
SDN-WISE: Design, prototyping
and experimentation of a
stateful SDN solution for

WIreless SEnsor networks
Laura Galluccio , Sebastiano Milardo†, Giacomo Morabito ,

Sergio Palazzo University of Catania, Catania, Italy

†CNIT Research Unit Catania, Catania, Italy

2015 IEEE Conference on Computer Communications (INFOCOM)

1

Introduction

• The reasons of the slow commercial take off of
WSNs
• WSNs are characterized by different requirements

depending on the specific application and deployment
scenario

• Make WSNs programmable
• Tightly related to the operating system, requiring the

application developers to focus on intensive low-level
details rather than on the application logic.

2

Introduction (cont.)

• SDN and OpenFlow have been recently proposed to
solve analogous issues in the wired domain

• [4], [5] are the works extend the SDN concepts to
WSNs and W-PANs, but still have some
shortcoming
• Protocol details

• No performance evaluations

• This paper overcome the above problems and
define a stateful SDN solution for WSNs called SDN-
WISE

3

[4] T. Luo, H.-P. Tan, and T. Q. S. Quek. Sensor OpenFlow: Enabling Software-Defined Wireless Sensor
Networks. IEEE Communications Letter. Vol. 16, No. 11, pp: 1896–1899. November 2012.
[5] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo. Software Defined Wireless Networks: Unbridling
SDNs. In Proc. of EWSDN 2012. October 2012.

Introduction

• SDN-WISE introduces a software layer, allows
several virtual networks to run on the same
physical wireless sensor or WPAN network

• Make sensor nodes programmable as finite state
machines
• Reduce the signaling between nodes and Controller

• SDN-WISE provides tools for running a real
Controller in an OMNeT++ simulated network

4

Related Work

• Differently from traditional OpenFlow, Sensor
OpenFlow supports in-network packet processing
and various types of addressing defined for WSNs
[4]

• Compared to Sensor OpenFlow, SDWN offers a
more flexible specification of the rules to classify
packets, i.e., flow matching can consider any part of
the packet, and supports the use of duty cycle to
achieve energy efficiency in WSNs [5]

5

SDN-WISE Overview

• WSNs are characterized by low capabilities in terms
of memory, processing, and energy availability

• Requirements different from wired networks
• Energy efficient - SDN-WISE support duty cycle and data

aggregation

• SDN-WISE nodes can handle packets based on the
content stored in their header and payload

• Packet classification can be done based more complex
relational operators such as higher than and different
from.

6

SDN-WISE Approach

• 3 data structures
• The WISE States Array

• The Accepted IDs Array

• The WISE Flow Table
• Matching Rules

• Best next hop towards the sink

7

SDN-WISE Protocol Stack
FWD: Forwarding
INPP: In-Network Packet Processing
TD: Topology Discovery

8

WISE Protocol Details -
Forwarding
• WISE packet header

• The Scope identifies a group of Controllers that have
expressed interest in the content of the packet

• flag U is used to mark packets that must be delivered to
the closest sink

5

Fig. 3: WISE flow table.

Fig. 2: WISE packet header

As shown in Figure 2, SDN-WISE packets have a fixed
header consisting of 10 bytes divided in the following fields:

• The Packet length field provides the length of the packet,
included the payload (if any), in bytes.

• The Scope identifies a group of Controllers that have
expressed interest in the content of the packet. The Scope
value is initially set to 0 (as default) but can be modified
through appropriate entries in the WISE flow table of
the sensor node generating the packet. In our current
implementation Scope values have global validity as the
WISE-Visor guarantees network-wide consistency.

• The Source and Destination Addresses obviously specify
the addresses (we use two bytes addresses in our imple-
mentation) of the node which has generated the packet
and the intended destination.

• The flag U is used to mark packets that must be delivered
to the closest sink.

• The Type of packet field is used to distinguish between
different types of messages in fact besides data packets,
TD packets and packets containing local topology infor-
mation, which we have already discussed, SDN-WISE
uses other types of packets for the request of a new
entry to the Controllers, for the introduction of a new
entry in the WISE flow table of a given sensor node, for
opening a path in a sequence of sensor nodes, and for
turning the wireless interface of a sensor node off for a
certain time interval. The type of packet will determine
the interpretation of the packet payload.

• The TTL is the time to live and is reduced by one at each
hop.

• Finally, the Next Hop ID is the field which must be
present in the Accepted IDs Array for the packet to be
further processed by the sensor node (as explained in

Section III-B).

The structure of the WISE flow table is shown in Figure 3
and extends the one proposed in [5].

Like in the OpenFlow case we can distinguish three sec-
tions: Matching Rules, Actions, and Statistics. The Matching
Rules specify up to three conditions. If such conditions are
satisfied then the corresponding Action is executed and the
information reported in the Statistics section is updated. Each
Matching Rule consists of a field (S) which specifies whether
the condition regards the current packet (S = 0) or the state
(S = 1); the fields Offset and Size specify the first byte and
the size, respectively, of the string of bytes in the packet or
the state which should be considered, the Operator field gives
the relational operator to be checked against the Value given
in the rule. For example, the second Matching Rule of the first
entry in the WISE flow table given in Figure 3 is satisfied if
the first 2 bytes (Size = 2) after byte 10 (Offset = 10) of the
current packet (S=0) assume a value which is higher (Op =
“> ”) than xT h r (Value = xT h r).

If all the conditions specified in the Matching Rules section
are satisfied (if Size = 0 then the Matching Rule is not
considered), then the corresponding Action is executed. An
Action is specified by five fields. The Type specifies the
type of action. Possible values of the Type field can be
“Forward to”, “Drop”, “Modify”, “Send to INPP”, “Turn off
radio”. The flag M specifies whether the entry is exclusive
(M = 0) or not (M = 1). In the first case, if the conditions
are satisfied, the sensor node executes the action and then
stops browsing the WISE flow table. In the second case,
instead, after executing the action, the sensor node continues
to browse the WISE flow table and executes other actions if
the corresponding conditions specified in the Matching Rules
section are satisfied.

The meaning of the other two fields (i.e., Offset and Value)
depend on the type of action. For example, if the action is
“Forward to”they must specify which is the Next Hop ID
(which will be written in the packet), if it is “Drop”they
give the drop probability as well as the next hop ID in case
the packet is not dropped, if it is “Modify”they specify the
Offset and the new Value to be written, if it is “Send to INPP”
they specify they type of processing that must be executed, if
it is “Turn off radio”they specify after how much time the
radio must be turned on again.

In case the action is “Modify”, the flag S specifies whether

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

517

9

5

Fig. 3: WISE flow table.

Fig. 2: WISE packet header

As shown in Figure 2, SDN-WISE packets have a fixed
header consisting of 10 bytes divided in the following fields:

• The Packet length field provides the length of the packet,
included the payload (if any), in bytes.

• The Scope identifies a group of Controllers that have
expressed interest in the content of the packet. The Scope
value is initially set to 0 (as default) but can be modified
through appropriate entries in the WISE flow table of
the sensor node generating the packet. In our current
implementation Scope values have global validity as the
WISE-Visor guarantees network-wide consistency.

• The Source and Destination Addresses obviously specify
the addresses (we use two bytes addresses in our imple-
mentation) of the node which has generated the packet
and the intended destination.

• The flag U is used to mark packets that must be delivered
to the closest sink.

• The Type of packet field is used to distinguish between
different types of messages in fact besides data packets,
TD packets and packets containing local topology infor-
mation, which we have already discussed, SDN-WISE
uses other types of packets for the request of a new
entry to the Controllers, for the introduction of a new
entry in the WISE flow table of a given sensor node, for
opening a path in a sequence of sensor nodes, and for
turning the wireless interface of a sensor node off for a
certain time interval. The type of packet will determine
the interpretation of the packet payload.

• The TTL is the time to live and is reduced by one at each
hop.

• Finally, the Next Hop ID is the field which must be
present in the Accepted IDs Array for the packet to be
further processed by the sensor node (as explained in

Section III-B).

The structure of the WISE flow table is shown in Figure 3
and extends the one proposed in [5].

Like in the OpenFlow case we can distinguish three sec-
tions: Matching Rules, Actions, and Statistics. The Matching
Rules specify up to three conditions. If such conditions are
satisfied then the corresponding Action is executed and the
information reported in the Statistics section is updated. Each
Matching Rule consists of a field (S) which specifies whether
the condition regards the current packet (S = 0) or the state
(S = 1); the fields Offset and Size specify the first byte and
the size, respectively, of the string of bytes in the packet or
the state which should be considered, the Operator field gives
the relational operator to be checked against the Value given
in the rule. For example, the second Matching Rule of the first
entry in the WISE flow table given in Figure 3 is satisfied if
the first 2 bytes (Size = 2) after byte 10 (Offset = 10) of the
current packet (S=0) assume a value which is higher (Op =
“> ”) than xT h r (Value = xT h r).

If all the conditions specified in the Matching Rules section
are satisfied (if Size = 0 then the Matching Rule is not
considered), then the corresponding Action is executed. An
Action is specified by five fields. The Type specifies the
type of action. Possible values of the Type field can be
“Forward to”, “Drop”, “Modify”, “Send to INPP”, “Turn off
radio”. The flag M specifies whether the entry is exclusive
(M = 0) or not (M = 1). In the first case, if the conditions
are satisfied, the sensor node executes the action and then
stops browsing the WISE flow table. In the second case,
instead, after executing the action, the sensor node continues
to browse the WISE flow table and executes other actions if
the corresponding conditions specified in the Matching Rules
section are satisfied.

The meaning of the other two fields (i.e., Offset and Value)
depend on the type of action. For example, if the action is
“Forward to”they must specify which is the Next Hop ID
(which will be written in the packet), if it is “Drop”they
give the drop probability as well as the next hop ID in case
the packet is not dropped, if it is “Modify”they specify the
Offset and the new Value to be written, if it is “Send to INPP”
they specify they type of processing that must be executed, if
it is “Turn off radio”they specify after how much time the
radio must be turned on again.

In case the action is “Modify”, the flag S specifies whether

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

517

WISE Flow Table

• Matching Rules,
• Up to 3 conditions of Matching Rules

• S=0: the packet regards to the current packet, S=1:
regards to the state

• Operator field gives the relational operator to be
checked against the Value

10

5

Fig. 3: WISE flow table.

Fig. 2: WISE packet header

As shown in Figure 2, SDN-WISE packets have a fixed
header consisting of 10 bytes divided in the following fields:

• The Packet length field provides the length of the packet,
included the payload (if any), in bytes.

• The Scope identifies a group of Controllers that have
expressed interest in the content of the packet. The Scope
value is initially set to 0 (as default) but can be modified
through appropriate entries in the WISE flow table of
the sensor node generating the packet. In our current
implementation Scope values have global validity as the
WISE-Visor guarantees network-wide consistency.

• The Source and Destination Addresses obviously specify
the addresses (we use two bytes addresses in our imple-
mentation) of the node which has generated the packet
and the intended destination.

• The flag U is used to mark packets that must be delivered
to the closest sink.

• The Type of packet field is used to distinguish between
different types of messages in fact besides data packets,
TD packets and packets containing local topology infor-
mation, which we have already discussed, SDN-WISE
uses other types of packets for the request of a new
entry to the Controllers, for the introduction of a new
entry in the WISE flow table of a given sensor node, for
opening a path in a sequence of sensor nodes, and for
turning the wireless interface of a sensor node off for a
certain time interval. The type of packet will determine
the interpretation of the packet payload.

• The TTL is the time to live and is reduced by one at each
hop.

• Finally, the Next Hop ID is the field which must be
present in the Accepted IDs Array for the packet to be
further processed by the sensor node (as explained in

Section III-B).

The structure of the WISE flow table is shown in Figure 3
and extends the one proposed in [5].

Like in the OpenFlow case we can distinguish three sec-
tions: Matching Rules, Actions, and Statistics. The Matching
Rules specify up to three conditions. If such conditions are
satisfied then the corresponding Action is executed and the
information reported in the Statistics section is updated. Each
Matching Rule consists of a field (S) which specifies whether
the condition regards the current packet (S = 0) or the state
(S = 1); the fields Offset and Size specify the first byte and
the size, respectively, of the string of bytes in the packet or
the state which should be considered, the Operator field gives
the relational operator to be checked against the Value given
in the rule. For example, the second Matching Rule of the first
entry in the WISE flow table given in Figure 3 is satisfied if
the first 2 bytes (Size = 2) after byte 10 (Offset = 10) of the
current packet (S=0) assume a value which is higher (Op =
“> ”) than xT h r (Value = xT h r).

If all the conditions specified in the Matching Rules section
are satisfied (if Size = 0 then the Matching Rule is not
considered), then the corresponding Action is executed. An
Action is specified by five fields. The Type specifies the
type of action. Possible values of the Type field can be
“Forward to”, “Drop”, “Modify”, “Send to INPP”, “Turn off
radio”. The flag M specifies whether the entry is exclusive
(M = 0) or not (M = 1). In the first case, if the conditions
are satisfied, the sensor node executes the action and then
stops browsing the WISE flow table. In the second case,
instead, after executing the action, the sensor node continues
to browse the WISE flow table and executes other actions if
the corresponding conditions specified in the Matching Rules
section are satisfied.

The meaning of the other two fields (i.e., Offset and Value)
depend on the type of action. For example, if the action is
“Forward to”they must specify which is the Next Hop ID
(which will be written in the packet), if it is “Drop”they
give the drop probability as well as the next hop ID in case
the packet is not dropped, if it is “Modify”they specify the
Offset and the new Value to be written, if it is “Send to INPP”
they specify they type of processing that must be executed, if
it is “Turn off radio”they specify after how much time the
radio must be turned on again.

In case the action is “Modify”, the flag S specifies whether

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

517

WISE Flow Table (cont.)

• Actions
• Type field can be “Forward to”, “Drop”, “Modify”, “Send to INPP”,

“Turn off radio”
• M specifies whether the entry is exclusive (M = 0) or not (M = 1)
• The field of Addr. and Value depend on the type of action
• S: in case of “Modify”, specifies whether executed on the packet or

the state.

• Statistics
• Same as OpenFlow

11

An Example

12

6

!

"

$ %&' ()

Fig. 4: Exemplary topology.

Fig. 5: Finite state machine implementing a policy such that
packets generated by A are dropped if the last data measured
by B is lower than (or equal to) xT h r .

the action must be executed on the packet or the state.
Statistics are used like in standard OpenFlow and thus, we

do not discuss them further in this paper.
In the following we will show how sensor nodes use

their data structures in an exemplary scenario highlighting
the specific features of SDN-WISE. Consider the network
topology shown in Figure 4 and suppose that data measured by
sensor A is significant only if the data measured by sensor B

is higher than a given threshold xT h r . Therefore, if we pursue
energy efficiency a network policy should be implemented that
enforces node C to drop packets if the packet received by B

contains a measured data lower than xT h r . Using traditional
OpenFlow-like solutions it is impossible to enforce the above
behavior for the following reasons:

• matching is executed only verifying the equivalence be-
tween a field in the packet header and a specific value,
i.e., it is not possible to look at the payload and “higher
than”-type relationships are not supported;

• in stateless solutions it is impossible to make the handling
of the packet dependent on the content of another packet.

Instead, in SDN-WISE the above policy can be easily realized
through the finite state machine represented in Figure 5 which
can be implemented through the five WISE flow table entries
shown in Figure 3. In fact, the first two lines specify the
transitions between states 0 and 1 and viceversa, depending on
the value contained in the 10th byte of the packets generated
by node B . More specifically, note that in the first entry the
first Matching Rule selects packets coming from node B, the
second Matching Rule selects those that have in the tenth
and eleventh bytes a value higher than xT h r , finally the third
Matching Rule selects the cases in which the current state of
the node is 0. If all the above rules are satisfied then the state
is set to 1 as shown in the Action section. Analogously, the
second entry selects the cases in which the incoming packet
has been generated by B contains a measured data lower than
or equal to xT h r , and the current state is one; and in such cases
sets the state to 0. The third entry in the table is executed any
time a packet generated by B is received and specifies that

the packet must be forwarded to D in any case. Finally, the
fourth and fifth entry specify that packets coming from A must
be dropped if the current state is 0 (see the fourth entry) or
forwarded to D if the current state is 1 (see the fifth entry).

V. PROTOTYPE AND TESTBED

In our testbed we used EMB-Z2530PA based sensor nodes.
EMB-Z2530PA is a wireless module developed by Embit for
LR-WPAN applications. The module provides IEEE 802.15.4
wireless connectivity in the 2.4 GHz ISM band. It is based
on a Texas Instruments CC2530 single chip device which is
an 8051 8-bit controller. Each node is equipped with 8kB of
RAM and 256 kB of Flash memory 40 kB of which are used
for MAC layer (TIMAC for CC2530 v1.4.0) and 10 kB are
used for the SDN-WISE protocol.

For what concerns the Control plane, our prototype supports
different deployment options. The simplest is the one depicted
in Figure 6(a), in which the node hosting the sink is attached to
the desktop computer using USB 2.0. In our testbed the WISE-
Visor as well as the Controllers are hosted in this desktop
computer which is equipped with Intel(R) Core(TM) 2 CPU
2.40 GHz and 4GB of RAM running Windows 7, 32 bit. The
Controllers have been implemented using Java 7. Topology
information is stored in a JGraphT’s Graph object.

The above deployment option requires the presence of a
node (the PC) with significant computational resources in the
area where the sensor nodes are deployed.

In several scenarios, however, it is not possible to deploy
such powerful nodes in the network area. In these cases,
the sink is usually attached to an embedded system that
access the Internet through some communication interface. For
example, in the experimental testbed represented in Figure
6(b), the sink is a TI CC2500 device attached via USB to
a Beagleboard running a Linux operating system (Ububtu
12.04). The Adaptation layer is implemented in the Beagle-
board which sends control packets to the WISE-Visor on a
remote server. In our testbed the Beagleboard is equipped
with an UMTS interface (the smartphone in Figure 6(b))
and communication between the Adaptation and WISE-Visor
occurs through TCP/IP connections.

The Controllers may be hosted by other PCs (or virtual
machines) and interact with the WISE-Visor layer in several
ways. In our testbed we support both SOAP and RMI inter-
action models.

Finally, simulations modeling the behavior of the sensor
nodes and the sinks can be executed on another PC. In Figure 7
we show a screenshot from an OMNeT++ simulation showing
the topology of the simulated sensor network. Node 0 is
the sink and interacts through the Adaptation module with
a real instance of the WISE-Visor. Accordingly, Controllers 1
and 2 can be real controllers determining the policies which
are applied by the simulated sensor nodes. In addition, the
(emulated) Sink can be used to create a virtual network
extension so that simulated and real nodes are fully integrated
and can interact with each others. This can be useful for testing
a real network scenario in which there are not enough real
devices. In this case only one Controller is used for both nodes

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

518

Prototype and Testbed

• Sensor nodes: EMB-Z2530PA is a wireless module
developed by Embit for LR-WPAN applications

13

7

(a) Simplest deployment option.

! !
!" " " #$%&'() '* #+, -. ,

/01234

" 5 678878#09: ;75
/<8=>;=;1?2#@?A#A7=B#27;C?A34

DE+0#E?875

!" #$%" $#

07AF7A
/G !0" HI 1: ?A4

07AF7A
/J ?2;A?BB7A#(4

07AF7A
/J ?2;A?BB7A#&4

&' ()!(

. E !

0K<L

*

*

* *

*

+$" , - %.
/ - 0$,

&' ()!(

(b) Distributed deployment option.

Fig. 6: SDN-WISE deployment options.

! !

! "# $%&'()
! "* +

! " #$%#%&' (
)' *+, &- . /#%' *

0 12345&, ' *
67

! " #$%#%&' (
)' *+*8#/+(' " 8

6' +2&(9

, - * ' . - %%(. /0 , - * ' . - %%(. /1

Fig. 7: Integration with the OMNeT++ simulator.

(real and simulated) and it treats all of them without making
any distinction.

VI. PERFORMANCE EVALUATION

Due to space constraints we will omit the results obtained by
using OMNeT++ simulations. Instead, in this section we will
illustrate the results obtained by the SDN-WISE platform in
a physical testbed. More specifically, 6 nodes (5 sensor nodes
and a sink) have been deployed as shown in Figure 8. In our
experiments the sink was connected via USB to a PC which
was running the Adaptation layer and the entire Control plane
functionality, like shown in Figure 6(a). Finally, the Controller
has been implemented in Java and simply executes the Dijkstra
algorithm.

In each measurement campaign 5000 data packets have been
sent, each every 15 seconds. Different payload sizes have been
considered for such packets (10, 20 and 30 bytes). Also, we
have changed the time interval, T , between two consecutive
generations of TD packets. In each campaign we have set
the time interval between the transmissions of local topology
information to twice the value of T .

In the following we show the performance achieved by
SDN-WISE in terms of

• Round Trip Time (RTT), that is, the time interval between
the generation of a data packet and the reception of the

Fig. 8: Nodes deployment.

corresponding acknowledgment;
• Efficiency, measured as the ratio between the number of

payload bytes received by the intended destinations and
the overall number of bytes circulating in the network;

• Controller response time, measured as the duration of the
time interval when the Controller receives a request for a
new entry and the time instant when the Controller sends
the corresponding entry.

In Figures 9(a) and 9(b) we represent the Cumulative
Distribution Functions (CDF) of the RTT when the distance
between the packet source and the packet destination is equal
to 3 and 5, respectively. In each figure we represent three
curves obtained for different values of the payload size (10,
20, and 30 bytes). As expected, RTT increases as the distance
and the payload increase. Furthermore, we expect a similar
behavior from the standard deviation. Indeed, this is reflected
in Figures 10 and 11 where we show the average and the
standard deviation of the RTT vs. the payload size for different
values of the distance between source and destination.

In Figures 10 and 11 we plot a curve for the multicast case,
as well. This has been obtained by measuring the time instant
between the transmission of a packet and the reception of the
acknowledgement from the last destination. In this case, only
three destinations were considered and were deployed within
the radio range of the source. Obviously, the average and the
standard deviations of the RTT is slightly higher than in the
analogous (one hop) unicast case. The corresponding CDFs
are represented in Figure 12.

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

519

A Distributed Deployment

14

7

(a) Simplest deployment option.

! !
!" " " #$%&'() '* #+, -. ,

/01234

" 5 678878#09: ;75
/<8=>;=;1?2#@?A#A7=B#27;C?A34

DE+0#E?875

!" #$%" $#

07AF7A
/G !0" HI 1: ?A4

07AF7A
/J ?2;A?BB7A#(4

07AF7A
/J ?2;A?BB7A#&4

&' ()!(

. E !

0K<L

*

*

* *

*

+$" , - %.
/ - 0$,

&' ()!(

(b) Distributed deployment option.

Fig. 6: SDN-WISE deployment options.

! !

! "# $%&'()
! "* +

! " #$%#%&' (
)' *+, &- . /#%' *

0 12345&, ' *
67

! " #$%#%&' (
)' *+*8#/+(' " 8

6' +2&(9

, - * ' . - %%(. /0 , - * ' . - %%(. /1

Fig. 7: Integration with the OMNeT++ simulator.

(real and simulated) and it treats all of them without making
any distinction.

VI. PERFORMANCE EVALUATION

Due to space constraints we will omit the results obtained by
using OMNeT++ simulations. Instead, in this section we will
illustrate the results obtained by the SDN-WISE platform in
a physical testbed. More specifically, 6 nodes (5 sensor nodes
and a sink) have been deployed as shown in Figure 8. In our
experiments the sink was connected via USB to a PC which
was running the Adaptation layer and the entire Control plane
functionality, like shown in Figure 6(a). Finally, the Controller
has been implemented in Java and simply executes the Dijkstra
algorithm.

In each measurement campaign 5000 data packets have been
sent, each every 15 seconds. Different payload sizes have been
considered for such packets (10, 20 and 30 bytes). Also, we
have changed the time interval, T , between two consecutive
generations of TD packets. In each campaign we have set
the time interval between the transmissions of local topology
information to twice the value of T .

In the following we show the performance achieved by
SDN-WISE in terms of

• Round Trip Time (RTT), that is, the time interval between
the generation of a data packet and the reception of the

Fig. 8: Nodes deployment.

corresponding acknowledgment;
• Efficiency, measured as the ratio between the number of

payload bytes received by the intended destinations and
the overall number of bytes circulating in the network;

• Controller response time, measured as the duration of the
time interval when the Controller receives a request for a
new entry and the time instant when the Controller sends
the corresponding entry.

In Figures 9(a) and 9(b) we represent the Cumulative
Distribution Functions (CDF) of the RTT when the distance
between the packet source and the packet destination is equal
to 3 and 5, respectively. In each figure we represent three
curves obtained for different values of the payload size (10,
20, and 30 bytes). As expected, RTT increases as the distance
and the payload increase. Furthermore, we expect a similar
behavior from the standard deviation. Indeed, this is reflected
in Figures 10 and 11 where we show the average and the
standard deviation of the RTT vs. the payload size for different
values of the distance between source and destination.

In Figures 10 and 11 we plot a curve for the multicast case,
as well. This has been obtained by measuring the time instant
between the transmission of a packet and the reception of the
acknowledgement from the last destination. In this case, only
three destinations were considered and were deployed within
the radio range of the source. Obviously, the average and the
standard deviations of the RTT is slightly higher than in the
analogous (one hop) unicast case. The corresponding CDFs
are represented in Figure 12.

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

519

Performance Evaluation

• Testbed setup
• 6 nodes (5 sensor nodes and a sink)

• In each measurement campaign 5000 data packets have
been sent, each every 15 seconds

• Different payload sizes have been considered for such
packets (10, 20 and 30 bytes)

15

7

(a) Simplest deployment option.

! !
!" " " #$%&'() '* #+, -. ,

/01234

" 5 678878#09: ;75
/<8=>;=;1?2#@?A#A7=B#27;C?A34

DE+0#E?875

!" #$%" $#

07AF7A
/G !0" HI 1: ?A4

07AF7A
/J?2;A?BB7A#(4

07AF7A
/J?2;A?BB7A#&4

&' ()!(

. E !

0K<L

*

*

* *

*

+$" , - %.
/ - 0$,

&' ()!(

(b) Distributed deployment option.

Fig. 6: SDN-WISE deployment options.

! !

! "# $%&'()
! "* +

! " #$%#%&' (
)' *+, &- . /#%' *

0 12345&, ' *
67

! " #$%#%&' (
)' *+*8#/+(' " 8

6' +2&(9

, - * ' . - %%(. /0 , - * ' . - %%(. /1

Fig. 7: Integration with the OMNeT++ simulator.

(real and simulated) and it treats all of them without making
any distinction.

VI. PERFORMANCE EVALUATION

Due to space constraints we will omit the results obtained by
using OMNeT++ simulations. Instead, in this section we will
illustrate the results obtained by the SDN-WISE platform in
a physical testbed. More specifically, 6 nodes (5 sensor nodes
and a sink) have been deployed as shown in Figure 8. In our
experiments the sink was connected via USB to a PC which
was running the Adaptation layer and the entire Control plane
functionality, like shown in Figure 6(a). Finally, the Controller
has been implemented in Java and simply executes the Dijkstra
algorithm.

In each measurement campaign 5000 data packets have been
sent, each every 15 seconds. Different payload sizes have been
considered for such packets (10, 20 and 30 bytes). Also, we
have changed the time interval, T , between two consecutive
generations of TD packets. In each campaign we have set
the time interval between the transmissions of local topology
information to twice the value of T .

In the following we show the performance achieved by
SDN-WISE in terms of

• Round Trip Time (RTT), that is, the time interval between
the generation of a data packet and the reception of the

Fig. 8: Nodes deployment.

corresponding acknowledgment;
• Efficiency, measured as the ratio between the number of

payload bytes received by the intended destinations and
the overall number of bytes circulating in the network;

• Controller response time, measured as the duration of the
time interval when the Controller receives a request for a
new entry and the time instant when the Controller sends
the corresponding entry.

In Figures 9(a) and 9(b) we represent the Cumulative

Distribution Functions (CDF) of the RTT when the distance
between the packet source and the packet destination is equal
to 3 and 5, respectively. In each figure we represent three
curves obtained for different values of the payload size (10,
20, and 30 bytes). As expected, RTT increases as the distance
and the payload increase. Furthermore, we expect a similar
behavior from the standard deviation. Indeed, this is reflected
in Figures 10 and 11 where we show the average and the
standard deviation of the RTT vs. the payload size for different
values of the distance between source and destination.

In Figures 10 and 11 we plot a curve for the multicast case,
as well. This has been obtained by measuring the time instant
between the transmission of a packet and the reception of the
acknowledgement from the last destination. In this case, only
three destinations were considered and were deployed within
the radio range of the source. Obviously, the average and the
standard deviations of the RTT is slightly higher than in the
analogous (one hop) unicast case. The corresponding CDFs
are represented in Figure 12.

2015 IEEE Confe rence on Compute r Communica tions (INFOCOM)

519

Performance Metrics

• Round Trip Time (RTT)
• the time interval between the generation of a data

packet and the acknowledgment

• Efficiency
• the ratio between the number of payload bytes received

by the destinations and the overall number of bytes
circulating in the network

• Controller response time
• the duration from the Controller receives a request to

send the corresponding entry

16

Result - RTT

• CDF of RTT in different payload

• RTT increases as the distance and the payload
increase

17

Result - Efficiency

• The efficiency vs. the payload size for different values of the
interval between consecutive transmissions of the TD
packets, T

18
Most of the inefficiency is due to the high ratio between the header size and the payload size

Result – Controller Response Time

• Simulate the process of request generation by the
nodes modeling a network consisting of 50, 60, and
70 nodes

19

Conclusion

• SDN-WISE is stateful and aimed at reducing the
amount of information exchanged between sensors
and SDN controllers

• Details on the SDN-WISE protocol stack are
provided as well as results obtained from extensive
measures in a physical testbed

20

Future Work

• Make the SDN-WISE network resilient to intentional
attacks and bugs in the Controller software

• Network coding in SDN-WISE

21

