
Server Selection and Topology Control
for Multi-Party Video Conferences

Shuopeng Zhang1 Di Niu2 Yaochen Hu2 Fangming Liu3

1University of Waterloo, Canada
2University of Alberta, Canada

3Huazhong University of Science and Technology, China

ABSTRACT
This paper proposes new methods for multi-server place-
ment and topology control in multi-party video conferences.
Given a large server pool available from CDN infrastruc-
tures and datacenter networks, our lightweight methods can
rapidly determine the network topology and select the best
physical servers to deploy virtualized server instances on,
with the objective of minimizing the mean end-to-end delay
between clients. We propose D-Grouping, a ping-based clus-
tering algorithm, which is used in combination with convex
optimization to determine the network topology and fine-
tune server selection. To verify the proposed methods, we
present extensive simulation studies based on the ping traces
collected from 518 PlanetLab nodes as well as real-world ex-
periment results based on a prototype implementation.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network com-
munications; C.2.4 [Distributed Systems]: Client/server

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Video Conference, Topology Management, Measurement, La-
tency, Internet Telephony, Network Coordinate System, Per-
formance Optimization

1. INTRODUCTION
Multi-party conferencing, e.g., Google Hangouts, Skype

group video call, is an important real-time application that
enables geographically distributed clients to communicate
with each other. Given the stringent requirements on qual-
ity of service (QoS), to support live interaction in such ap-
plications, the data stream of each client needs to be trans-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
NOSSDAV ’14, March 19 - 21 2014, Singapore, Singapore.
Copyright 2014 ACM 978-1-4503-2706-0/14/03...$15.00.
http://dx.doi.org/10.1145/2578260.2578261

mitted to all other clients with low end-to-end delays, at a
reasonably high source rate.

Existing multi-party conferencing solutions mainly adopt
two types of architectures, namely peer-to-peer (P2P) and
centralized servers. In a typical P2P conferencing system
of n clients, each client needs to send a copy of its data
stream to n−1 other participants, making the outgoing link
highly congested. A centralized-server approach relieves the
burden of client outgoing links by gathering all client’s data
using a server called multipoint control unit (MCU) [6], and
letting the server streams the processed data to other clients.
Although the use of centralized servers potentially increases
throughput, it may compromise delay performance as com-
pared to a full-mesh P2P topology with direct connections
between clients, especially when clients are geographically
spread out.

To reduce end-to-end latencies while supporting reason-
ably high source rates, in this paper, we propose to utilize
multiple servers that are available from the large cloud of
proprietary (e.g., Skype can use Microsoft servers) or third-
party CDN nodes and datacenters. To shift upload burden
away from clients, we can always let each client upload its
data stream to some server in the cloud. Since server nodes
are usually much better provisioned than hosts in residential
networks, we let the servers form a full-mesh to minimize the
server-to-server latency.

The key question is — given the client locations and a
server number constraint, where the servers should be placed
and to which server each client should upload its stream
in order to reduce the overall end-to-end latencies between
clients? This hard combinatorial problem involves both as-
signment and placement (which interact with each other),
and is apparently impractical to solve on the dense graph
formed by the clients and hundreds or thousands of avail-
able server nodes. An alternative solution is to embed all
the nodes into a delay space using a network coordinate sys-
tem like Vivaldi [2] based on pairwise pings of all servers
and clients. Given the computed coordinates of all nodes,
we can conveniently partition the clients using heuristics like
k-means, and then compute the optimal server locations in
the delay space under the found partition. However, as the
server pool scales to a large size, there is clearly a high over-
head of computing the coordinates of all nodes even with
Vivaldi.

In this paper, we propose a lightweight practical solution
to the problem mentioned above only based on the RTTs
between the few clients and some geo-information. We pro-
pose D-Grouping, a novel clustering algorithm that only uses

C

C

S

C

S

S

C

C

C

(a) Our multi-server topologies

C

C C

C

S S

S S

5

2

5

2

0

0 ideal, only for

illustration 0

(b) The full-mesh best solution

C

C C

C

S

5

2

1

2.5

2.69

(c) A 1-server solution

C

C C

C

S S

5

2

1

1

√
2

3

(d) A 2-server solution

Figure 1: An illustration of our (idealized) multi-server topology, where multiple servers are chosen from the
cloud to serve each session. C: client; S: server; Arrows: data flow paths between clients.

the pairwise pings between clients to partition them, which
unlike k-means, does not rely on any projected coordinates
or locations. Based on the resulted partition and topology,
we further use various convex optimization schemes to fine-
tune the ideal server location for each group to minimize
the total length of all end-to-end paths in the topology, and
map ideal server locations to real servers based on certain
criteria. In spite of the wide belief that geo-distances are
only weakly correlated to Internet latencies [2,4], our exper-
imental results show the surprising result that our simple
lightweight scheme can greatly reduce the mean end-to-end
delay over one-server solutions and even achieve a compa-
rable performance to the heavy-weight solution based on
network coordinates.

We perform extensive simulations based on the ping traces
that we have collected from 518 PlanetLab nodes over a 20-
day period. We have also implemented a prototype multi-
party conferencing system based on Apache Thrift in 7, 000
lines of C++ code and deployed the prototype on PlanetLab
nodes to evaluate our algorithms in the real world, as well
as to study the intricate relationship between source send-
ing rates and packet-level latencies. Our packet-level exper-
iments reveal that not only do our multi-server approach
outperform the single-server solution, but its latency perfor-
mance is also less sensitive to source rate increases than that
of the single server, with processing overhead considered.

2. A MULTI-SERVER TOPOLOGY
We adopt a class of multi-server topologies illustrated in

Fig. 1(a) to reduce delay while supporting reasonably high
throughput. In this topology, every client is only connected
to one server and no other host. The servers form a full
mesh. Each client just sends one copy of its data stream to
its own server, shifting upload bottleneck away from clients.
For each server S, if it receives data from a client C, the
data is forwarded to all the other clients and other servers
connected to itself (server S). If server S receives data from
other servers, the data is forwarded only to the clients di-
rectly connected to S. In other words, a client connected
to S transmits a packet to another client connected to S in
two hops via S, and transmits a packet to another client con-
nected to another server S′ in three hops via S and S′. We
let the servers form a full mesh because servers are usually
well connected in content delivery infrastructures or data-
center networks, which also minimizes the transfer latencies
between any pair of servers.

We illustrate the benefit of multiple servers in terms of
delay in Fig. 1(b), Fig. 1(c) and Fig. 1(d) in an idealized toy

example of a 4-client conferencing session. If we use only
one server, the mean end-to-end delay is 5.39 (omitting the
unit for illustration purpose only). On the other extreme, if
we place 4 servers, each close to a client and let the servers
form a full mesh, the mean end-to-end delay is minimized to
4.13. To strike a balance between the mean delay achieved
and the number of servers used (which is directly related
to the cost), Fig. 1(d) illustrates a solution that achieves
a mean end-to-end delay of 4.83 with only 2 servers. By
adjusting the choice of server locations, we can effectively
reduce the end-to-end delays between all clients, without
causing any upload bottlenecks at the clients.

3. ALGORITHMS
Given a set of geographically distributed clients and a

server number constraint m, in our protocol, we need to
decide 1) where the m (virtualized) servers should be placed
and 2) to which server each client connects. Since servers
are directly connected, the above is no different from finding
1) an m-partition of clients and 2) the m server locations for
the m partitions, respectively. We propose a three-step pro-
cedure to minimize the mean end-to-end delay between all
pairs of clients. First, we propose D-Grouping (delay-based
grouping) to cluster the clients only using pings between the
few clients. Given the computed partition, we use convex op-
timization to find the ideal geographic server locations that
minimize the total length of all client-to-client geographic
paths in the topology formed by clients and servers. Fi-
nally, we map each ideal server location to one of the several
closest physical server candidates that really achieves the
minimum mean end-to-end delay.

3.1 D-Grouping based on PINGs

Unlike k-means which uses client coordinates (or posi-
tions) to partition them, we partition clients using the pair-
wise round-trip times (RTTs) between them, which can be
easily retrieved by PING before the session starts. On the
other hand, just like k-means, given the desired number of
groups, D-Grouping aims to put clients with a low pairwise
RTT into a same group. The intuition is that if we group
“close” clients together, more traffic can be handled locally
within each group, with the hope of reducing the mean end-
to-end delay.

Suppose that C = {c1, ..., cn} is a set of n clients. Denote
G = {G1, . . . , Gm} as the m groups to be computed, where
each Gi is a subset of C and every client in C belongs to
exactly one Gi ∈ G. D-Grouping has two steps, namely
initial grouping and iterative grouping.

Initial Grouping: suppose we are given the pair-wise
pings of clients and m empty groups. In initial grouping,
we assign each client into the group for which it has the
lowest RTT to the polar in that group, where a polar is a
normal client used as a reference point. Suppose the number
of groups m is greater than one, we first set the pair of
clients with the largest RTT as two polars. Then, if m is
greater than two, we will choose the non-polar client that
is furthest away from the existing polars as the next polar,
i.e., the client that has the largest sum of RTTs to existing
polars. The above is repeated until the number of polars
generated equals to the number of groups. Once polars are
determined, we classify each non-polar client into the polar’s
group to which the client has the lowest RTT.

Iterative Grouping: next, we iteratively adjust each
client into the “closest” group such that it has the minimum
average RTT to the clients in that group, as described in
Algorithm 1.

Algorithm 1 D-Grouping

while termination condition is not met, do
For each client ci ∈ C, move ci into a group such

that ci has the minimum average delay to the clients in
that group. . Complexity O(n2)
end while

The above algorithm is lightweight with each iteration
only involving O(n2) evaluations of RTTs which can be con-
veniently collected before the session starts. In practice, the
termination condition is met when a certain number of itera-
tions T is reached or when grouping result no longer changes.
In simulation, D-Grouping can yield stable partition of 12
clients in only 5 iterations for 92% of the trials.

3.2 Server Location Optimization
Once proper grouping is done, we need to choose m servers

for the m groups, which is a challenging problem given the
large graph of available servers. An alternative is to ob-
tain the coordinates of all the servers and clients in a delay
space, and perform a convex optimization to search for the
ideal server locations in the delay space. However, embed-
ding the hosts still involves significant overhead. Consider-
ing the correlation between geographic distance and network
delay [2, 7], we propose several geo-based schemes to search
for ideal server locations, which turn out to even have com-
parable performance with those done in a delay space.

Geo-Center: choose the geographic center of each client
group as the ideal server location for that group.

Local Convex Optimization: in each group, the ideal
server location is chosen to minimize the sum of geographic
distances to all the clients in that group. Let X = {x1, ..., xn}
be the geo-locations of n clients. In each group Gi, the ideal
server location L∗i is

L∗i = arg min
Li

∑
xj∈Gi

Dg(Li, xj),

where Dg represents the geographic distance between two
locations on the earth.

Global Convex Optimization: we use convex opti-
mization to find all the m ideal server locations L∗ = {L∗1, . . . , L∗m}
that jointly minimizes the total geographic length of all end-

to-end paths between clients, i.e.,

(n− 1)
∑

Gi∈G

∑
xj∈Gi

Dg(Li, xj) +

m−1∑
i=1

m∑
j=i+1

Dg(Li, Lj)|Gi| · |Gj |,

where |Gi| is the number of clients in group Gi.
Finally, the ideal server locations are mapped to real servers

using one of the following methods:
Naive Server Search (NaiSS): choose the server geo-

graphically closest to Li as the server of group Gi.
Local Server Search (LclSS): For each group Gi, choose

p servers geographically closest to Li as candidate servers.
Then choose the server that has the smallest sum of RTTs
to all the clients within group Gi as the server for Gi. To
measure RTTs, the pair-wise pings between each candidate
server to all the clients in its group should be performed.
Thus, pn pings are performed in total. If the pings are
performed in parallel by clients, only p pings need to be
performed per client.

Global Server Search (GlbSS): For each group Gi,
choose p servers geographically closest to Li as candidate
servers. Then choose the set of m servers from all pm com-
binations of candidate servers that minimizes the mean end-
to-end delay. In addition to the pings collected in Local
Server Search, now we also need to collect the pair-wise
pings between candidate servers from different groups, that
is mp(m − 1)p/2 pings, or (m − 1)p pings performed per
candidate server in parallel.

4. TRACE-DRIVEN SIMULATIONS
We provide simulation results based on a large set of ping

traces to evaluate our methods, compared against the state-
of-the-art one-server solution and a method with much larger
overhead in a delay space assuming network coordinate em-
bedding is available through Vivaldi. We also draw insights
on how many server should be used in a conference session.

We continuously collected the pair-wise pings of 518 Plan-
etLab nodes during a 20-day period. with the geographic
distribution of the nodes shown in Fig. 2. The OS of each
node is either Fedora 8 (Linux 2.6.32-20) or Fedora 14 (Linux
2.6.32-36). Everyday each node pinged all other nodes for
50 times. In total, we have collected 15.9 GB traces. In the
simulations, we choose the median ping of each pair of nodes
as the delay estimate of the pair, and the end-to-end delay
on a certain path is calculated by summing up the RTTs of
all the edges on it divided by 2.

Note that the mean end-to-end delay of different clients
may have a huge difference depending on the geographic
distribution of clients. For example, the mean end-to-end
delay of four clients with 2 in Asia and 2 in North America
is much larger than that of 4 clients all in North America.
Therefore, to evaluate a scheme’s performance, we use the
ratio of the mean end-to-end delay of this scheme over that
of the full-mesh direct connection, which we refer to as per-
formance ratio). We use p = 3 candidate servers for Local
Server Search and Global Server Search. For a given number
n of clients, we run 1000 independent simulations for each
method, each randomly choosing n clients from 518 nodes
(the unchosen nodes will act as the available server pool),
and obtain the average performance for each method.

Fig. 3 shows the performance of different combinations
of proposed algorithms for 12 clients. Firstly, using convex

518 Nodes Dataset

Figure 2: The locations of 518 PlanetLab nodes.

optimization to tune server locations brings salient bene-
fits. Comparing the all the methods using D-Grouping and
Global Server Search but different ideal server location op-
timization methods, we notice that Global Convex Opti-
mization for server locations has the best performance, fol-
lowed by Local Convex Optimization, which are much bet-
ter than Geo-Center. Secondly, the delay can be effectively
reduced by introducing 3 candidate servers during the map-
ping phase, using Local Server Search and Global Server
Search. For example, if we check all the methods using D-
Grouping and Geo-Center, we observe that Global Server
Search is a bit better than Local Server Search, and much
better than Naive Server Search. Overall, the method of
using D-Grouping + Global Convex Optimization + Global
Server Search is the best method that incurs the lowest de-
lay, although it is more complex than its local counterpart.

We compare the performance of a one-server (geo-center)
solution, delay-space solution via Vivaldi, and three of our
methods for 12 clients in Fig. 4. The delay-space approach
uses Vivaldi to embed clients into a 5-D delay space (net-
work coordinate system), uses k-means to divide clients into
groups, and then uses Global Convex Optimization to find
the set of ideal server locations in the delay space directly.
After that, real servers are selected by using Global Server
Search also performed in the delay space directly. The first
of our methods is a naive benchmark method which uses
k-means to divide clients into groups based on their geo-
graphic locations, and our second method uses D-grouping
to partition clients. Both select a server closest to the ge-
ographic center of each group as the server for that group
(Geo-Center + Naive Server Search). Our third method in
this figure uses D-Grouping, Global Convex Optimization
for server locations, and Global Server Search.

Firstly, we notice that all multi-server methods are better
than the one-server (geo-center) solution when the number
of servers is greater than 2. However, when only 2 servers are
allowed, the performance of some methods is worse than one
server. The reason is that the benefits of using multi-servers
cannot offset all the inaccuracies introduced, including map-
ping errors in the server search, and the mismatch between
geo-distances and network distances, etc. Secondly, we ob-
serve that D-Grouping, as a delay-based method, is always
better than k-means performed on geographic coordinates.
Furthermore, we find that D-Grouping + Global Convex
Optimization + Global Server Search, although boldly utiliz-
ing geo-information in its last 2 steps, has comparable per-
formance to the delay-space-based method via Vivaldi, yet

1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

Number of Servers

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

D−Grp + Geo Ctr + NaiSS
D−Grp + Geo Ctr + LclSS
D−Grp + Geo Ctr + GlbSS
D−Grp + Lcl Cvx + LclSS
D−Grp + Lcl Cvx + GlbSS
D−Grp + Glb Cvx + LclSS
D−Grp + Glb Cvx + GlbSS

Figure 3: The mean end-to-end delay (normalized
by the full-mesh mean delay) of different methods
for 12 clients.

1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

Number of Servers

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

One Server + Geo Ctr + NaiSS
k−means(Geo Coord) + Geo Ctr + NaiSS
D−Grouping + Geo Ctr + NaiSS
k−means(DS) + Glb Cvx(DS)+ GlbSS(DS)
D−Grouping + Glb Cvx + GlbSS

Figure 4: The mean end-to-end delay (normalized
by the full-mesh mean delay) for one server, the
delay-space method via Vivaldi and our methods for
12 clients. DS: delay-space method.

without having to collect the pings of all available servers or
having to embed nodes into a delay space.

Furthermore, Fig. 5 shows the delay performance as the
number of servers shared per client changes for our best
method: D-Grouping + Global Convex Optimization + Global
Server search. Complying to the intuition, the delay de-
creases as the number of servers shared per client increases
for 4—20 clients. However, it is interesting to note that when
the number of servers per client is fixed, the more servers
used, the lower the delay. Furthermore, the marginal ben-
efit of increasing the number of servers per client actually
decreases, leading to a convex-shaped trend.

Finally, Table 1 shows the time consumption of some se-
lected algorithms for 12 clients on a 2.3 GHz quad-core (i7-
3615QM) processor. We observe that Global Convex Op-
timization consumes the most of the time in the scheme.
Note that it only takes about 3 seconds to compute the best
6 servers for 12 clients, which is a large participation al-
ready for today’s multiparty conferences. Even adding the
online ping collection time (performed in D-Grouping and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of Servers per Client

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

1 Server
2 Servers
3 Servers
4 Servers
5 Servers

Figure 5: The mean end-to-end delay (normalized
by the full-mesh mean delay) vs. the number of
servers shared per client with our best method for
4—20 clients and 1—5 servers.

Servers 1 2 3 4 5 6
D-Grouping 0 2.3 2.7 3.3 4.0 4.4

Glb Convex Opt 1.2 189 564 1,092 1,850 2,689
Glb Server Search 0.8 68.8 87.9 127 225 525

Total (ms) 2.0 260 654 1,223 2,079 3,219

Table 1: Time consumption (ms) breakdown of dif-
ferent algorithms for 12 clients.

the server search (mapping) phase in parallel), the total ses-
sion preparation time will not exceed several seconds.

5. PROTOTYPE IMPLEMENTATION
To verify the real-world performance of the proposed meth-

ods, we used the Apache Thrift framework and the Boost
library to develop an asynchronous multi-threaded packet
communication module in 2,000 lines of C++ code. And
Thrift generated about 5,000 lines of C++ code. We de-
ployed this conferencing system on PlanetLab nodes. In our
experiments, the frequency at which each client sends pack-
ets to its corresponding server is set to 300 packets/second,
where the source rate is controlled by tuning the packet size:
sourcerate = packetsize × frequency. The payload in each
packet contains random characters. We aim to measure the
real packet-level end-to-end delays achieved under different
methods at different source rates.

5.1 Measuring End-to-End Packet Delays
Since it is hard to synchronize the clocks on different com-

puters, the delay between clients (on the order of ms) cannot
be measured by simply recording the sending time on the
sender and the receiving time on the receiver. We propose
an indirect method to measure the end-to-end delay of each
packet. Suppose client A is sending packets to another client
B via some servers. At the very moment before A sends out
a packet, it starts a timer. When the packet eventually
reaches B, B will send a ping packet directly to the sender
A. When A receives the ping packet, it stops its timer and
record the time span Tcircle, which is the end-to-end delay of
the packet from A to B plus the one-way ping time from B
to A. When B gets the reply of the ping from A, it records

1 2 3 4
20

22

24

26

28

30

Number of Servers

M
ill

is
e
c
o
n
d
s

Mean end−to−end delays

Implementation
Simulation

(a) Implementation (1 kbps)
v.s. simulation

1 100 200 300 400 500
20

25

30

35

40

45

50

Source Rates (kbps)

M
ill

is
e

c
o

n
d

s

Mean end−to−end delays

1 Server
2 Servers
3 Servers
4 Servers

(b) Implementations at dif-
ferent source rates

Figure 6: The mean end-to-end delays in implemen-
tation at various source rates for 6 clients.

the round trip time RTTAB . Therefore, the end-to-end
delay from A to B can be evaluated by Tcircle − RTTAB/2.
In our implementation, each client measures the end-to-end
delay to all other clients once every 300 packets.

5.2 Real-World Experiments
We randomly select 6 PlanetLab nodes as clients and use

our best method, namely D-grouping (ping-based) + Global
Convex Optimization (geo-based) + Global Server Search
(ping-based), to output the best server nodes, as the server
number varies from 1 to 4. Then, we deploy our distributed
communication systems on these 6 client nodes as well as
on the selected server nodes, and measure real end-to-end
delays between clients.

Fig. 6(a) shows the performance comparison between sim-
ulation and implementation. To eliminate the influence of
source rates on latency , here we deliberately set the source
rate to be 1 kbps. Note that as the number of servers in-
creases, the real delay (ms) in the implementation drops at
a similar pace to that of the simulation (which estimates de-
lays by summing up RTTs). The real delay is only slightly
worse than the simulated result due to the existence of queu-
ing delays and processing (CPU) delays.

Fig. 6(b) illustrates the change of the mean end-to-end
delays as the source rates of clients increase. When the
number of servers is 2, 3 and 4, the mean end-to-end delays
only increases slightly as the source sending rate increases
from 1 kbps all the way to 500 kbps at each source (which
can support sufficiently high video quality). However, in the
one-server solution, as the source rate increases, the mean
end-to-end delays has a dramatic increase, which surges from
443 ms to 574 ms as the source rate changes from 1 kbps to
500 kbps. The reason is that the server uploading burden
increases with fewer servers. For example, in the toy exam-
ple of Fig. 1(c) and Fig. 1(d), suppose each of the 4 clients
is about to send a packet to all other clients. In Fig.1(c),
the server has to collect the 4 packets and send them out
for 12 times. However in Fig.1(d), every server collects 4
packets but only sends them out for 8 times. As a result,
using multi-servers relieves both the network and CPU bur-
dens at each server, leading to dramatically less increase in
processing and queuing delays as throughput grows.

6. RELATED WORK
Video conferencing has been extensively studied in the

context of P2P networks [1, 5]. These works seek to opti-
mize the streaming rates of all the peers subject to network

bandwidth constraints in a utility maximization framework.
Recent work uses the cloud to enhance the performance of
video conference sessions. Airlift [3] uses inter-datacenter
networks to relay traffic and process data streams in video
conferencing. It maximizes the total throughput in multiple
conference sessions by choosing the optimal way to deliver
and relay packets in the cloud, subject to end-to-end delay
constraints. In contrast, our work focuses on minimizing the
end-to-end delays in an individual conference session.

Our work is related to [6], which also uses multi-servers,
called a Virtual Mixer, to reduce delay in video conferenc-
ing. In particular, it tries to minimize either the average or
the maximum end-to-end delay using a heuristic based on
Steiner tree optimization performed on a graph of servers
and clients. However, this heuristic is not scalable to a graph
of thousands of servers. In contrast, our simple algorithms
optimize the mean end-to-end delay in a geometric problem
instead of on a graph, and easily scale to any number of
servers.

Navigator [8] is used to estimate the network proxim-
ity/latency. It can find the actual closest node with 90%
confidence. However, considering the cost of running it on
the cloud, Navigator is not the best choice in our system.

Network coordinate (NC) system is an efficient mecha-
nism for Internet latency estimation. Vivaldi [2] is a repre-
sentative distributed NC system, and is deployed in many
well-known Internet systems, e.g., Azureus BitTorrent [4].
Measurements [2, 7] show that there is some correlation be-
tween the pairwise delay and pairwise geo-distance of two
hosts, which supports the feasibility of our server location
optimization without knowing information about delays to
all the servers. In experiments, our simple method performs
well even without resorting to the delay-space embedding.

7. CONCLUDING REMARKS
This paper studies the placement of multi-servers and

topology control in multi-party video conferencing applica-
tions. We propose D-Grouping to group clients given their
pairwise ping statistics, assign each client group a server,
and use optimization to fine-tune the server locations with
the objective of reducing end-to-end delays. We evaluate
our methods based on ping traces collected from 518 Plan-
etLab nodes and show that our proposed methods have com-
parable performance to full network coordinate embedding
in a delay space, yet with much lower overhead. Experi-
ments based on our prototype system further suggests that
not only do multi-servers reduce delay in multi-party video
conferencing over the industrial state of the art that uses a
single server, but they can also support higher throughput
in practice under reasonable end-to-end packet delays.

8. ACKNOWLEDGEMENT
The authors would like to thank the anonymous review-

ers for their valuable opinions to improve the final version of
this paper, especially for pointing out a few pieces of miss-
ing related work. This research was partly supported by
the Discovery Grant from Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada, and partly sup-
ported by a grant from National Natural Science Foundation
of China under grant No. 61370232.

9. REFERENCES
[1] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li.

Celerity: A low- delay multi-party conferencing
solution. In Proc. of ACM Multimedia, 2011.

[2] F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: A decentralized network coordinate system. In
Proc. of ACM SIGCOMM, 2004.

[3] Y. Feng, B. Li, and B. Li. Airlift: Video conferencing as
a cloud service using inter-datacenter networks. In
Proc. of IEEE ICNP, 2012.

[4] J. Ledlie, P. Gardner, and M. Seltzer. Network
coordinates in the wild. In Proc. of NSDI, 2007.

[5] C. Liang, M. Zhao, and Y. Liu. Optimal bandwidth
sharing in multiswarm multiparty p2p
video-conferencing systems. IEEE/ACM Trans.
Networking, 19(6):1704–1716, 2011.

[6] J. Liao, C. Yuan, W. Zhu, and P. A. Chou. Virtual
mixer: Real-time audio mixing across clients and cloud
for multi-party conferencing. In Proc. of IEEE
ICASSP, 2012.

[7] V. N. Padmanabhan and L. Subramanian. An
investigation of geographic mapping techniques for
internet hosts. In Proc. of ACM SIGCOMM, 2001.

[8] P. Sharma, Z. Xu, S. Banerjee, and S.-J. Lee.
Estimating network proximity and latency. ACM
SIGCOMM Computer Communication Review,
36(3):39–50, 2006.

