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Introduction
▸ Motivation 
• Data stream processing (DSP) in fog computing 
• Extract the useful information from raw data to improve 

urban services 
‣ Challenges 
• Network and system heterogeneity 
• Dynamic geographic distribution 
• Non-negligible network latencies
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Data Stream Processing in Storm
▸ An open source, real-time, and scalable DSP system 

maintained by the Apache Software Foundation 
▸ Three types of entities to execute a topology 
• Task - An instance of an application operator 
• Executor - One or more tasks related to the same operator 
• Worker Process - Runs one or more executors of the same 

topology
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Data Stream Processing in Storm
▸ Worker node - Generic computational resource 
▸ Zookeeper - Shared memory service for managing 

configuration information and enabling distributed 
coordination 

▸ Nimbus - Centralized component in charge of coordinating the 
topology execution 

▸ Supervisor -  Starts or terminates worker processes on the basis 
of the Nimbus assignments
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Distributed Scheduling in Storm
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Monitoring Compoents
▸ QoSMonitor 
• Estimates the network latency with respect to the other 

system nodes and monitors node availability and its 
resources utilization 

▸ WorkerMonitor 
• Computes the data rate exchanged among the application 

components 
▸ Nodes will share their informations with each others
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AdaptiveScheduler
▸ Executes the distributed QoS-aware scheduling algorithm on 

every worker node 
▸ Reassign executors to improve the application performance 
▸ MAPE 
• Monitor - Identifies the set of local executors that could be 

moved 
• Analyze - Determines if the movable candidate will be 

effectively moved to another position 
• Plan - Determines a worker node that will execute the 

candidate executor 
• Execute
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BootstrapScheduler
▸ A centralized scheduler, which defines the initial assignment of 

the application, monitors its execution, and restarts failed 
executors
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Experimental Results
▸ DSP system is deployed on a network with not negligible 

latency and is subject to changes in the QoS of the nodes 
▸ Focus only on network latency and node utilization 
▸ Testbed 
• Apache Storm 0.9.3  
• 8 Worker nodes 
• 2 Further nodes for Nimbus and ZooKeeper.  
• Using “netem” to emulate wide-area network latencies 

‣ Two sets of applications 
• simple topology with different requirements 
• well known applications
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Adaptation Capabilities
▸ Compare the two schedulers when the load experienced by the 

worker nodes changes during the application execute 
▸ Use a simple application which tags and counts sentences 

produced by a data source
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Base Line
▸  A single executor for each operator 
▸ After 1200 s, they artificially increase the load on a subset of 

three nodes using the Linux tool “stress”
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Base Line
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Base Line
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Base Line
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Heavy Application
▸ They modify the operators of the tag-and-count topology in 

order to waste some CPU time 
▸ Load stress event is launched at 2450 s
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Heavy Application
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Replicated Operators
▸ Two executors are assigned to each operator 
▸ The stress event is launched at 3200 s
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Replicated Operators
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Replicated Operators
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Well-known Applications (Word Count)
▸ Composed by a sequence of a source, two operators, and a 

consumer.  
▸ The first operator splits the sentence into words and feeds the 

next one, which counts the occurrence of each word; each 
update of the counters is notified to the consumer 

▸ Assign two executors to the source and three executors to each 
other operator
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Well-known Applications (Word Count)
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Well-known Applications (Word Count)
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Well-known Applications (Log Processing)
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Well-known Applications (Log Processing)
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Well-known Applications (Log Processing)
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Conclusion
▸ They have used two sets of applications evaluated the 

distributed QoS-aware scheduler for DSP systems based on 
Storm with 

▸ The results show that their scheduler outperforms the Storm 
default one, improving the application performance 

▸ Each placement decision is taken in a independent manner, for 
complex topologies involving many operators, it can determine 
some instability that affects negatively the application 
availability

26


