
GrapH: Heterogeneity-Aware
Graph Computation

with Adaptive Partitioning
Christian Mayer, Muhammad Adnan Tariq, Chen Li, Kurt Rothermel

Institute of Parallel and Distributed Systems, University of Stuttgart, Germany

2016 IEEE 36th International Conference on Distributed Computing Systems

Partition graph with vertex-cut

m1

m2
m3

Motivation

• Many high-effect Vertex-centric graph processing systems use graph
partitioning algorithms assuming:

• uniform vertex traffic exchanged between graph vertices

• homogeneous underlying network costs.

• However, in real-world scenarios:

• vertex traffic and network costs are heterogeneous.

 suboptimal partitioning decisions and inefficient graph
processing.

Motivation: Traffic- & network-aware vertex-cut

Distributed vertex computation model

• organized in iterations

• three phases, Gather, Apply and Scatter (GAS), in each iteration.

Gather

𝑀𝑣

Scatter

𝑀𝑣

Apply

𝑀𝑣

Vertex Traffic

Goal

1. (Mainly) Optimal dynamic assignment of edges to machines
minimizing overall communication costs:

2. Machine load Lm(i), the summed vertex traffic, is bounded by a
small balancing factor λ > 1:

Dynamic Assignment

Load of machine m

Hardness

• Dynamic network- and traffic-aware partitioning problem is

NP-hard.

⸪ the reduce problem: Network- and traffic-unaware partitioning
problem is NP-hard

is NP-hard

is NP-hard

Solution

Consist two phases:

• H-load:

• a partitioning algorithm for pre-partitioning the graph

• H-move:

• a dynamic algorithm for runtime refinement using migration of edges.

H-load

Consist two phases:

1. Group partitions into c clusters and map edges to partitions such that
replicas preferentially lie in the same cluster

Each edge (u, v) is assigned to a partition p as follows:

1) If no replica of u or v on any partition

 assign (u, v) to the least loaded partition.

2) If exist partitions containing replicas of u and v

 assign (u, v) to the least loaded of those partitions.

3) Otherwise, choose partition p such that the new replica preferentially lies in
the same cluster as already existing replicas.

H-load

2. Find a good mapping of partitions to machines

Use iterated local search algorithm to greedily minimize (communication) costs.

1) Initially, partitions are randomly mapped to machines.

2) Then iteratively the following method:

a) Find two machines, if an exchange of partition assignments would lower total
communication costs.

b) If an improvement is found, it is applied immediately.

c) Perturb a local optimal solution by randomly exchanging two assignments to avoid
convergence to local minima.

H-move

• Idea:

• Each machine locally migrate bag-of-edges (in parallel) after each GAS
iteration.

• bag-of-edges is the set of edges to be migrated.

• Finally, if no further improvements can be performed, migration is switched
off.

H-move - Migration algorithm

H-move - Determining the bag-of-edges

Evaluation - setup

• To get the graph in real world, implemented the three graph algorithms:
• PageRank, denoted as PR

• compared migration strategies with static vertex-cut partitioning
approaches:
• hashing of edges (Hash) and PowerGraph (PG).

• Implemented GrapH in the Java programming language

• GrapH consists of a master machine and multiple client machines

• The master receives a sequence of graph processing queries q1, q2,
q3, ... consisting of user specified GAS algorithms.

• All machines communicate directly via TCP/IP.

• Use two computing clusters with homogeneous and heterogeneous
network costs.

Evaluation - Setup

• The homogeneous computing cluster (ComputeC) consists of 12
machines, each with 8 cores (3.0GHZ) and 32GB RAM,
interconnected with 1 Gbps ethernet.

• The heterogeneous computing cluster (CloudC) is deployed in the
Amazon cloud using 8 geographically distributed EC2 instances (1
virtual CPU with 3.3 GHz and 1 GB RAM) that are distributed across
two regions, US East (Virginia) and EU (Frankfurt), and four different
availability zones. .

• As network costs between these instances, we used the real monetary
costs charged by Amazon (Tab. I).

Evaluation - Communication costs

Evaluation - Communication costs

Evaluation – Load balancing

Conclusion

• Modern graph processing systems use vertex-cut partitioning methods
assume:

• uniform vertex traffic

• homogeneous network costs

• GrapH considers

• dynamic vertex traffic

• diverse network costs

By adaptively minimizing communication costs of the vertex-cut at runtime.

• Evaluation show that GrapH outperforms PowerGraph’s vertex-cut
partitioning algorithm by more than 60% communication costs.

do not hold for many real-world applications.

