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Why design such system? 

• Latest mobile devices are still constrained by 
power consumption, speed of computation, 
size of memory… 

 

• Wireless network is more and more popular, 
mobile device can overcome the constraints 
by offloading to cloud server 



Mobile cloud computing issues 

• Application re-design and deployment 

• Network condition and service availability 

• Control of application 

• Privacy of data 

• Information security 

 



To address aforementioned issues 

• Proposed a framework for a user to create a virtualized 
execution environment in the cloud for running mobile 
applications 

 

• Use Android’s state saving mechanism and categorized 
the types of application data to decide on the necessity 
and the priority for data synchronization 

 

• The communication framework creates several virtual 
network devices. Each device provides a specific QoS 
guaranteed communication channel. 
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Android framework 



Other related works 

• Replay system 
– deterministic replay 

 

• Existing works does not addressed the need for offload 
with a limited network bandwidth and control / privacy / 
secure issues 
 

• QoS guarantee 
– RSVP: reservation for data flows along a data path 
– IntServ: best-effort traffic model 
– de Niz and Rajkumar: resource reservation model to support 

real-time communication  
– Design the framework that provides QoS on system level 
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Creating a virtual environment 

1. Installing the agent program 

2. Allocation of a delegate system 

3. Setting up a virtual environment 

4. Cloning of the operating environment 

5. Migration of applications 

6. Synchronization of application and user data 



Migrating an application 

• Traditional virtual machine-based scheme 
needs to save and transfer the entire state of a 
virtual machine. 

 

• Transfer the state saved explicitly by the 
OnPause() method and resume it on another 
device by Onresume() method 



Procedure of migrating an application 
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Input event and application replay 

• Many applications are organized in phases, and it 
would be wise for such an application to save its state 
in between the phases when the state is less. 
 

• The work done by the user since the last checkpoint is 
lost. Record/replay mechanism is used to replay the 
input event from the checkpoint. 
 

• Two types of event 
– Non-deterministic: location, input data, time stamp(e.g. 

keyboard input) 
– Deterministic: none (e.g. reading a file)  

 



How replay scheme work 

• The application has to explicitly notify the agent about a pseudo 
checkpoint. 
 

• Pseudo checkpoint is simply a place holder which marks the location of 
resumption without actually saving the state. 
 

• The state is saved while OnPause function is called and it will resume from 
the pseudo checkpoint. 
 

• The agent suspends the application  save state  transfer state and 
recorded input events  remote agent resume application  replay input 
events  brings the application to the point of migration 
 

• Developer should mark the pseudo checkpoints and identify the global 
state in the program by inserting function calls to the 
emphpseudo_checkpoint() function in the framework library. 
 
 



Interactive applications 

• Migrate the application back to the physical device to 
obtain the input event and then migrate the application to 
the virtualized environment. 
– Work best when state is small 

 
• Send only the UI window back to the physical device to 

receive the input from the user via the agents. 
– Significantly reduce network traffic but highly dependent on 

display protocol and cannot be easily ported to another system.  

 
• Display the UI window via an open remote display protocol 

such as VNC. 



Native code and performance 

• Some Android applications are linked to 
proprietary C or assembly functions for 
performance reasons. 

 

• For those application, we may execute them 
via a processor emulator or find a server of 
the same instruction set to run on. 



Synchronizing data 

• System image: for initializing a virtual machine 
 

• System-wide data: refers to those files that record 
system-wide information and/or would affect the 
operations of the system and applications. E.g. 
Libraries 
 

• Application data: refers to the file owned by 
applications. 
– Apply lazy and on-demand policies to synchronize the data 

upon the request of an application without keeping 
applications data updated all the time 



Security and privacy measures 

• Use VPN to establish a private/secure tunnel 

• Sensitive data can be encrypted 



Performance evaluation 

• Server CPU: Intel atom 1.6 GHz 

• Mobile CPU: 528 MHz ARM 



Case1: androidtorrent 
 

• State size: 320 kB 

• Take few seconds to send state via 3G network 
to the cloud 

• Migrate and resume in 3.8 seconds (without 
temporal files) 



Case2: face recognition 

• Server CPU: i7-2600 

• Mobile CPU: HTC desire 

• WiFi 
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Virtual network device architecture 

• Integrate different QoS services in a virtualized 
execution framework 

Virtualization layer VNIC1 VNIC2 VNIC3 VNIC4 

Thread layer app1 app2 
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Done and to do 

• Proposed techniques to address the issues 
aforementioned 

– Migration, QoS, privacy… 

• The framework is still in progress  

– Decide whether/when to offload 


