
Eyal Zohar, Israel Cidon and Osnat Mokryn
SIGCOMM 2011

Outline
 Traffic Redundancy Elimination

 Introduction to PACK

 Algorithm

 Implementation and Evaluation

 Conclusion

 CacheQuery

Traffic Redundancy
 Traffic redundancy from transmitting similar data.

Traffic Redundancy Elimination
 Sender-based TRE

WAN link

Traffic Redundancy Elimination
 Sender-based TRE

 Middle Box

 EndRE (NSDI’ 10)

Enterprise Middlebox

Data Centers

Middlebox

Sender-based TRE
 Weakness

 Inefficient on mobile environment

 Computation cost on sender side

 Synchronization between sender and receiver

TRE Importance
 Service on cloud

 Higher traffic  Higher cost

 Incentive to use TRE

Introduction - PACK
 Predictive ACK (PACK)

 Receiver-based end-to-end TRE

 Redundancy detection by the receiver

 Tries to match incoming chunks with a previously
received chain

 Send the predictions of future data to the sender

PACK - Receiver
 Chunk store

 Chunk

 Meta data : signature、hint、 pointer

1

1

1
1

1

PACK - Sender
 Compares the hint with the last-byte to sign

 Upon a hint match it performs the expensive SHA-1

1

1

1

1

Operations

1

Chunking Algorithm
 Choose chunk’s entrance point (anchor)

 8 bytes Mask

 48 bytes Window

 X-OR for each incoming byte

Optimizations
 Adaptive receiver virtual window

 Increase window size with each prediction success

 Reset window size while miss prediction

 Tradeoff between potential gain and recovery effort

Chunk

Data Stream

Chunk Chunk

hit miss hit

Chunk

Optimizations
 Hybrid Approach

 Less efficient if changes in the data are scattered

 Report dispersion to sender

 Start sender-driven operation if sender has enough
resource

 Smoothing function

 From 0 to 255 (long smooth)

 M : set to 0 while chain break, and 255 otherwise

Implementation
 Protocol is embedded in the TCP Options field

 Average chunk size : 8 KB

 Run on Linux with Netfilter Queue

 Additional overhead

 0.1% storage for meta-data

 0.15% bandwidth for predictions

Client CPU cost
 No-TRE avg. CPU : 7.85%

 PACK avg. CPU : 11.22%

Evaluation
 Traffic traces

 Video traces captured at a major ISP

 Traffic from a popular social network service

 Static data sets of real-life workloads

 Linux source

 Email

Evaluation – Video trace
 24 hours from ISP’s 10 Gbps router

 Filtered YouTube traffic, total 1.55 TB

 Total 40k clients

Evaluation – Video trace
 Users very often download the same video or parts

 30% end-to-end redundancy

Warm-up

Evaluation – Gmail
 Gmail account with 1,000 Inbox messages

 Found 32%static redundancy

 higher when messages are read multiple times

Estimated Cloud Cost
 YouTube traffic trace

 An array of such servers, for each

 Outputs up to 350 Mbps, 600 concurrent clients

 Control computation power between 0.25 and 0.5

 Amazon EC2

 Traffic : Server-hours cost ratio = 7 : 3

Conclusion
 Current TRE solutions may not reduce cloud cost

 Minimizes processing costs induced by TRE

 Suitable for server migration and client mobility

Weakness
 No receiver storage information

 PACK will cause to receiver maintains huge data

 Maybe give an example of resource-constrained
devices, such as mobile phones

 Less efficient caused by sporadic changes

 Assume sender send the same and long-term stream

 Like video, mail and linux kernel header

Problem Statement and Solution
 Increasing uplink rate in asymmetric communications

 by capitalizing the otherwise wasted downlink
bandwidth and/or receiver capability.

 Asymmetric Redundancy Elimination (CacheQuery)

 on top of TCP

 increases the uplink rate from multiple senders to one or
more receivers.

What We Consider ?
 Bandwidth asymmetric channels

Uplink

Low B/W

Sender

Downlink

High B/W
Receiver

Asymmetric

Communication

Channel

(Bandwidth)

What We Consider ?
 Capability asymmetric channels

Sensors

Smartphone Tablet

Heterogeneous Senders Receiver

· Faster CPU

· Larger memory

· Power line powered

· Slower CPU

· Smaller memory

· Battery powered

Asymmetric

Communication

Channel

(Capability)

CacheQuery Can be Deployed on

 two end-systems  network proxy

CacheQuery
 Sender and receiver maintain their own scalable store

 The data store will be updated periodly

Sender Receiver

Simulation Result

[1] C. Trang, X. Huang, and C. Hsu, "Pushing uplink goodput of an asymmetric access
network beyond its uplink bandwidth," ICC’12

 Significant outperforms ListQuery [1], comparable to
CacheQuery

 Diverse goodput gain among traces and protocols
 Current traces are not sufficient for concrete conclusions

Future Work
 Collect trace file from NCTU dorm router to get more

concrete results

 Implement PACK

 compare performance in large files

Reference
 PACK slides (some figures)

 http://conferences.sigcomm.org/sigcomm/2011/slides/s
86.pdf

 Redundancy in Network Traffic: Findings and
Implications slides (some figures)

 https://pages.cs.wisc.edu/~ashok/re-meas.pptx

http://conferences.sigcomm.org/sigcomm/2011/slides/s86.pdf
http://conferences.sigcomm.org/sigcomm/2011/slides/s86.pdf
http://conferences.sigcomm.org/sigcomm/2011/slides/s86.pdf
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx
https://pages.cs.wisc.edu/~ashok/re-meas.pptx

