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Introduction

- Accurate activity recognition 18 challenging because human activity 1s
complex and highly diverse.

- Each human complex activity has more than one subactivity, called
atomic activity

- They propose Context-Driven Activity Theory (CDAT) using Markov
chains and probabilistic analysis to recognize complex activity.



Challenge

- Complex activities can have a different sequence each time they
performed.

- There arises a need to assimilate these atomic activities and context
activities performed by the user.

- They need to minimize the amount of training data required as well as
the precess of 1ts annotation.



Contributions

- They use their novel Context-Driven Activity Theory (CDAT) to
build complex activities definitions and develop a mechanism which
combines domain knowledge and activity data collected from real-life
experimentation.

- They discover complex activity signatures for different users and
assoclations between atomic activities, context, and complex activities
using Markov chains and probabilistic analysis.



Context-Driven Activity Theory

1. Atomic Activity and Complex Activity definitions

- Atomic activity: Atomic activity, A, 1s defined as a unit-level
activity which cannot be broken down further

- Context attribute: A context attribute 1s defined as any type of data
at time t that is used to infer an activity or a situation. It s

represented as . C;
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Fig.2. Anexample complex activity which can be performed in two different ways: Instance 1 and Instance 2.
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Context-Driven Activity Theory

2. Context and atomic activity reasoning to infer complex activities

- Each complex activity has a set of atomic activities, v A, and a set of
context, 0 C,as mentioned in the previous definitions

Table Il. Complex Activity Examples

Core
}/A T, TE,
and Ag, Ag, T: Tirange

CAp (04,) yA (wg),) pC (wgh,) pC | Cs | Cg | (minutes) | (minutes)
Cooking Ag: walking (0.10), Cs: kitchen (0.19), Ag, Cy, | =Cq, | 07:06, 10-20
omelette Ay: standing (0.10), | Cr: kitchen light Ao, Ajg, Ag, 07:22, 16
for Ay fridge (0.05), on (0.12), Ajg, As, | °Cys
breakfast Aig: eggs (0.10), C14: stove on Ao1, | Ao,
in kitchen Ag1: frypan (0.10), (0.19), =C14: stove | Ajj, Ags
(0.59) Ag: vegetable on (0.19), Ags,

drawer (0.07), —C7: kitchen light Ag

Aj7: slicer (0.10), on (0.12), and

Ajq: salt (0.10), -(Cy: kitchen Co,

Ags: whisker (0.08), | (0.19) Cr, ZN wAi + ZN wCi

A10: knife (0.10), C14 1=1 " CA; 1=1 "YCA,;

Ag: plate: (0.10) Cl)CAk o
Preparing Ag: walking (0.25), Cy: kitchen (0.3), Ag, 2
coffee in Ag: standing (0.25), | Cq: kitchen light A,
office Ago: coffee mug on (0.3), Ags, T
kitchen (0.25), Ags: coffee —C7: kitchen light | Agss, WCA - ﬂ_}c A
(0.65) machine (0.25) on (0.13), Cs k— k

-Cy: kitchen
036 o




Discovering Activity Signatures and Genera

- Complex activity definitions are created by finding the associations between
each atomic activity and 1ts corresponding parent complex activity.

1. Associations between atomic and complex activities for different users.

- The associations involve the calculation of individual probabilities of start,
end and other atomic activities for a complex activity

- Then the atomic activities whose values are equal to or higher than the
required threshold are used for creating the activity definition for the
respective complex activity



C .

Discovering Activity Sic \
2. Associations between different atomic
P?'((Xl, X2: . X::) — (xl, X2y «an xf) | Xl — xl) — pxlxgpxgxg e p:!:;_l:r,;' (3)

- Associations between atomic activities involves the calculation of
conditional probabilities and transition probabilities (pij) for
different pairs of atomic activities within each complex activity.

- Then they used Markov chains for discovering these associations
between pairs of atomic activities for a complex activity



Discovering Activity Signatures and Genera

3. Discovering complex activity signatures of users

- Based on the previous probability calculations, they build complex
activity signatures for each complex activity corresponding to
individual users.

- the complex activity signature for CA 1s A3 — A2 — A5 — AlS
—> A3 —> A2 —> A2] > A3 —=> A2 — A6 —> A3 —> A2 — AlT —
A23 — A23— Al0— A21 — A9

- They use Markov chains to discover activity signatures by
calculating the path probabilities for each complex activity.
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Complex Activity Recognition Algorithm

ALGORITHM 2: Complex Activity Recognition after Probabilistic Analysis and Discovered
Complex Activity Signatures
Input: A;,C;, S;.
Output: CA;.
Initialization:
findStartAtomicActivity(A4;, C;);
check for current situation S; ;
findComplexActivitiesList(S;)
foreach (CA;) do

if A, == Ag then

| add(CAjss «— CA; = (YA, pC, Ag, Ag,Cs, Cg, T1)

end
end
return CAj;: ;
findComplexActivity(4;, C;)
12 foreach (CA;,; «<— CA;) do
13 while timecounter < Tfm‘zﬁ do
14 if (A; == element in y A; then
15 ‘ add A, — yA; and recalculate wgquusing recomputed weights
16 end
17 if (C; == element in pC; then
18 | add C; — pC; and recalculate ng&k using recomputed weights
19 end
20 end
21 if ((Ag, Cg found for CA;) and (pC;andy A; are complete and wcy, > ngkand complex
activity signature matched)) then
22 | foundCA,

23 end
24 return CA; ;

25 end

W =30 Ot s N -
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Experimentation and Results Validation

- They 1nitially consider two subjects for the duration of 21 days, with an

average of 8 hours daily. The experiments were performed from 8:00 am to
12:00 pm and from 2:30 pm to 9:30 pm.

- They 1dentified 16 complex activities and used their CDAT to define them.

- They gave their subjects an Android phone to record the activities manually,
which involved adding a count for each occurrence of a complex activity in
the corresponding hour.

- Users were asked to keep the record simply for establishing the ground truth,
which enabled them to measure the accuracy of their algorithm.
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Experimentation and Results Validation
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Fig. 6. Atomic activity and context attribute probabilities for eight complex activities from Table V.
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Atomic Activity A; Description
Ay Sitting
Ao Standing
As Walking
Ay Running
As Fridge
Ag Vegetable_Drawer
Aq Vegetable_Basket
Ag Freezer
Ag Plate
Ajp Knife
Aqq Salt
Asp Pepper
Ajs Seasoning
Ay Oven
Az Pizza_Tray




Experimentation and Results Validation
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Table Ill. Complex Activity Signatures for User 1

Experimentation and Results Validation

Complex Activity Complex Activity
Signature with Atomic Signature with Path Probability
Complex Activity CAp Activities y A; Context pC; (Y &) (pC;)
Makmg Sandwich CA1 143 —> A2 - A20 - A3 e d CQ - C7 - —107 —> (085) (087)
Ay > A5 > Ajg —> Ag > | —Cy
A3 > Ay — A7 — A7 —
A = Ap > A
Maklng Omelette CA2 A3 - A2 - Aa e d AlS g 02 —> C7 e d Cl4 - (081) (084)
A3 - Ag - A9y > A3 —» | ~C14—C7 — —Cy
Ay — Ag — Az — A —
A17 - A23 e A23 o
A — Ag1 > Ay
Makmg Pizza CA3 A3 —> A2 —> Ag — A3 — CQ - C7 — 014 - (082) (0.95)
Ay > Ay - A5 > A3 » | =C14—C7 - —Cs
Ay - Ay > Ag — A3 —
Ay > A7 — Ay —> Agg —
Az - Ay > Ay > A3 —
A2 - A19 e A13 —
Ay > Ap - A
Getting Ready CA4 A3 —> A2 —> A25 —> A24 — C4 —> Cg —> C3 - (067) (060)
A3—>A2—)A26—>A3—> Cg—)ﬁCg—)C‘;—)
A2—)A27—>A3—)A2—> ﬂCg—)—‘C4
Agg
Eating Breakfast CA5 Al - A29 - Ag — A30 - C(; —> Cu e ﬂCu —> (095) (098)
Agy — Agp —-Cg
Preparing Coffee CAg Az - Ay — Azp —> A3z — | Co - C7 — =Cq7 — (0.98) (1.0)
Asz —Cy
Drinking Coffee CA4 A - Ay Cio (1.0) (1.0)
Watching Videos CAg A1 —> A36 — A37 —> —\A37 013 (095) (10)
Laundry CAQ A38 - A3 e d A2 —> Azs o C4 —> Cg - Cg - (073) (068)
Az - Ag — Ay — Az — Cg - —-Cg —> Cy —
A2—>A27—>A3—>A2—> C7—>ﬁC7—)C4—)
Agsg —Cy
Cleaning Kitchen CA; Ay — Ay = Ay — Ay Cy — Cp —» =Cq — (0.75) (0.84)
“CZ
Eating Dinner CA1; A — Agg - Ag — Az = | Cg — C11 » —-C11 — (0.80) (0.85)
Ayz > Ay —> Ags —Cg
Working on Ay — Ay — Azg — Cis (0.67) (0.95)
Presentation CAis Ay - —Aug
Working on Document Al > Ayp > Agg — Cis (0.55) (0.98)
CAj3 Agg - —Agg
Searching the Internet Ay — Ay — Azg — Cis (0.57) (0.85)
CAyy Agg > —Ayg
Jogging in the Gym Ay — Aso — —Axo Cis (0.85) (0.95)
CAi1s
Gomg to Work CAIG A51 - A3 Cl - C19 - 012 (1.0) (1.0)
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Experimentation and Results Validation
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Fig. 8. Complex activity recognition accuracy: (1) CDAT from Section 6.1 as “Before,” (2) updated CDAT
from Section 6.3 as “After,” (3) decision trees (J48), and (4) naive Bayes (NB).
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Experimentation and Results Validation
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Fig. 10. (a): Training data used for atomic activities and complex activities for decision trees (J48), naive
Bayes (NB), and CDAT (Before and After). (b): Average percentage of time for inferring complex activities
for CDAT (Before) and CDAT (After).
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Conclusions

- They use probabilistic analysis and Markov chains to discover
complex activity signatures, assign weights to atomic activities, and
update complex activity definitions within their CDAT

- Their average accuracy 1s higher than another machine learning
algorithmes.

- They are able to reduce the amount of training data, atomic activities
and context attributes used.
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