
Eyal Zohar, Israel Cidon and Osnat Mokryn
SIGCOMM 2011

Outline
 Traffic Redundancy Elimination

 Introduction to PACK

 Algorithm

 Implementation and Evaluation

 Conclusion

 CacheQuery

Traffic Redundancy
 Traffic redundancy from transmitting similar data.

Traffic Redundancy Elimination
 Sender-based TRE

WAN link

Traffic Redundancy Elimination
 Sender-based TRE

 Middle Box

 EndRE (NSDI’ 10)

Enterprise Middlebox

Data Centers

Middlebox

Sender-based TRE
 Weakness

 Inefficient on mobile environment

 Computation cost on sender side

 Synchronization between sender and receiver

TRE Importance
 Service on cloud

 Higher traffic Higher cost

 Incentive to use TRE

Introduction - PACK
 Predictive ACK (PACK)

 Receiver-based end-to-end TRE

 Redundancy detection by the receiver

 Tries to match incoming chunks with a previously
received chain

 Send the predictions of future data to the sender

PACK - Receiver
 Chunk store

 Chunk

 Meta data : signature、hint、 pointer

1

1

1
1

1

PACK - Sender
 Compares the hint with the last-byte to sign

 Upon a hint match it performs the expensive SHA-1

1

1

1

1

Operations

1

Chunking Algorithm
 Choose chunk’s entrance point (anchor)

 8 bytes Mask

 48 bytes Window

 X-OR for each incoming byte

Optimizations
 Adaptive receiver virtual window

 Increase window size with each prediction success

 Reset window size while miss prediction

 Tradeoff between potential gain and recovery effort

Chunk

Data Stream

Chunk Chunk

hit miss hit

Chunk

Optimizations
 Hybrid Approach

 Less efficient if changes in the data are scattered

 Report dispersion to sender

 Start sender-driven operation if sender has enough
resource

 Smoothing function

 From 0 to 255 (long smooth)

 M : set to 0 while chain break, and 255 otherwise

Implementation
 Protocol is embedded in the TCP Options field

 Average chunk size : 8 KB

 Run on Linux with Netfilter Queue

 Additional overhead

 0.1% storage for meta-data

 0.15% bandwidth for predictions

Client CPU cost
 No-TRE avg. CPU : 7.85%

 PACK avg. CPU : 11.22%

Evaluation
 Traffic traces

 Video traces captured at a major ISP

 Traffic from a popular social network service

 Static data sets of real-life workloads

 Linux source

 Email

Evaluation – Video trace
 24 hours from ISP’s 10 Gbps router

 Filtered YouTube traffic, total 1.55 TB

 Total 40k clients

Evaluation – Video trace
 Users very often download the same video or parts

 30% end-to-end redundancy

Warm-up

Evaluation – Gmail
 Gmail account with 1,000 Inbox messages

 Found 32%static redundancy

 higher when messages are read multiple times

Estimated Cloud Cost
 YouTube traffic trace

 An array of such servers, for each

 Outputs up to 350 Mbps, 600 concurrent clients

 Control computation power between 0.25 and 0.5

 Amazon EC2

 Traffic : Server-hours cost ratio = 7 : 3

Conclusion
 Current TRE solutions may not reduce cloud cost

 Minimizes processing costs induced by TRE

 Suitable for server migration and client mobility

Weakness
 No receiver storage information

 PACK will cause to receiver maintains huge data

 Maybe give an example of resource-constrained
devices, such as mobile phones

 Less efficient caused by sporadic changes

 Assume sender send the same and long-term stream

 Like video, mail and linux kernel header

Problem Statement and Solution
 Increasing uplink rate in asymmetric communications

 by capitalizing the otherwise wasted downlink
bandwidth and/or receiver capability.

 Asymmetric Redundancy Elimination (CacheQuery)

 on top of TCP

 increases the uplink rate from multiple senders to one or
more receivers.

What We Consider ?
 Bandwidth asymmetric channels

Uplink

Low B/W

Sender

Downlink

High B/W
Receiver

Asymmetric

Communication

Channel

(Bandwidth)

What We Consider ?
 Capability asymmetric channels

Sensors

Smartphone Tablet

Heterogeneous Senders Receiver

· Faster CPU

· Larger memory

· Power line powered

· Slower CPU

· Smaller memory

· Battery powered

Asymmetric

Communication

Channel

(Capability)

CacheQuery Can be Deployed on

 two end-systems network proxy

CacheQuery
 Sender and receiver maintain their own scalable store

 The data store will be updated periodly

Sender Receiver

Simulation Result

[1] C. Trang, X. Huang, and C. Hsu, "Pushing uplink goodput of an asymmetric access
network beyond its uplink bandwidth," ICC’12

 Significant outperforms ListQuery [1], comparable to
CacheQuery

 Diverse goodput gain among traces and protocols
 Current traces are not sufficient for concrete conclusions

Future Work
 Collect trace file from NCTU dorm router to get more

concrete results

 Implement PACK

 compare performance in large files

Reference
 PACK slides (some figures)

 http://conferences.sigcomm.org/sigcomm/2011/slides/s
86.pdf

 Redundancy in Network Traffic: Findings and
Implications slides (some figures)

 https://pages.cs.wisc.edu/~ashok/re-meas.pptx

http://conferences.sigcomm.org/sigcomm/2011/slides/s86.pdf
http://conferences.sigcomm.org/sigcomm/2011/slides/s86.pdf
http://conferences.sigcomm.org/sigcomm/2011/slides/s86.pdf
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx

