively
o Solved bandwidth estimation

• > 80% accuracy
o Solved real-time codec reconfiguration
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Content Delivery Under Challenged Network

43

Fo
g 

D
ev

ic
es

1TB
SSD

PM 2.5

Cat7 Gigi

Xeon 
E-2176 Provider

N
o

N
et

w
or

k 
A

cc
es

s

Video

Interm
ittent

N
etw

ork A
ccess

Text

Read Content 
Without the Internet

Audio



Distribution Planning Problem
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Challenges:
• Definition of user experience à user study
• Various user behaviors à individual distribution plans
• Limited resources and large size of contents à multiple representations

Problem: Given a set of contents ! and a set
of users ". Each content has $
representations. Each user has % contacts
(run into fog devices). Each contact has &
resources. Our problem is to determine
delivering which representation ' ∈ $ of
which content ) ∈ ! to which user * ∈ "
at which contact + ∈ % without
overloading the resources &. Our goal is
to maximize user experience.

Distribution Planning 
Algorithm

Available
Resources

Plans

User 
Interests and 

Contacts

User 
Experience 

Models
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Distribution Planning Problem Formulation
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Objective: 
Maximize User Experience

Decision
Variable

Layer Dependency

Duplication Avoidance

Viewing Probability Checker

UE

RResource Budgets



Dynamic Programming 
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Objective: 
Maximize User Experience

Layer Dependency

Duplication Avoidance

Viewing Probability Checker

UEo Termination: (1b) ~ (1e)
o Recursion & Memorization:

o Time & Space complexity: O(NL Π&')

)* +, &-, &., … , &0 = max{
)* + − 1, &- − 8 + , &., &9 … + ;<,
)* + − 1, &-, &. − 8 + , &9 … + ;<,
)* + − 1, &-, &., &9 − 8 + … + ;<,
…
)* + − 1, => }

UE

UE

UE

No. Contents 1 2 3 4 5 6 7
Running Time 
(sec)

0.08 0.11 0.19 0.61 1.8 111.2 457.2

Memory Usage 
(MB)

21 32 103 269 1918 10197 > 64GB

DP can optimally solve the problem under delay-tolerable environment

RResource Budgets



Algorithm: Contact-Driven Round Robin 
(CDRR)
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1. User Selection
• Round Robin

2. Content Selection
• Higher user 

experience using 
less resources first

• More contents for 
popular users

3. Contact Selection
• Unpopular fog 

devices first

User
Selection

Step 1

Content
Selection

Text 1

Audio 1

Text 2

Contact
Selection

Step 2

Step 3
UE

R

R

! "#$%&' "#$ + "#$)

R

DP vs CDRR
Performance 
Gap: 7%
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Evaluation Setup
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o User experience: user study
o Trace: a real testbed
o Baseline algorithms

• CSI [1]: Consider trajectories 
of users

• Epidemic [2]: Classic content 
delivery algorithm in 
challenged networks

[1] W. Hsu, D. Dutta, and A. Helmy, “CSI: A paradigm for behavior- oriented profile-cast services in mobile networks,” Ad Hoc 
Networks, vol. 10, no. 8, pp. 1586–1602, 2012. 
[2] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Duke University, Tech. Rep., 2000.

User Behaviors

Classic Algorithm

CSI: Deliver to users 
having different 
trajectories 

Epidemic:
Broadcast to 
each other



User Experience of 
Different Representations
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o Definition of user experience: 
understanding level

o 182 participants (recruited)
• 120 participants (filtered) with 587 

samples
o Content: Apple Daily News
o 5-layer representations: text, audio, low-, 

medium-, and high- resolution videos



Implementation

52

o Android Application
• 15 Users

o Fog device: 11 Raspberry PIs
o Location: 3 rural villages + a university
o Content: 46 news from apple daily



CDRR Results in Higher User Experience 
Using Less Energy
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o CDRR Outperforms others: 
• User experience: 1.1 times (CSI) and 2.7 times (Epidemic)
• Energy efficiency: 1.2 times (CSI) 1.4 times (Epidemic)

Because of detailed individual plans



Summary: Delay-Insensitive
Application

54

o Solved distribution planning problem
o Derived user experience models of 

different representations
o Evaluated our algorithm with real 

implementation
• Outperform state-of-the-art and 

classic algorithms by 110% and 
270% in terms of user experience, 
respectively

Content
Matcher

Distribution Planning
Algorithm

Contact
Predictor

Our Testbed

User
Experience
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Conclusion
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o Help providers to realize the cloud-to-things continuum platform
• A performance guaranteed deployment algorithm makes providers’ 

life easier to estimate costs/benefits and formulate prices
o Help users to have optimized user experience 

• Game streaming applications with optimal gaming experience
• Content delivery applications with maximized understanding level



Future Work: 
Testbed in NTHU
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o 8 Smart Street Lamps in NTHU
o Street Lamp

• Fog devices: Raspberry Pis and IPCs
• Sensors: camera, air pollution sensors, …
• Communications: ethernet, WiFi mesh, 

LoRa, Zigbee, and Bluetooth
o Analytic applications: object recognition, car 

plate recognition, …



Killer Applications of Our Platform
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o Analytic Applications
• Complicated deep learning 

models 
à huge amount of resources 
and data is required

o IoT Applications [1]
• Low end devices 

à need longer time to run 
complicated applications
Intelligent IoT application with complicated analytics:
e.g., Human tracking applications on wearable glasses

[1] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar, and P. Hui, “Dandelion: A Unified Code Offloading System for Wearable 
Computing,” IEEE Transactions on Mobile Computing, 2018.
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For Application Developers
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o Challenges
• High learning curve to 

implement multi-operator 
applications à
programming model

• Privacy sensitive data à
data management and 
protection approaches

Operator

Operator
Operator

Operator

Application

Provider Application 
Developers

Model Parameters

Models



Programing Model

61

Operator

Operator
Operator

Operator

Application

o Decomposition
• Dynamically split applications 

into any number of smaller 
operators

o Communication
• Automatically handle the 

communications between 
operators

o Performance Optimization
• Stream processing
• Parallel programming



Data Management and Protection Approaches

62

o Training as a Service (TaaS)
• Help developers to train 

their models
o Data analytic APIs

• Help developers analyze 
the data and figure out 
some characteristics

• Help developers to figure 
out root cause of low 
accuracy

Provider Application 
Developers

Models

Model Parameters
!",!$, !%,…

Models+
Parameters

Users
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Cloud, Distributed Cloud, Cyber Foraging, 
CloudLet, and Fog

67

Low
Latency

Location Awareness 
and Mobility Support

Virtualization 
Support

High 
Heterogeneity

Cloud ✕ ✕ ✓ ✕
Distributed Cloud [1] △ △ ✓ ✕
Cyber Foraging [2] ✓ △ ✕ △

CloudLet and MEC [3,4] ✓ ✓ ✓ △
Fog [5] ✓ ✓ ✓ ✓

[1] P. Endo, A. de Almeida Palhares, N. Pereira, G. Goncalves, D. Sadok, J. Kelner, B. Melander, and J. Mangs, “Resource 
Allocation for Distributed Cloud: Concepts and Research Challenges,” IEEE Network, 25(4), 42-46, 2011.
[2] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal communications, 8(4):10–17, 2001.
[3] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The Case for VM-based Cloudlets in Mobile Computing. IEEE 
pervasive Computing, 8(4), 14-23, 2009.
[4] Mobile-edge computing. https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-
_Introductory_Technical_White_Paper_V1%2018-09-14.pdf. 
[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet of Things” in Proc. of ACM 
SIGCOMM workshop on Mobile Cloud Computing (MCC), Helsinki, Finland, 2012.



Timeline



Benefits of Cloud-to-Things Continuum
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Application Deployment Problem

Knapsack problem variations
Approximation factor proof

Resource consumption model



Knapsack Problem Variations
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o Subset Sum Problem (SSP): weight = profit
o Bounded Knapsack Problem (BKP): duplicated items with a boundary
o Unbounded Knapsack Problem (UKP): duplicated items without a boundary
o Multi dimensional Knapsack Problem (d-KP): multiple constraints
o Multiple Knapsack Problem (MKP): multiple knapsacks
o Multiple Knapsack Problem with Identical Capacities (MKP-I): knapsacks have 

the same capacities 
o Multiple-Choice Knapsack Problem (MCKP): items have variations (diff weight 

& profits), need to pick one variation of each item
o Quadratic Knapsack Problem (QKP): two items result in a weight & profit
o Bin Packing (BP): use least number of knapsack to pack all items
o MKP+SSP -> MSSP
o MKP-I + SSP -> MSSP-I
o MCKP+d-KP -> MMKP

[1] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems,” Springer, 2004
[2] Silvano Martello, “Knapsack Problems: Algorithms and Computer Implementations,” Wiley & Sons, 1990
[3] C. Wilbaut, S. Hanafi, and S. Salhi, “A Survey of Effective Heuristics and Their Application to a Variety of Knapsack 
Problems. IMA Journal of Management Mathematics, 19(3), 227-244, 2008.



Knapsack Variation Graph

72

KP

MKPd-KP

Item

MKP-I

SSP

MSSP

MSSP-I

BP

ProfitConstraint Knapsack Objective

QKP UKP BKP MCKP

MMKP dMKP

With Classic Solutions
Without Classic Solutions

[1] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems,” Springer, 2004
[2] Silvano Martello, “Knapsack Problems: Algorithms and Computer Implementations,” Wiley & Sons, 1990
[3] C. Wilbaut, S. Hanafi, and S. Salhi, “A Survey of Effective Heuristics and Their Application to a Variety of Knapsack 
Problems. IMA Journal of Management Mathematics, 19(3), 227-244, 2008.



Approximation Factor Proof
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o Step1: Design an upper bound solution (OPT’)
• Intuitions are similar to APX

o Step2: Prove results of OPT’ >= optimal solution (OPT)
o Step3: Derive approximation factor (APX/OPT’)



Step1: Design an Upper Bound Solution (OPT’)
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o Similar intuitions with APX
o Differences

• Merge all the fog devices
• Sum up different type of resources

o Sort requests by total required resources

CPU: 5%
RAM: 5%

CPU: 20%
RAM: 20%

CPU: 40%
RAM: 40%

Merge devices

CPU: 45%
RAM: 45%

Total: 90%

Sum up 
resources

CPU: 70%
RAM: 10%



Step2: Prove that OPT’ is Upper Bound
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o OPT:
o OPT’:                                               , which may/may not be satisfied

• Results are sorted by total required resources

Assume  

Contradiction

OPT’ is an 
upper bound 

solution

Device Capacities



Step3: Derive Approximation Factor
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o APX: H satisfied requests

A
B

(1)

(2)

(1) and (2)
!
!" ≥

1
%
&
'

!
!" ≥

1
%

B≥ A

B≥ A

!
!" ≥

1
%

H’ ≥ !̇

(3)



o APX: H satisfied requests

Remove the Proportional Heterogeneity Assumption
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A
B

(1)

(2)

(1) and (2)
!
!" ≥

1
%
&
'

!
!" ≥

1
%

B≥ A

B≥ A

!
!" ≥

1
%

H’ ≥ !̇

(3)

L=L
%



Resource Consumption Models
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o Input:
• Applications
• Target QoS
• Hardware specifications

o Output: required resources
• CPU load
• RAM usage
• Network throughput

Resource 
Consumption 

Models
Applications

Target QoS Required
Resources

Hardware
Specification



Testbed
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o Fog devices: 5 Raspberry PI3s + 5 
PCs (i7/8GB RAM)
• Docker + Kubernetes

o Server: a tiny PC (i5/8GB RAM)
• Kubernetes

o Switch
• Private networks

o Analytic applications (implemented 
with TensorFlow)
• Air quality monitor (QoS: 0.25 – 4 Hz)
• Sound classifier (QoS: 6/60 – 10/60 Hz)
• Object recognizer (QoS: 5/60 – 9/60 Hz)



Derived Models on Raspberry PIs
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o Sample figures from the object recognizer
• Constant model for RAM 
• Power models for CPU and network throughput

R
A

M
 U

sa
ge

 (M
B

)

How about new devices?



Bootstrapping Online Regression
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o If PC is a new type of fog device adding to our platform
o Bootstrap from Raspberry PIs’ system models
o 15 Iterations
o Error: CPU = 2% and RAM = 13% on average



o Turns off 6% and 12% fog devices compared to ODP and FCP, 
respectively

o Use fewer CPU/RAM/bandwidth to satisfy more requests
o Lower latency compared to others

SSE is Resource Efficient and Real-Time 
Analytics Friendly
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Running Time
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Any Size of Operators
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o A sound classifier application (4-layer NN model)
• 348 operators



Delay-Sensitive Application Problem

Optimality Proof
Problem Formulation
Bandwidth Estimator

Gaming Experience Model
Performance Comparing to Baselines

Running Time of our Algorithms



Optimality of the !""#$%Algorithm
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o Lemma: !""#$% is optimal if                 is monotonic decreasing
o Proof:

• !""#$% finds steepest slope at every iteration: '(, '*, '+ …
à '- > '-/( à No alternative allocation 
ü if it is feasible solution (monotonic decreasing) à Optimal

• Monotonic decreasing: double deviation of                 (negative)
à

Our models satisfy this equation
< 0

'(
'*

'2: quality improvement 
of adding one unit

3∗(6, 7)

3∗(6, 7)

3∗(6, 7)′′



Optimality of the !""##Algorithm
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o Lemma: !""## is optimal if it allocates w to gamer u who has the 
worst MOS

o Proof: 
• !""## allocates w (1kbps) to user u who has the worst MOS (l)

à MOS improvement =  q
• Consider alternative $%

à MOS improvement = 0  (the worst MOS is still l)
à Need to allocate another w to u to achieve the same MOS 
improvement

• Hence, we cannot find an alternative leading to a better solution
à !""## is optimal 



Bitrate Adaptation Problem Formulation
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Decision
Variables

Objective 1: 
Gaming Experience Maximization

Bandwidth Constraint

Objective 2: 
Quality Fairness



Bandwidth Estimator
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o WBest [1]
• Estimate bandwidth capacity by sending probing packets

o Our bandwidth estimator
• Leverage existing video packets as probing packets

à Avoid additional network overhead

C = "
#

capacity

packet dispersion time

s/3C
s/C

Sender S

# = s/C

R

C1=3C
C2=C

C3=3C

Receiver

[1] M. Li,  M. Claypool, and R. Kinicki, “WBest: A bandwidth estimation tool for IEEE 802.11 wireless networks,” 
IEEE Conference on Local Computer Networks, 2008.



The Bandwidth Estimator is Accurate
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o Send W packets and select the median value as estimated 
bandwidth capacity

o W = {100, 200, 300, 400, 500} 
• W = 100 à accuracy < 50%
• W = 200 ~ 500 à 80% < accuracy < 85%



Gaming Experience User Study
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o Gaming experience à Mean Opinion Scores (MoS): 1~7
o 101 Subjects
o 3 type of games = {Batman, FGPX, CoD}
o Bitrate = {0.5, 1, 2} Mbps
o Frame rate = {10, 20 , 30} fps
o Game sessions = 2 ~ 4 minutes

[Hong et al. TCSVT’15, Credits: collaborators @ Academia Sinica]



Codec Reconfiguration
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o Migration from ffmpeg to live555 
• ffmpeg does not have an interface for dynamically 

reconfiguring video codecs
• live555 offers a more comprehensive RTCP 

implementation, which allows us to measure and 
collect the network flow statistics

[Hong et al. TCSVT’15, Credits: collaborators @ NCTU]



Our Algorithms Outperform Baselines: Setup
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o Optimal algorithms: CPLEX
• !"#$%&
• !"#''

o Baseline algorithms
• ()*+,-: equally allocate 
• ()*+./0': proportionally (to average MOS scores) allocate

o Bottleneck link capacity R = 760 Mbps (PlanetLab)



Our Algorithms Outperform Baselines
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o !""#$% results in the best average MOS scores
• Outperforms	baselines	by	up	to	30%

o !"":: results in the best worst MOS scores
• Outperforms	baselines	by	up	to	46%

30% 46%



Our Algorithms run in Realtime
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o 4000 gamers ~ 1 second



Delay-Insensitive Application Problem

Dynamic programming problem
CDRR: Practical concerns

Block diagram
Energy consumption measurement
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! ", $ = max{! " − 1, $ , ,- + ! " − 1, $ − /- )}

Target

Complexity: O(IW)

Dynamic Programming



Practical Concerns
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o Planed contents are downloaded or plans are not received
• Determining the downloading order
• Next outstanding representation of each content 

(sorted by viewing probability
content size )

o Video size is too large
• Segmenting video layers



Block Diagram

99

o Content Matcher
• Topia Term Extractor
• Google Bayesian

o Contact Predictor
• Frequency-based approach



Prediction Accuracy
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17% gap



DP vs CDRR
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How to Know the Energy Consumptions?

102

o Power meter: Agilent 66321D
o Read trace:

o Downloaded news
o Downloaded plan
o Uploaded user profiles

• 1-day distribution plan only consumes 
up to 153 J, which is 0.3%



Fog Testbed and Performance Measurement



Testbed
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Devices

Server

Provider

Fog Users

Requests

R
es

ul
ts

Virtualization &
Resource 

Reservation

Management
& Deployment



Distributed Analytics Result in Better 
Performance for Complex Analytics
▸Air pollution monitor: too simple to benefit from distributed 

analytics
▸Object recognizer:

• One more device gives 35.5% and 54.1% improvements 

105We only consider the object recognizer in the following results

Object recognizerAir pollution monitor



Cut on Equal Complexity Point Results in 
Better Performance
▸Setup: run object recognizer on two fog devices (different cut 

points)
▸Cut point 4&5 result in the most no. processed images
▸Two fog devices consume the same CPU resources on cut 

point 4&5

106

Equal Complexity Point

CutDevice 1 Device 2



Cut Points Affect Network Overhead

▸Put more computations on device 1 can reduce network 
overhead

107

CutDevice 1 Device 2



Low Virtualization Overhead
▸Setup: with and without Docker
▸Overhead from Docker

• Less than 5% 

108
No.



Low Communication Overhead
▸Setup: without Docker and distributed speedup
▸Overhead from distributed computing using TensorFlow

• 10% 

109

10%


