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Traffic Redundancy 
 Traffic redundancy from transmitting similar data. 



Traffic Redundancy Elimination 
 Sender-based TRE 

 

WAN link 



Traffic Redundancy Elimination 
 Sender-based TRE 

 Middle Box 

 EndRE ( NSDI’ 10 ) 

 
 
 
 
 
 
 
 
 
 

Enterprise Middlebox 

 
 
 
 
 

Data Centers 

Middlebox 



Sender-based TRE  
 Weakness 

 Inefficient on mobile environment 

 Computation cost on sender side 

 Synchronization between sender and receiver 

 

 

 



TRE Importance 
 Service on cloud  

 Higher traffic  Higher cost 

 Incentive to use TRE 

 



Introduction - PACK 
 Predictive ACK ( PACK ) 

 Receiver-based end-to-end TRE 

 Redundancy detection by the receiver 

 Tries to match incoming chunks with a previously 
received chain 

 Send the predictions of future data to the sender 

 



PACK - Receiver 
 Chunk store 

 Chunk 

 Meta data : signature、hint、 pointer 
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PACK - Sender 
 Compares the hint with the last-byte to sign 

 Upon a hint match it performs the expensive SHA-1 
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Operations 
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Chunking Algorithm 
 Choose chunk’s entrance point ( anchor ) 

 8 bytes Mask 

 48 bytes Window 

 X-OR for each incoming byte 

 



Optimizations 
 Adaptive receiver virtual window 

 Increase window size with each prediction success 

 Reset window size while miss prediction 

 Tradeoff between potential gain and recovery effort 

Chunk 
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Optimizations 
 Hybrid Approach 

 Less efficient if changes in the data are scattered 

 Report dispersion to sender 

 Start sender-driven operation if sender has enough 
resource 

 

 Smoothing function 

 From 0 to 255 ( long smooth )  

 M : set to 0 while chain break, and 255 otherwise 

 



Implementation 
 Protocol is embedded in the TCP Options field 

 Average chunk size : 8 KB 

 Run on Linux with Netfilter Queue 

 Additional overhead 

 0.1% storage for meta-data  

 0.15% bandwidth for predictions 

 

 



Client CPU cost 
 No-TRE avg. CPU : 7.85% 

 PACK avg. CPU : 11.22% 



Evaluation 
 Traffic traces 

 Video traces captured at a major ISP 

 Traffic from a popular social network service 

 Static data sets of real-life workloads 

 Linux source 

 Email 



Evaluation – Video trace 
 24 hours from ISP’s 10 Gbps router 

 Filtered YouTube traffic, total 1.55 TB 

 Total 40k clients 

 



Evaluation – Video trace 
 Users very often download the same video or parts 

 30% end-to-end redundancy 

Warm-up 



Evaluation – Gmail 
 Gmail account with 1,000 Inbox messages 

 Found 32%static redundancy  

 higher when messages are read multiple times 



Estimated Cloud Cost 
 YouTube traffic trace 

 An array of such servers, for each  

 Outputs up to 350 Mbps, 600 concurrent clients 

 Control computation power between 0.25 and 0.5 

 Amazon EC2 

 Traffic : Server-hours cost ratio = 7 : 3 



Conclusion 
 Current TRE solutions may not reduce cloud cost 

 Minimizes processing costs induced by TRE 

 Suitable for server migration and client mobility 

 



Weakness 
 No receiver storage information 

 PACK will cause to receiver maintains huge data 

 Maybe give an example of resource-constrained 
devices, such as mobile phones 

 Less efficient caused by sporadic changes 

 Assume sender send the same and long-term stream 

 Like video, mail and linux kernel header 

 



Problem Statement and Solution 
 Increasing uplink rate in asymmetric communications  

 by capitalizing the otherwise wasted downlink 
bandwidth and/or receiver capability. 

 

 Asymmetric Redundancy Elimination (CacheQuery) 

 on top of TCP 

 increases the uplink rate from multiple senders to one or 
more receivers. 



What We Consider ? 
 Bandwidth asymmetric channels 
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What We Consider ? 
 Capability asymmetric channels 
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CacheQuery Can be Deployed on  

 two end-systems  network proxy 



CacheQuery 
 Sender and receiver maintain their own scalable store 

  The data store will be updated periodly 

Sender Receiver 



Simulation Result 

[1] C. Trang, X. Huang, and C. Hsu, "Pushing uplink goodput of an asymmetric access 
network beyond its uplink bandwidth,"  ICC’12  

 Significant outperforms ListQuery [1], comparable to 
CacheQuery 

 Diverse goodput gain among traces and protocols 
 Current traces are not sufficient for concrete conclusions 

 



Future Work 
 Collect trace file from NCTU dorm router to get more 

concrete results 

 Implement PACK 

 compare performance in large files 
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