
Incremental Deployment and Migration
of Geo-DistributedSituation Awareness
Applications in the Fog
Enrique Saurez, Kirak Hong, DaveLillethun, Umakishore RamachandranGeorgia Institute of
TechnologyAtlanta, GA, USA
Beate OttenwälderyInstitute of Parallel and Distributed SystemsUniversity of Stuttgart, Stuttgart, Germany
 In Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems (pp.
258-269). ACM.

Motivation and Goal
▸ A shift from the Information Age to the IntelligenceAge
• Situation awareness applications
• Geo-distributed, latency-sensitive, data intensive, involve

heavy-duty processing, run 24/7
‣ Cloud Computing —> Fog Computing
• Computing model offered by the cloud platforms should be

extended to the edge of the network and the resources should
become location-aware

‣ Fog Computing has to be augmented with the right distributed
programming model

2

Foglets
▸ Facilitates distributed programming across the resource

continuum from the sensors to the cloud
• Provide a high-level programming model that simplifies

development on a large number of heterogeneous devices
distributed over a wide area

• Provide an execution environment that enables incremental
and flexible provisioning of resources from the sensors to
the cloud

3

Four Main Functionalities
‣ Automatically discovers fog computing resources and deploys

application components onto the fog computing resources
commensurate with the latency requirements

‣ Supports multi-application collocation on any compute node.
‣ Provides communication APIs for components of the

application to communicate with one another to exchange
application state

‣ Supports both latency- and workload-driven resource
adaptation and state migration over space (geographic)

4

System Assumptions
▸ A computational continuum that includes sensors and sensor

platforms
▸ Physical devices are placed at different levels of the network

hierarchy from the edge to the core network and associated with a
certain geophysical location

▸ Physical devices called fog computing nodes are placed in the
network infrastructure

▸ The fog provides a programming interface that allows managing
on-demand computing instances

▸ Each computing instance has certain system resource capacities
such as CPU speed, number of cores, memory size, and storage
capacity

5

System Assumptions

6

Application Model
▸ Each process performs application- specific tasks such as

sensing and aggregation with respect to its location and level in
the network hierarchy

▸ A connection between two processes indicates a
communication path allowed through the Foglets
communication API

▸ Each Foglet process handles the workload for a certain
geospatial region

7

API (communication)
▸ Foglets, application code consists of a set of event handlers that

the application must implement and a set of functions that
applications can call
• Hierarchical communication API
• Communication between application components
• Stores application–specific data in a local object store called

the spatio-temporal object store

8

Communication API

9

API (applications)
▸ Once the code is written, an application developer compiles the

code to generate a Foglet process image that can be deployed
• Manage the application using the management interfaces

provided by Foglets
• Foglets uses several parameter to find appropriate computing

resources for hosting application components (star_app)
- appkey
- Region
- Level
- Capacity
- QoS,

10

Design Space Exploration
▸ Hosting Application Components
• Virtual Machines
• Containers

▸ Selection Strategies for Migration
• Ensuring end-to-end latency restrictions and reducing the

network utilization by planning the migration ahead of time
• Using a Lyapunov optimization
• Regarding the error bounds on the costs of hosting and

migration

11

Foglets Runtime
▸ Discovery Server
• Maintains a list of fog nodes available for hosting application

components
▸ Docker Registry Server
• Contains the binaries for the applications that have been

launched on the Foglets infrastructure
▸ Entry Point Daemon
• Started on each non-leaf fog node at system boot time
• Awaits requests from the immediately lower level in the fog

hierarchy to host a parent for a child
▸ Worker Process

12

Launching an Application
▸ Example
• Surveillance application needing three levels of hierarchy

‣ 2-step Process
• Writes the application logic for each of detector, face

recognizer, and aggregator, as well as the handlers for each
of the three levels

• Creates the binary images for each of the application
component, and registers the appkey and the images with the
Docker registry server

13

Launching an Application
▸ Foglets runtime will ensure that Fog computing resources at

the different levels are up in the region specified by the
application

▸ Registry server will retrieve the detector process image from its
key-value store and start up worker processes to host the
detector on all the cameras in the region specified

▸ Neither the resources nor the worker processes for the upper-
tiers are provisioned for this application at the time of launch

14

Discovery and Deployment Protocol
▸ Discovery
• Finding the fog computing nodes (matching the capacity

constraints) at the right level of the computational hierarchy
▸ Deployment
• Spinning up a Docker container in a fog node to run a

Worker process

15

Discovery and Deployment Protocol
▸ Child node executes a 2-phase join protocol to choose a parent

from the list which obtained form Discovery server
▸ Each of the candidate parents sends back a response with their

node-id (n) and state (s)
• READY - DEPLOYED (RD)
- Join protocol is called

• READY (R)
- Choose the best candidate node from the set of READY nodes

to deploy a container hosting the application component
• BUSY (B)
- Reinitialized with a bigger geo-graphical area

16

Join Protocol
▸ The child chooses the best candidate

bc, which is geographically close to it
to send a join message per the
following equation:

▸ Such an incremental application
deployment ensures highly adaptive
and elastic resource utilization driven
by application dynamics and QoS
needs from the edge of the network

17

Migration
▸ Migration of an application component from one fog node to

another (at the same level, usually the edge nodes close to the
sensors)

▸ Two reasons
• Meeting QoS expectations
• Load balancing considerations

▸ Two aspects with respect to migration
• Computation Migration (volatile state)
• State Migration (persistent data)

18

Migration
▸ QoS-driven Migration
• Proactive Migration
• Reactive Migration

▸ Workload-driven Migration
• Foglets runtime uses the stats provided by the EntryPoint

daemon to make migration decisions if it finds the fog node
is overloaded

19

Implementation Details
▸ Operating system Ubuntu 12.04
▸ Communication protocols are implemented using the ZMQ
▸ The Foglets implementation uses docker containers and

RocksDB
▸ Emulate 16 fog nodes

20

Bringing up Foglets System
▸ The Foglets base Docker image (containing the runtime for the

API calls, the communication libraries, and the Worker process
to run the application) is built on top of the Ubuntu official
docker image

21

Evaluation

22

Evaluation

23

Evaluation

24

Evaluation

25

Conclusion
▸ Situation awareness applications are emerging as important

drivers of the IoT infrastructure
▸ Fog computing is a good utility computing model to cater to

the edge computing needs of situational awareness applications
▸ Proposed a programming infrastructure for the computational

continuum extending from the sensors to the cloud called
Foglets

26

