
Executing mobile application on
the cloud: Framework and issues

Shih-Hao Hung, Chi-Sheng Shih, Jeng-Peng Shieh,
Chen-Pang Lee, Yi-Hsiang Huang

Computer and Mathematics with Application 63 (2012)
 Ting-Yi Lin

Outline

• Introduction

• Related work

• A virtual environment for Android applications

• Probabilistically guaranteed communication

• Conclusions

Why design such system?

• Latest mobile devices are still constrained by
power consumption, speed of computation,
size of memory…

• Wireless network is more and more popular,
mobile device can overcome the constraints
by offloading to cloud server

Mobile cloud computing issues

• Application re-design and deployment

• Network condition and service availability

• Control of application

• Privacy of data

• Information security

To address aforementioned issues

• Proposed a framework for a user to create a virtualized
execution environment in the cloud for running mobile
applications

• Use Android’s state saving mechanism and categorized
the types of application data to decide on the necessity
and the priority for data synchronization

• The communication framework creates several virtual
network devices. Each device provides a specific QoS
guaranteed communication channel.

Outline

• Introduction

• Related work

• A virtual environment for Android applications

• Probabilistically guaranteed communication

• Conclusions

Android framework

Other related works

• Replay system
– deterministic replay

• Existing works does not addressed the need for offload
with a limited network bandwidth and control / privacy /
secure issues

• QoS guarantee
– RSVP: reservation for data flows along a data path
– IntServ: best-effort traffic model
– de Niz and Rajkumar: resource reservation model to support

real-time communication
– Design the framework that provides QoS on system level

Outline

• Introduction

• Related work

• A virtual environment for Android applications

• Probabilistically guaranteed communication

• Conclusions

Creating a virtual environment

1. Installing the agent program

2. Allocation of a delegate system

3. Setting up a virtual environment

4. Cloning of the operating environment

5. Migration of applications

6. Synchronization of application and user data

Migrating an application

• Traditional virtual machine-based scheme
needs to save and transfer the entire state of a
virtual machine.

• Transfer the state saved explicitly by the
OnPause() method and resume it on another
device by Onresume() method

Procedure of migrating an application

Android

app
Agent

Android.os.bundle

memory

savedInstanceState

(1) OnPause()

(2) Save states

(3) Inform agent

(4) Read states

(5) Transfer states
Android

app
Agent

Android.os.bundle

(6) Save states

memory

savedInstanceState

(7) Create AP

(8) OnResume()
(8) React states

Input event and application replay

• Many applications are organized in phases, and it
would be wise for such an application to save its state
in between the phases when the state is less.

• The work done by the user since the last checkpoint is
lost. Record/replay mechanism is used to replay the
input event from the checkpoint.

• Two types of event
– Non-deterministic: location, input data, time stamp(e.g.

keyboard input)
– Deterministic: none (e.g. reading a file)

How replay scheme work

• The application has to explicitly notify the agent about a pseudo
checkpoint.

• Pseudo checkpoint is simply a place holder which marks the location of
resumption without actually saving the state.

• The state is saved while OnPause function is called and it will resume from
the pseudo checkpoint.

• The agent suspends the application  save state  transfer state and
recorded input events  remote agent resume application  replay input
events  brings the application to the point of migration

• Developer should mark the pseudo checkpoints and identify the global
state in the program by inserting function calls to the
emphpseudo_checkpoint() function in the framework library.

Interactive applications

• Migrate the application back to the physical device to
obtain the input event and then migrate the application to
the virtualized environment.
– Work best when state is small

• Send only the UI window back to the physical device to

receive the input from the user via the agents.
– Significantly reduce network traffic but highly dependent on

display protocol and cannot be easily ported to another system.

• Display the UI window via an open remote display protocol

such as VNC.

Native code and performance

• Some Android applications are linked to
proprietary C or assembly functions for
performance reasons.

• For those application, we may execute them
via a processor emulator or find a server of
the same instruction set to run on.

Synchronizing data

• System image: for initializing a virtual machine

• System-wide data: refers to those files that record
system-wide information and/or would affect the
operations of the system and applications. E.g.
Libraries

• Application data: refers to the file owned by
applications.
– Apply lazy and on-demand policies to synchronize the data

upon the request of an application without keeping
applications data updated all the time

Security and privacy measures

• Use VPN to establish a private/secure tunnel

• Sensitive data can be encrypted

Performance evaluation

• Server CPU: Intel atom 1.6 GHz

• Mobile CPU: 528 MHz ARM

Case1: androidtorrent

• State size: 320 kB

• Take few seconds to send state via 3G network
to the cloud

• Migrate and resume in 3.8 seconds (without
temporal files)

Case2: face recognition

• Server CPU: i7-2600

• Mobile CPU: HTC desire

• WiFi

Outline

• Introduction

• Related work

• A virtual environment for Android applications

• Probabilistically guaranteed communication

• Conclusions

Virtual network device architecture

• Integrate different QoS services in a virtualized
execution framework

Virtualization layer VNIC1 VNIC2 VNIC3 VNIC4

Thread layer app1 app2

Outline

• Introduction

• Related work

• A virtual environment for Android applications

• Probabilistically guaranteed communication

• Conclusions

Done and to do

• Proposed techniques to address the issues
aforementioned

– Migration, QoS, privacy…

• The framework is still in progress

– Decide whether/when to offload

