
On QoS-aware Scheduling of Data
Stream Applications over Fog
Computing Infrastructures
Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, Matteo Nardelli  
Department of Civil Engineering and Computer Science Engineering  
University of Rome “Tor Vergata”, Italy  
 
Fifth International Workshop on Management of Cloud and Smart City Systems 2015

Introduction
▸ Motivation
• Data stream processing (DSP) in fog computing
• Extract the useful information from raw data to improve

urban services
‣ Challenges
• Network and system heterogeneity
• Dynamic geographic distribution
• Non-negligible network latencies

2

Data Stream Processing in Storm
▸ An open source, real-time, and scalable DSP system

maintained by the Apache Software Foundation
▸ Three types of entities to execute a topology
• Task - An instance of an application operator
• Executor - One or more tasks related to the same operator
• Worker Process - Runs one or more executors of the same

topology

3

Data Stream Processing in Storm
▸ Worker node - Generic computational resource
▸ Zookeeper - Shared memory service for managing

configuration information and enabling distributed
coordination

▸ Nimbus - Centralized component in charge of coordinating the
topology execution

▸ Supervisor - Starts or terminates worker processes on the basis
of the Nimbus assignments

4

Distributed Scheduling in Storm

5

Monitoring Compoents
▸ QoSMonitor
• Estimates the network latency with respect to the other

system nodes and monitors node availability and its
resources utilization

▸ WorkerMonitor
• Computes the data rate exchanged among the application

components
▸ Nodes will share their informations with each others

6

AdaptiveScheduler
▸ Executes the distributed QoS-aware scheduling algorithm on

every worker node
▸ Reassign executors to improve the application performance
▸ MAPE
• Monitor - Identifies the set of local executors that could be

moved
• Analyze - Determines if the movable candidate will be

effectively moved to another position
• Plan - Determines a worker node that will execute the

candidate executor
• Execute

7

BootstrapScheduler
▸ A centralized scheduler, which defines the initial assignment of

the application, monitors its execution, and restarts failed
executors

8

Experimental Results
▸ DSP system is deployed on a network with not negligible

latency and is subject to changes in the QoS of the nodes
▸ Focus only on network latency and node utilization
▸ Testbed
• Apache Storm 0.9.3
• 8 Worker nodes
• 2 Further nodes for Nimbus and ZooKeeper.
• Using “netem” to emulate wide-area network latencies

‣ Two sets of applications
• simple topology with different requirements
• well known applications

9

Adaptation Capabilities
▸ Compare the two schedulers when the load experienced by the

worker nodes changes during the application execute
▸ Use a simple application which tags and counts sentences

produced by a data source

10

Base Line
▸ A single executor for each operator
▸ After 1200 s, they artificially increase the load on a subset of

three nodes using the Linux tool “stress”

11

Base Line

12

Base Line

13

Base Line

14

Heavy Application
▸ They modify the operators of the tag-and-count topology in

order to waste some CPU time
▸ Load stress event is launched at 2450 s

15

Heavy Application

16

Replicated Operators
▸ Two executors are assigned to each operator
▸ The stress event is launched at 3200 s

17

Replicated Operators

18

Replicated Operators

19

Well-known Applications (Word Count)
▸ Composed by a sequence of a source, two operators, and a

consumer.
▸ The first operator splits the sentence into words and feeds the

next one, which counts the occurrence of each word; each
update of the counters is notified to the consumer

▸ Assign two executors to the source and three executors to each
other operator

20

Well-known Applications (Word Count)

21

Well-known Applications (Word Count)

22

Well-known Applications (Log Processing)

23

Well-known Applications (Log Processing)

24

Well-known Applications (Log Processing)

25

Conclusion
▸ They have used two sets of applications evaluated the

distributed QoS-aware scheduler for DSP systems based on
Storm with

▸ The results show that their scheduler outperforms the Storm
default one, improving the application performance

▸ Each placement decision is taken in a independent manner, for
complex topologies involving many operators, it can determine
some instability that affects negatively the application
availability

26

