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Background

* Visual Attention (Human Eye Fixations) - select
information from visual input, where redundant
iInformation is filtered out

e Saliency model
- Eye fixation prediction
- Salient object detection



Motivation

* Previous studies of saliency detection
- use hand-crafted features
- contrast inference mechanisms
- contrast integration

* To design powerful hand-cratfted features and contrast
inference mechanisms
- domain-specific knowledge required
- lack of understanding of the biological knowledge of
human visual attention

— [Learn optimal features and contrast inference
mechanism from image data by itselt



Problem formulation

* |Input: Image

e Qutput: Eye fixation maps
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Related work

* Local contrast-based method - computing the
contrast of an image location against its local and
small neighbourhood

* (GGlobal contrast-based method - rarity of locations
over the entire image for saliency prediction

« Combined local and global contrasts
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SDAE - Stacked denoising
autoencoders

* Autoencoder - one type of neural network

e capture the informative hidden patterns and obtain
powerful representation

e (304l

e retain a significant amount of information from the
original input

* |earned feature is sparse enough for powerful
representation



SDAE - Stacked denoising
autoencoders (cont.)

Framework of auto encoder

e stochastic mapping
x; = gD(x;|x;)
* encoder procedure -
nonlinear mapping function

yi =f(%:,6r) = szgm(w(l) +b(1))
» decoder procedure -
nonlinear mapping function

zi = 8(y:, 0g) = Sigm(W(z)yi + b(z)).
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SDAE - Stacked denoising
autoencoders (cont.)

e | oss function

enhance the probability of
inear separability
— add sparsity constraint
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SDAE - Stacked denoising

autoencoders (cont.)
 Framework of SDAE
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| earning stage 1 - Learning

Feature Representation
e Jrain SDAE

 Randomly select 300 square image patches with
the size of 8 x 8 pixels from each training image

* Concatenate all the pixel values in each color
channel




Learning Stage 2: Learning Mechanism
for Contrast Inference and Integration

e Contrast - the most significant factor to direct free-
viewing visual attention

» Contrast inference - limited understanding of
human attention mechanism
— abstract informative patterns hierarchically by SDAE

— learn complex mapping relations between the designed
CS pair input data and its eye fixation labels

CS pair - center surrounding pair
e Contrast inference and integration are addressed

jointly in second learning stage



L earning Stage 2: Learning Mechanism for
Contrast Inference and Integration (cont.)

* Crop each square image patch with the size of 8 x
8 pixels centered at position of local maximum with
its surrounding patches as one CS pair for
generating positive examples (trained in different
scale - 8,24,48)

* Image patches in each CS pair are represented by
the features learned in the first learning stage

e Train SDAE



Learning Stage 2: Learning Mechanism for
Contrast Inference and Integration (cont.)

* Final saliency map is calculated by averaging each
pixel from the saliency maps in three scales

Input image

Eye fixation map
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EXperiments

* Publically available benchmark eye tracking datasets
— (MIT) dataset, Toronto dataset, Cert dataset

e Evaluation metrics - AUC

— varying the quantization threshold within the range
[0, 255]
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EXxperiments(cont.)

TABLE 1
HYPERPARAMETERS OF SDAE MODEL IN TWO LEARNING STAGES

Learning stage 1 Learning stage 2

Representation Representation Hidden Hidden

layer 1 layer 2 layer | layer 2
N 400 200 200 100
& 030 .040 010 010
o, 010 010 010 010
i .040 .005 020 020
@ 2e-4 2e-4 4e-4 2¢e-4



EXxperiments(cont.)

Original image GT OURS LG-Deep LG

Fig. 5. Some experimental results of the LG method, the LG-deep method,
and the proposed two-stage learning approach. GT denotes the ground-truth
saliency map built by convolving the eye fixation locations with a Gaussian
for smoothing, which is implemented by following [18], [54].



EXperiments(cont.
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Fig. 6. Evaluation of the proposed feature representation over three datasets.
x-axis represents the Gaussian blur standard deviation o (in image width) by
which maps are smoothed and y-axis represents the shuffled AUC score on
one dataset.

TABLE 11

MAXIMUM PERFORMANCE OF MODELS SHOWN IN FIG. 6. NUMBERS IN
THE SECOND ROW OF EACH DATASET ARE THE OPTIMAL 0 WHERE

MODELS TAKE THE MAXIMUM PERFORMANCE

Dataset LG LG-Deep OURS
MIT 682 690 719
Opt. o 035 015 -
Toronto .699 704 728
Opt. o 030 025 -
Cerf 704 719 740
Opt. o 035 035 -




EXperiments(cont.

Fg. 7. Comparison results of 16 wtateof the-ant approaches, ouns, aad the GT salieacy map bullt by comvolviag the oye fxaton locations with a Gausslan
for sssooehies 1131 1881
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Fig. 8. Quantitative model comparisons. Fixation prediction accuracy of our saliency model along with 16 state-of-the-art models over three benchmark
datasets. x-axis indicates the Gaussian blur standard deviation o (in image width) by which maps are smoothed and y-axis indicates the shuffled-AUC score.

TABLE III
MAXIMUM PERFORMANCE OF MODELS SHOWN IN FIG. 8. NUMBERS IN THE SECOND ROW OF EACH DATASET ARE THE
OPTIMAL 0 WHERE MODELS TAKE THE MAXIMUM PERFORMANCE. ACCURACIES OF THE BEST MODELS
OVER EACH DATASET ARE UNDERLINED AND SHOWN IN BOLD FACE FONT

Dataset AIM  AWS BMS CA GB HFT ICL IS JUDD LG  PMT QDCT SDSR SP-Ii SR SUN OURS

MIT 679 695 694 672 636 653 667 .669 .663 682 605 669 659 644 653 652 719
Opt. o 035 010 020 025 020 .025 020 .040 .025 035 .010 .025 045 010 040 030 -
Toronto  .692 718 J22 696 640 693 694 712 .690 699 668 717 707 665 689 667 .728.
Opt. o 025 .010 025 025 025 030 .010 .040 .030 030 .010 025 040 015 030 030 -
Cerf g6 724 J36 715 681 700 714 728 715 704 632 727 126 640 J22 672 740
Opt. o 050 015 015 .020 015 035 015 .035 .025 035 .020  .020 035 010 040 035 -
Average .696 .712 JI7T 694 652 682 692 703  .689 695 635 704 697 630 688 664 729

'In our experiments, we compared with the baseline model in SP approach [58], which is based on Itti's model.



Conclusion

e Suffer sufficient training data

 Used concepts from contrast inference
mechanism



