On Renewable Sensor Networks with Wireless Energy Transfer

Yi Shi and Liguang Xie and Y. Thomas Hou and Hanif D. Sherali (IEEE INFOCOM 2011)

Outline

- Introduction
- Problem description
- Optimal traveling path
- Results

Introduction (1/2)

- Envision employing a mobile vehicle (WCV) carrying a battery charging station to periodically visit each sensor node and charge it wirelessly.
- Introduce the concept of renewable energy cycle where the remaining energy level in a sensor node's battery exhibit some periodicity over a time cycle.

Introduction (2/2)

 Formulate an optimization problem, with the objective of maximizing the ratio of the WCV's vacation time (time spent at its home service station) over the cycle time

• Develop a provable near-optimal solution for any desired level of accuracy.

Problem description (1/8)

- A set of sensor nodes *N* distributed over a two-dimensional area.
- Sensor node has a battery capacity of E_{max}
- Denote E_{min} the minimum energy at a sensor node battery.
- Each sensor node i sensing data with rate R_i

Problem description (2/8)

- Denote f_{ij} the flow rate from sensor node i to sensor node j (b/s)
- Denote f_{iB} the flow rate from sensor node i to the base station B (b/s)
- Following flow balance constraint at each sensor node *i* :

$$\sum_{k\in\mathcal{N}}^{k\neq i} f_{ki} + R_i = \sum_{j\in\mathcal{N}}^{j\neq i} f_{ij} + f_{iB} \quad (i\in\mathcal{N}).$$
(1)

Problem description (3/8)

Energy consumption model

 $p_i = \rho \sum_{k \in \mathcal{N}}^{k \neq i} f_{ki} + \sum_{j \in \mathcal{N}}^{j \neq i} C_{ij} f_{ij} + C_{iB} f_{iB} \quad (i \in \mathcal{N}) ,$ (2)

- ρ is the rate of energy consumption for receiving a unit of data rate
- C_{ij} (or C_{iB}) is the rate of energy consumption for transmitting a unit of data rate from node i to node j (or the base station B)
- $C_{ij} = \beta_1 + \beta_2 D_{ij}^{\alpha}$, D_{ij} is the distance between nodes, β_1 and β_2 are constants, α is the path loss index

Problem description (4/8)

- The traveling speed of the WCV is V(m/s)
- At a sensor node i, it will spend a time of τ_i to charge the sensor node
- Denote *U* the energy transfer rate of the WCV
- After the WCV visits all the sensor nodes, it will return to its service station, call this resting period vacation time, denoted as τ_{vac}

Problem description (5/8)

Problem description (6/8)

- Denote $P = (\pi_0, \pi_1, \dots \pi_N, \pi_0)$ the path traversed by the WCV
- Denote a_i the arrival time of the WCV at sensor node i in the first renewable energy cycle: $a_{\pi_i} = \tau + \sum_{k=0}^{i-1} \frac{D_{\pi_k \pi_{k+1}}}{V} + \sum_{k=1}^{i-1} \tau_k$. (3)
- The cycle time τ can be written as $\tau = \tau_P + \tau_{vac} + \sum_{i \in N} \tau_i$. (4)

– Denote D_p the distance of path P, $\tau_p = \frac{D_p}{V}$

Problem description (7/8)

 During a renewable cycle, the amount of charged energy at a sensor node *i* during *τ_i* must be equal to the amount of energy consumed in the cycle:

$$\tau \cdot p_i = \tau_i \cdot U \quad (i \in \mathcal{N}) . \tag{5}$$

Problem description (8/8)

•
$$e_i(a_i) = E_i - (a_i - \tau)p_i \ge E_{\min}$$
.
• $E_i = e_i(2\tau) = e_i(a_i + \tau_i) - (2\tau - a_i - \tau_i)p_i$
 $= E_{\max} - (2\tau - a_i - \tau_i)p_i$. (6)

$$E_{\max} - (\tau - \tau_i) \cdot p_i \ge E_{\min} \quad (i \in \mathcal{N}) .$$
(7)

Optimal traveling path (1/6)

- Theorem 1: In an optimal solution with the maximal $\frac{\tau_{\text{vac}}}{\tau}$, the WCV must move along the shortest Hamiltonian cycle that crosses all the sensor nodes and the service station.
- Denote D_{TSP} as the total path distance in the shortest Hamiltonian cycle and $\tau_{TSP} = {}^{D_{TSP}}/_{V}$

•
$$\tau_{\text{TSP}} + \tau_{\text{vac}} + \sum_{i \in \mathcal{N}} \tau_i = \tau$$
 . (8)

Optimal traveling path (2/6)

- OPT
 - $\begin{array}{ll} \max & \frac{\tau_{\text{vac}}}{\tau} \\ s.t. & (1), (2), (5), (7), (8) \\ & f_{ij}, f_{iB}, \tau_i, \tau, \tau_{\text{vac}}, p_i \geq 0 \quad (i, j \in \mathcal{N}, i \neq j) \end{array}$
- This problem has both nonlinear objective $({^{\tau}vac}/_{\tau})$ and nonlinear terms $(\tau p_i \text{ and } \tau_i p_i)$ in constraints (5) and (7).

Optimal traveling path (3/6)

• For nonlinear objective τ_{vac}/τ :

$$\eta_{\rm vac} = \frac{\tau_{\rm vac}}{\tau} \ . \tag{9}$$

• For (8), divide both sides by τ :

$$\begin{aligned} \tau_{\text{TSP}} \cdot \frac{1}{\tau} + \eta_{\text{vac}} + \sum_{i \in \mathcal{N}} \frac{\tau_i}{\tau} &= 1\\ \eta_i = \frac{\tau_i}{\tau} \quad (i \in \mathcal{N}) , \qquad (10)\\ h = \frac{1}{\tau} . \qquad (11) \end{aligned}$$

$$h = \frac{1 - \sum_{i \in \mathcal{N}} \eta_i - \eta_{\text{vac}}}{\tau_{\text{TSP}}} .$$
 (12)

Optimal traveling path (4/6)

• OPT-R

Optimal traveling path (5/6)

• Piecewise Linear Approximation for η_i^2

Fig. 3. An illustration of piecewise linear approximation (with m = 4) for the curve $(\eta_i, \eta_i^2), 0 \le \eta_i \le 1$.

Optimal traveling path (6/6)

Construction of a Near-Optimal Solution

 Given a target performance gap ε.

 Let m = [√ (U τ_{TSP})/(4ε(E_{max} - E_{min}))].
 Solve problem OPT-L with m segments by CPLEX, and obtain its solution ψ̂ = (f̂_{ij}, f̂_{iB}, η̂_i, η̂_{vac}, ẑ_{ik}, λ̂_{ik}, ζ̂_i).
 Construct a feasible solution ψ̂ = (f_{ij}, f_{iB}, η_i, η_{vac}) for problem OPT-R by letting f_{ij} = f̂_{ij}, f_{iB} = f̂_{iB}, η_i = η̂_i and η_{vac} = min_{i∈N} {1 - Σ_{k∈N} η̂_k - U^τ_{TSP}/E_{max} - E_{min} · η̂_i · (1 - η̂_i)}.
 Obtain a near-optimal solution (f_{ij}, f_{iB}, τ, τ_i, τ_{vac}, p_i) to problem OPT by Algorithm 1.

Results (1/3)

- Simulation Settings
 - Consider a randomly generated WSN consisting of 50 nodes
 - Sensor nodes over a square area of 1 km \times 1 km
 - The traveling speed of the WCV is V = 5 m/s
 - Let E_{max} = 10.8 KJ , E_{min} = 5.4 KJ

− U= 5W

Results (2/3)

- In this optimal cycle, D_{TSP} =5821 m and τ_{TSP} =
- For the target $\epsilon = 0.01$, m = 4
- $\tau = 17.34$ hour, $\tau_{vac} = 1164.2$ sec and $\eta_{vac} = 77.51\%$

Results (3/3)

• There exists a bottleneck node in the network with its energy dropping to E_{min} during a renewable energy cycle

