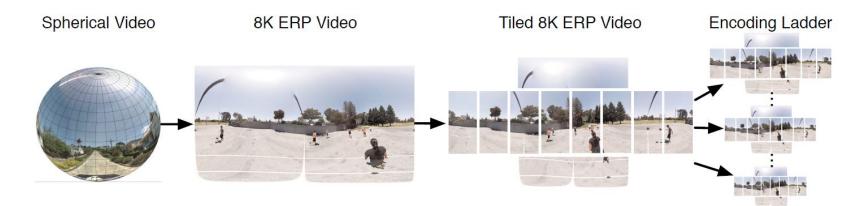
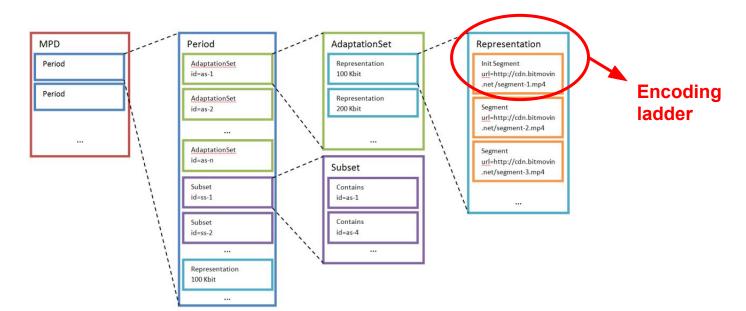
Estimation of cost-optimal encoding ladders for tiled 360-degree videos in adaptive streaming systems

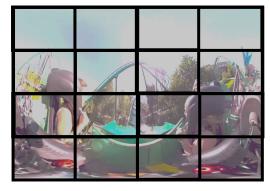

Cagri Ozcinar, Ana De Abreu, Sebastian Knorr, and Aljosa Smolic Trinity College Dublin (TCD), Dublin 2, Ireland.

Outline

- Introduction
- Problem to be solved
- Proposed system model
 - Classification of the content type
 - Distortion modeling
 - Cost modeling
 - Problem formulation
- Evaluation
- Conclusion

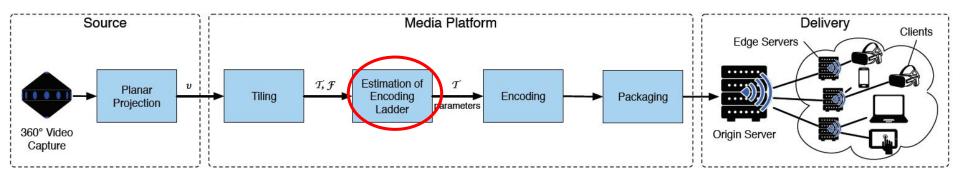
Introduction


- Streaming 360-degree video is challenging
- It is very high resolution, such as 4K, 8K equi-rectangular projection (ERP) or higher
- We only stream the user's field of view using tile-based encoding and adaptive streaming (DASH)



What do people usually do?

- ERP
- Tile-based encoding


Problem to be solved

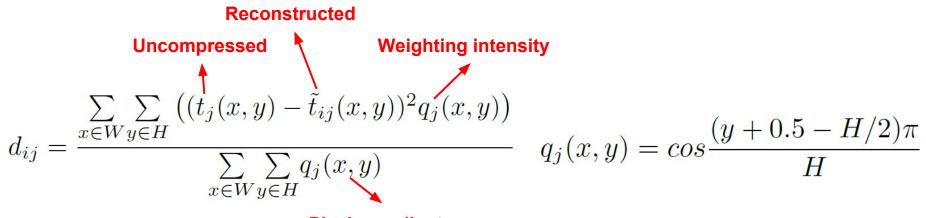
- Most recent work focused on the client's perspective without considering the service providers' perspective
- Client's perspective: end-users' latency, bandwidth, distortion, QoE
- **Provider's** perspective: computation cost and storage utilization

Estimation method of cost-optimal encoding ladders in adaptive streaming systems by considering both the provider's and client's perspective for tiled 360 video streaming

Proposed system

- Estimation of Encoding ladder contains 4 major components:
 - Classification of the content type
 - Distortion modeling
 - Cost modeling
 - Problem formulation
- Minimize the service provider's resource costs while providing high quality 360° video streaming experience (distortion)

Classification of the content type

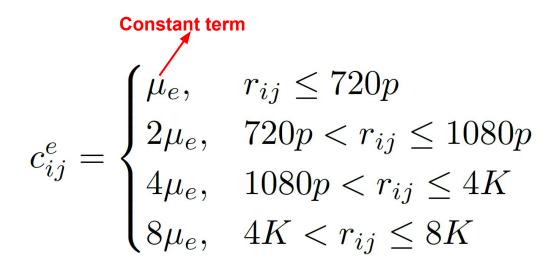

• Spatial complexity and temporal complexity

$$\mathcal{F} = \{f_{spa}, f_{tmp}\}$$

- 2-pass constant rate factor (CRF) encoding, which has the QPs slightly varied across the time based on the scene complexity, action, and motion
- The average size of I- and P- frames can be used to determine the complexity features
- Content type: o1, o2, and o3 (simple->complex)

Distortion modeling

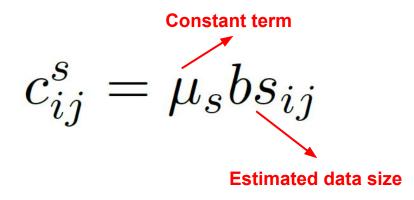
- Spherical distortion (spherical content onto the planar surface)
- Weighted-to-spherically uniform mean square error (WS-MSE) [1]
- The noise power for the i-th representation of the j-th tile



Pixel coordinate

[1] JVET, "AHG8: WS-PSNR for 360 video objective quality evaluation," Tech. Rep. JVET-D0040, JTC1/SC29/WG11, ISO/IEC, Chengdu, CN, Oct. 2016.

Cost modeling - Encoding cost


- Encoding cost ce can be described for the j-th tile of the i-th representation
- The cost calculation model used by the Amazon cloud service [2]

[2] Amazon webservices, "Amazon elastic transcoder pricing, "https://aws.amazon.com/elastictranscoder/pricing/, Jul 2017

Cost modeling - Storage cost

- Linear cost model
- The storage cost for the j-th tile of the i-th representation

Problem formulation

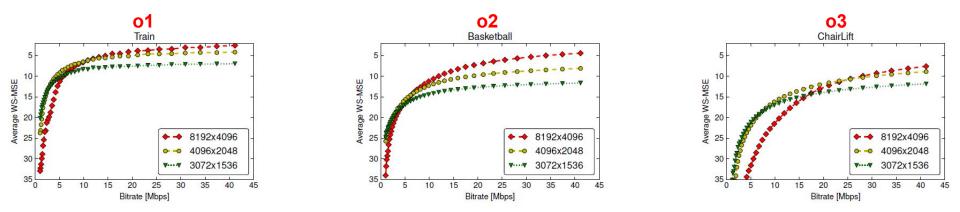
- To minimize both the total spherical distortion and the total resource cost
- Constraints
 - **Bandwidth**, a set of given network bandwidth profiles {P} Ο
 - **Computational and storage costs**, limitations for the encoding and storage costs 0
 - **Encoding rate**, the bitrate levels of the representations 0

$$\mathcal{L}^* : \operatorname{argmin}_{\mathcal{L}} \sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} (\gamma c_i + (1 - \gamma) d_i) a_{ip}$$

Pre-defined constant [0,1] Decision variable {0,1}

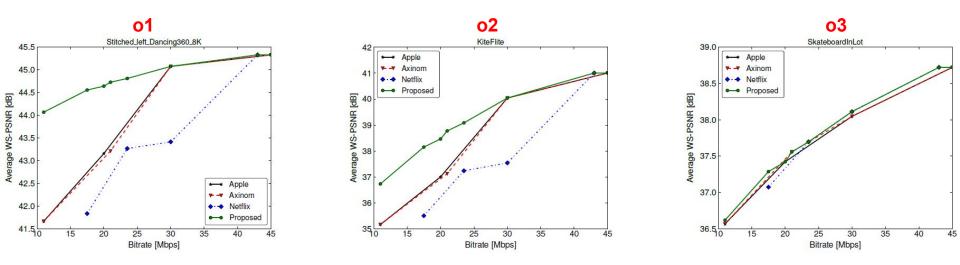
Evaluation settings

Ар	ple [15]	Axir	10m [21]	Netflix [16]		
Z (Mbps)	$W \times H$	Z (Mbps)	$W \times H$	Z (Mbps)	$W \times H$	
45	8192×4096	45	8192×4096	43	8192×4096	
30	8192×4096	30	8192×4096	30	4096×2048	
20	4096×2048	21	4096×2048	23.5	4096×2048	
11	3072 × 1536	12	3072×1536	17.5	3072 × 1536	


- Eight 8Kx4K resolution 360° ERP video test sequences
 - V = {Train, Stitched left Dancing360 8K, Basketball, KiteFlite, ChairLift, SkateboardInLot}
- Each video was split into N = 10 tiles
- Content type = {O} = {01, 02, 03}
- Resolution = {G} = {g1, g2, g3} = {3072x1536, 4096x2048, 8192x4096}
- Bandwidth = {P} = {p1, p2, p3, p4}

Sequence	f_{spa}	f_{tmp}	\mathcal{O}
Train	234	0.501	
Stitched_left_Dancing360_8K	313	0.501	01
Basketball	1167	0.502	0.5
KiteFlite	1547	0.502	o_2
ChairLift	2842	0.502	00
SkateboardInLot	3977	0.502	03

Evaluation results


• WS-MSE versus bitrate (in Mbps) performance

- Each content type has various content dependencies for each encoding resolution and bitrate
- The lowest complex encoding features, achieves a low distortion score
- High-resolution version has a higher sensitivity for unpredictable motions, which requires further residuals to avoid visual distortions

Evaluation results

- RD performance gain
 - Proposed method considerably increases the objective video quality (i.e., WS-PSNR) [1]
 - High bitrate savings between 10-30 Mbps bandwidth ranges for the content types o1 and o2

[1] JVET, "AHG8: WS-PSNR for 360 video objective quality evaluation," Tech. Rep. JVET-D0040, JTC1/SC29/WG11, ISO/IEC, Chengdu, CN, Oct. 2016.

Evaluation results (cont.)

- Bjøntegaard metric [1] (BD-rate)
- A negative BD-rate indicates a decrease of bitrate at the same quality
- Proposed method provides considerable bitrate savings compared to the recommended encoding ladders at the same bitrates.

Sequence v	Streaming vendor						
sequence 0	Apple	Axinom	Netflix				
Stitched_left_Dancing360_8K	-4.838	-7.070	-1.102				
KiteFlite	-13.937	-20.395	-68.299				
SkateboardInLot	-1.659	-1.094	-1.144				

 Table 5: BD-rate saving (%) of the proposed method.

[1] G. Bjøtegaard, "Calculation of average PSNR differences between RD-curves (vceg-m33)," Tech. Rep. M16090, VCEG Meeting (ITUT SG16 Q.6), Austin, Texas, USA,, Apr 2001

Evaluation results (cont.)

• Content type o1 increases its encoding resolution and decreases its target encoding rate

 $\mathcal{L}^* : \operatorname{argmin}_{\mathcal{L}} \sum_{i \in \mathcal{L}} \sum_{p \in \mathcal{P}} \left(\gamma c_i + (1 - \gamma) d_i \right) a_{ip}$

- Content type o3, decreases both its encoding resolution and target encoding rate
- Resolution = {G} = {g1,g2,g3} = {3072x1536, 4096x2048, 8192x4096}

Securation of							Rep	resentation i				1.000	
Sequence v		1	2	3	4	5	6	7	8	9	10	11	12
	0.0	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.15)$	$(g_1, 3.8)$	$(g_1, 4.6)$	$(g_1, 5.6)$	$(g_2, 10.84)$	$(g_2, 13.11)$	$(g_2, 15.87)$	$(g_2, 28.11)$	$(g_3, 34.01)$	$(g_3, 41.15)$
Stitched_left_Dancing360_8K	0.1	$(g_2, 1.34)$	$(g_2, 1.61)$	$(g_2, 1.95)$	$(g_2, 2.60)$	$(g_3, 3.14)$	$(g_3, 3.80)$	$(g_3, 6.12)$	$(g_3, 7.40)$	$(g_3, 8.96)$	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.5	$(g_2, 1.00)$	$(g_2, 1.21)$	$(g_2, 1.47)$	$(g_2, 2.36)$	$(g_3, 2.86)$	$(g_3, 3.46)$	$(g_3, 6.12)$	$(g_3, 7.40)$	$(g_3, 8.96)$	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.0	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_2, 2.15)$	$(g_2, 3.80)$	$(g_2, 4.60)$	$(g_3, 5.56)$	$(g_3, 10.84)$	$(g_3, 13.11)$	$(g_3, 15.87)$	$(g_3, 28.11)$	$(g_3, 34.01)$	$(g_3, 41.15)$
KiteFlite	0.1	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_2, 2.15)$	$(g_2, 3.80)$	$(g_2, 4.60)$	$(g_3, 5.56)$	$(g_3, 6.73)$	$(g_3, 8.14)$	$(g_3, 9.85)$	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
	0.5	$(g_1, 1.00)$	$(g_1, 1.21)$	$(g_1, 1.47)$	$(g_2, 2.36)$	$(g_2, 2.86)$	$(g_2, 3.46)$	$(g_3, 6.12)$	$(g_3, 7.40)$	$(g_3, 8.96)$	$(g_3, 17.45)$	$(g_3, 21.12)$	$(g_3, 25.55)$
SkateboardInLot	0.0	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.15)$	$(g_1, 3.80)$	$(g_1, 4.60)$	$(g_1, 5.56)$	$(g_2, 10.84)$	$(g_2, 13.11)$	$(g_2, 15.87)$	$(g_2, 28.11)$	$(g_3, 34.01)$	$(g_3, 41.15)$
	0.1	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.15)$	$(g_1, 2.86)$	$(g_1, 3.46)$	$(g_1, 4.18)$	$(g_1, 6.12)$	$(g_1, 7.40)$	$(g_1, 8.96)$	$(g_1, 17.45)$	$(g_2, 21.12)$	$(g_2, 25.55)$
	0.5	$(g_1, 1.21)$	$(g_1, 1.47)$	$(g_1, 1.78)$	$(g_1, 2.36)$	$(g_1, 2.86)$	$(g_1, 3.46)$	$(g_1, 6.12)$	$(g_1, 7.40)$	(g ₁ ,8.96)	$(g_2, 17.45)$	$(g_2, 21.12)$	$(g_2, 25.55)$

Table 6: Results of the proposed encoding ladder estimation for $\gamma = 0$, $\gamma = 0.1$ and $\gamma = 0.5$.

Conclusion

- A novel encoding ladder estimation method for tiled 360 video streaming systems, considering both the provider's and client's perspectives
- Proposed method provides cost-optimal and enhanced video streaming experiences for VR end-users

Sequence v	$\Delta \cos$	st (%)	Δ distortion (%)			
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 0.1$	$\gamma = 0.5$		
Stitched_left_Dancing360_8K	37.463	39.683	-13.628	-42.914		
KiteFlite	33.165	39.206	-9.564	-25.326		
SkateboardInLot	37.214	38.884	-8.977	-15.26		

Table 7: Total cost saving and distortion gain with respect to $\gamma=0.0$.