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Abstract—Video telephony is increasingly being adopted by
end consumers. It is extremely challenging to deliver video calls
over wireless networks. In this paper, we conduct a measurement
study on three popular mobile video call applications: Face-
Time, Google Plus Hangout, and Skype, over both WiFi and
Cellular links. We study the following questions: 1) how they
encode/decode video in realtime under tight resource constraints
on mobile devices? 2) how they transmit video smoothly in
the face of various wireless network impairments? 3) what is
their delivered video conferencing quality under different mobile
network conditions? 4) how different system architectures and
design choices contribute to their delivered quality? Through
detailed analysis of measurement results, we obtain valuable
insights regarding the unique challenges, advantages and dis-
advantages of existing design solutions, and possible directions
to deliver high-quality video calls in wireless networks.

I. INTRODUCTION

Video telephony is increasingly being adopted by end
consumers. Video calls augment voice calls with live visual
interaction between users. Just as they shift from fixed landline
phones to mobile phones for voice calls, users prefer to
make untethered video calls using their mobile devices, e.g.,
smartphones, tablets and laptops, instead of sitting in front
of their desktop computers. Mobile devices are connected to
the Internet through either WiFi or Cellular networks, which
are known to be much more heterogeneous and volatile than
wireline networks. It is already very challenging for wireless
service providers to deliver universal high-quality voice calls
to all their customers. All providers strive to assure their
customers that they have a satisfactory answer to the basic
voice call quality question–“Can you hear me now?”, through
their services, as well as commercials. Due to its higher
bandwidth requirement, it is much more challenging to deliver
high-quality video calls than voice calls. Even though video
calls are already very popular on various mobile platforms,
there is very limited understanding about the answer to the
basic video call quality question – “Can you SEE me now?”

Towards obtaining more understanding, we conduct a mea-
surement study on three most popular mobile video call
applications: FaceTime, Google Plus Hangout, and Skype, in
both WiFi and Cellular networks. Our study is focused on the
following questions:

• how they encode and decode video in realtime under tight
resource constraints on mobile devices, such as battery,
CPU, and screen size?

• how they transmit the encoded video smoothly in face of
various wireless network impairments, including bursty
loss, highly variable delay and competing cross-traffic?

• what is their delivered video conferencing quality, both
video perceptual quality and video delay, under different
real mobile network conditions?

• how different system architectures and design choices
adopted by each system contribute to user-perceived
video conferencing quality?

To answer those challenging questions, we leverage our
previous measurement study of computer-based video con-
ferencing systems [20]. We extend the active and passive
measurement methodologies developed in [20] to work with
mobile devices. To account for the inherent heterogeneity
and volatility of wireless networks, we measure the three
systems under a wide range of network conditions, including
a controlled network emulator, a campus WiFi network with
strong and weak signal receptions, and a Cellular network of
one top-three US carrier with and without user mobility. We
collect extensive measurement traces at packet level and video
level. Through analysis of measurement results, we obtain
valuable insights regarding the unique challenges, advantages
and disadvantages of the existing design solutions, and pos-
sible new directions to deliver high-quality video calls in
wireless networks. Our findings are summarized as following.

1) With a strong WiFi/Cellular connection, modern smart-
phones are capable of encoding, transmitting and decod-
ing high quality video in realtime;

2) Mobile video call quality is highly vulnerable to bursty
packet losses and long packet delays, which are sporadic
on wireless links with weak receptions;

3) While FEC can be used to recover random packet
losses, the inability to differentiate congestion losses
from random losses can trigger vicious congestion cycle,
and significantly degrade user video call experience;

4) Conservative video rate selection and FEC redundancy
schemes often lead to better video conferencing quality,
compared with more aggressive schemes;

5) End-to-end video delay is highly correlated to end-to-
end packet delay in Cellular networks, regardless of the
signal strength.

The rest of the paper is organized as follows. We briefly dis-
cuss the related work in Section II. Our measurement platform



and methodology are introduced in Section III. The key design
choices of the three systems are presented in Section IV. In
Section V, we first present the delivered video call quality of
each system under different wireless environments. We then
study how the quality of each system is affected by network
impairments, and compare the efficiency and robustness of
different design choices made by each system. The paper is
concluded in Section VI.

II. RELATED WORK

There are lots of measurement studies on WiFi networks,
e.g., [3], [12], and Cellular networks, e.g., [19], [11], [8].
There are also some studies to compare the performance of
WiFi and Cellular networks [1], [18], [6]. They concluded
that WiFi provides higher download rate and smaller latency
than 3G. Most recently, Huang et al.[9] studied the perfor-
mance and power characteristics of 4G LTE networks. They
observed that LTE can offer higher downlink and uplink
throughput than 3G and even WiFi. Different from those
studies, we focus on the performance of video calls over
WiFi and Cellular networks. Most measurement studies of
realtime communications over the Internet focused on Skype’s
VoIP service. Baset et al [2] analyzed Skype’s P2P topology,
call establishment protocol, and NAT traversal mechanism.
Skype’s FEC mechanism was studied in [10], [22]. In [4],
Huang et al. proposed a user satisfaction index model to
quantify VoIP user satisfaction. More recently, there are some
measurement studies on video calls. Cicco et al.[5] measured
the responsiveness of Skype video calls to bandwidth varia-
tions. In [23], we conducted a measurement study of Skype
two-party video calls under different network conditions. In
[20], we measured three computer-based multi-party video
conferencing solutions: iChat, Google+ hangout, and Skype.
Different from those studies, we focus on mobile video calls
over wireless networks in this paper.

III. MEASUREMENT PLATFORM

FaceTime, Skype, and Google+ Hangout all use proprietary
protocol and encode their signaling and data. Using methodol-
ogy similar to those developed in [20] for studying computer-
based video conferencing systems, we measure them as “black
boxes”, reverse-engineer their design choices, and compare
their performance in wireless networks. We performed IP-level
packet sniffing, application-level information window captur-
ing, and video-level quality analysis. Among the three, only
Google+ offers multi-party conferencing feature on mobile
platforms. We therefore restrict our comparison study to two-
party video calls.

A. Testbed

1) Overall Platform: Our measurement platform (shown in
Fig. 1) consists of two parts: wireless user side and wireline
user side. At the wireless user side, a smartphone is connected
to the Internet through WiFi or 3G cellular data service
provided by one top-three US carrier. At the wireline user
side, a PC or Mac is connected to the Internet through campus
Ethernet. Software-based network emulators are inserted on

Fig. 1. Testbeds for Mobile Video Call Measurement

both ends of the connection to emulate network conditions
in controlled experiments. Packet traces are captured at dif-
ferent points using Wireshark. Experimental video calls are
established between the smartphone and the computer. To
emulate a consistent and repeatable video call, we choose a
standard TV news video sequence “Akiyo” from JVT (Joint
Video Team) test sequence pool. The sequence has mostly
head and shoulder movements. It is very similar to a video-
call scenario. In order to inject this video sequence into the
video call systems, at the computer side, we use a virtual video
camera tool [7]. Since we cannot find a virtual camera tool for
our smartphone, we simply focus the smartphone’s camera to
a screen displaying the “Akiyo” video.

2) Smartphone Hacks: Since Facetime is only available on
Apple devices, we have to use iPhone for our experiments.
The integrated/closed hardware and software design of iPhone
significantly increases the measurement difficulty. We have to
go through several stages of hacks to prepare the smartphone
for measurement study.

• Privilege escalation: We use an unlocked iPhone 4S,
which underwent jailbreak to allow third-party applica-
tion installation [16];

• Measurement tool installation: Several tools are down-
loaded from multiple sources that allow us to collect
CPU and network statistics, capture packets and screen,
enable ad-hoc connection, and remotely login to iPhone,
etc. Please see our technical report [21] for a complete
list of tools and their usages.

• Remote phone control: All three video call applications
are by default on single task mode, which means if we
switch to another application, the ongoing call will be
put on hold and the video will freeze. In order to run
tcpdump or ping on the iPhone during a video call,
we use a computer or another Android phone to remotely
login and control the iPhone via SSH, which will not
interrupt the video call. For experiments without mobility,
we connect the phone to a computer via a USB cable.
Then we use a tool iTool on the computer to build a
USB tunnel between the localhost and the iPhone, which
allow us to access the iPhone from the computer. For
experiments on a moving train, we control the iPhone
using another Android phone (Google Nexus 4). We
set the iPhone to WiFi ad-hoc mode with the help of
MyWi. Then the Android phone can access and control



the iPhone via SSH over ad-hoc WiFi.
3) Wireless Network Settings: To test application perfor-

mance under different wireless conditions, we conduct WiFi
and Cellular experiments at several locations with strong
and weak signal receptions. We use SpeedTest to verify
the actual upload throughput. In WiFi experiments, upload
throughput at strong signal locations is above 10 mbps, and
around 200 − 300 kbps at weak signal locations; in Cellular
experiments, upload throughput at strong signal locations is
above 1, 000 kbps, and at weak signal locations is around
100− 150 kbps. To test video call performance with mobility,
we also conducted experiments on subway trains when they
run on the ground. For controlled experiments, we use a
software network emulator, NEWT [13], to emulate a variety
of network attributes, such as propagation delay, random
packet loss, and available bandwidth.

B. Information Collection

We collect measurement from multiple channels.
1) IP Packet Traces: We sniff packets at both the computer

side (with wireshark) and the smartphone side (with
command line tcpdump). Collected packet traces are
used to analyze protocols and calculate network level
statistics, such as packet delay, loss, and loss burst, etc.

2) Video Quality Logs: At the computer side, Skype and
Google+ report technical information about the received
video quality through their application windows, such
as video rates, frame rates, RTT, et al, [15]. We use a
screen text capture tool [17] to capture these information
periodically. The sampling interval is 1 second.

3) End-to-End Video Delay Samples: Same as in our pre-
vious work [20], we use end-to-end video delay as
an important measure of video call quality. End-to-end
video delay is defined as the time lag from when a video
frame is generated on the sender side till it is displayed
on the receiver’s screen. It consists of video capturing,
encoding, transmission, decoding, and rendering delays.

As illustrated in Fig. 2, to measure the one-way video delay
of a video call, we put computer A and phone B close to
each other. The “Akiyo” video is being played on computer
A. Meanwhile, a stopwatch application is also running on A.
We then start the video call between A and B, with the camera
of B focused on the “Akiyo+Stopwatch” video on A’s screen.
Through the video call application, phone B sends the captured
“Akiyo+Stopwatch” video to A. On computer A, we put
the received video window next to the original source video
window. By comparing the readings from the two stopwatch
videos on computer A’s screen, we can get the one-way video
delay from phone B to computer A. To automatically collect
video delay information from the two stopwatches, we write
a script to capture the screen of computer A once every 100
millisecond, and then decode the captured stopwatch images
using an Optical Character Recognition (OCR) software.

When the phone and computer are not in the same location,
e.g., in our mobility experiments on subway, we cannot mea-
sure the one-way delay as in Fig. 2. Instead, we can measure
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Fig. 2. One-way video delay testbed.

the round-trip video delay using the scheme illustrated in
Fig. 3. There are totally five stopwatch videos during a video
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Fig. 3. Round-trip video delay testbed on subway.

call. Stopwatch 1© is a stand-alone application running on
a separate Android phone. During a video call, the iPhone
captures the video of stopwatch 1©, the captured video is
marked as stopwatch 2© on the iPhone screen. The captured
stopwatch video is then sent to the receiving computer, on
which it is displayed as stopwatch 3©. After this, the receiver
focuses its own camera to the received stopwatch 3© on its own
screen, and the captured video, marked as 4©, is sent back to
the iPhone through the video call system. The iPhone finally
displays the video received from the computer on its screen,
marked as 5©. Round-trip video delay can be calculated as the
reading difference between stopwatch 2© and stopwatch 5©.
Similar to the one-way delay measurement, by periodically
capturing the iPhone screen using a script and analyzing the
captured images using OCR, we can collect a large number
of round-trip video delay measurements.

IV. HOW DO THEY WORK - KEY DESIGN CHOICES

We first need to understand the three systems’ design
choices on system architecture, video generation & adapta-
tion, and packet loss recovery, etc. Leveraging on our study
in [23], [20] for their corresponding computer versions, we
are able to discover important design choices of Google+ and
Skype’s mobile versions. We also obtain good understanding
on FaceTime for the first time.



A. Architecture and Protocol

Similar to its computer version, Google+ mobile version is
also server-centric. Our mobile phone is always connected to
a Google conferencing server located close to New York City,
with RTT of 14ms to a computer in our campus network.
There is no direct communication between the phone and the
computer in all our experiments. Google+ uses UDP and only
switches to TCP if we deliberately block UDP traffic. All the
voice and video data are encapsulated in RTP packets.

Skype mobile is still hybrid: sometime our mobile phone
connects to the computer directly (mostly when using WiFi),
sometime it routes the video call through a relay server (mostly
when using Cellular). At the transport layer, Skype uses UDP
or TCP. Compared with the computer version, Skype mobile is
more likely to use TCP and relay server. This might because it
is more complicated to establish a direct connection between
mobile devices. Instead of RTP, Skype uses its own protocol
to encapsulate voice and video. Skype relay servers are at
different locations with RTTs to our campus network ranging
from 4 to 37 ms.

In our WiFi experiments, FaceTime mostly uses direct P2P
connection between the smartphone and the computer. In our
Cellular experiments, the smartphone and the computer are
connected through relay servers, with RTTs to our campus
network ranging from 2ms to 20ms. FaceTime always use
UDP, no video call can be established if we block UDP traffic.

TABLE I
SYSTEM ARCHITECTURE AND PROTOCOL COMPARISON

System P2P or Server UDP or TCP RTP

Skype Relay server or P2P UDP,
may use TCP No

Google+ Server-centric
UDP, only use
TCP when UDP
is blocked

Yes

FaceTime WiFi: mostly P2P
Cellular: relay server Always use UDP Yes

B. Video Encoding

Network conditions, such as available bandwidth, packet
loss and delay, are inherently dynamic, in wireless environ-
ment. To meet the tight video playout deadline, only very lim-
ited receiver-side buffering is allowed to smooth out bandwidth
variations and delay jitters. To maintain a smooth video call,
the source has to adapt its video encoding strategy to network
conditions. All three systems are capable of generating video

TABLE II
VIDEO RATE RANGES AND ENCODING PARAMETERS

System Range (kbps) Resolution FPS
Skype 10 - 620 480*360, 320*240 1-12

Google+ Hangout 20 - 800 480*360, 240*180 1-15
FaceTime 10 - 820 ??*?? 1-30

at different rates in realtime. We probe their video encoding
parameter ranges by throttling the end-to-end bandwidth from
the smartphone to the computer, using the network emulator.
On the computer side, both Skype and Google+ report total

rate, frame rate and resolution of the video received from the
smartphone in an application information window. Their video
encoding parameter ranges are reported in Table II. Using
the same RTP header analysis technique introduced in [20],
we verified that Google+ still uses layered video coding on
mobile phones. Both temporal and spatial scalability are used
to generate video in a wide rate range. It is well-known
that layered video coding is computation-intensive. In our
experiments with Google+, the iPhone CPU utilization is close
to 100%, 50% higher than FaceTime and Skype. Google+ also
consumes 40% more power than FaceTime and Skype. Please
see our technical report [21] for detailed CPU and battery
consumption statistics. It is still amazing that Google managed
to implement realtime layered video coding on mobile phones.

Unfortunately, FaceTime reports very limited information
about its video encoding parameters. We derive FaceTime’s
video rate from the captured video trace, by discounting FEC
packets. (We will describe how we identify FaceTime’s FEC
packets in the following section.) To estimate its frame rate,
we first calculate the timestamp difference of two adjacent
RTP packets. If the RTP timestamp difference is zero, they
are from the same video frame. Let ∆ be the minimum non-
zero timestamp difference. Any packet pair with timestamp
difference ∆ must be from two adjacent video frames. We
then use the difference tc of the packet capture time of the pair
to approximate the gap between the generation time of their
corresponding frames. Then the frame rate can be estimated
as 1/tc. The inferred frame rate ranges from 1 to 30 FPS.

C. Loss Recovery

Wireless networks have both congestion losses and random
losses. To cope with losses, Skype, Google+ and Facetime all
use redundant data to protect video data. To gain more insights
about their loss recovery strategies, we conduct controlled
experiments and systematically inject random packet losses
to path from the smartphone to the computer. As illustrated
in Figure 4, we started with zero loss rate, then increase loss
rate by 5% every 120 seconds. We record the video rate and
sending rate of each system.

As indicated in Figure 4(a), Google+’s total sending rate
is only slightly higher than its actual video rate. This is
consistent with our finding in [20] for Google+ computer
version, which selectively retransmits lost packets. Through
RTP packet analysis, we verified that Google+ mobile version
also employs selective retransmission: lost video packets from
the base layer will be retransmitted, and lost packets from the
upper layers may not be recovered. We showed in [20] that
Google+’s retransmission strategy is highly robust to packet
losses in wireline networks. We will study its efficiency in
wireless networks in the next section. Finally, Google+ reduces
its sending rate and video rate as the loss rate goes over 10%.

In Figure 4(b), Skype’s redundancy traffic is significantly
higher. As packet loss rate increases, the video rate decreases,
while the total sending rate increases. This agrees with the
finding in [23] and [20] that Skype employs adaptive-but-
aggressive FEC scheme. As will be shown in the next section,
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(a) Google+
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(b) Skype
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(c) FaceTime

Fig. 4. Redundancy Adaptation as Packet Loss Ratio Increases

Skype’s aggressive FEC may lead to a vicious cycle. Both
video rate and sending rate drop down significantly after the
packet loss rate increases to 15%, but the FEC redundancy
ratio is still very high.

TABLE III
RTP PACKET TRACE OF FACETIME

(a) No packet loss injected
Length(byte) Sequence Number TimeStamp Mark

1013 8593 12819453 0
1013 8594 12819453 0
1010 8595 12819453 1

1200 8596 12820189 1

922 8597 12820924 0
917 8598 12820924 1

764 8599 12821660 0
758 8600 12821660 1

771 8601 12822396 0
766 8602 12822396 1

(b) 15% packet loss injected
Length(byte) Sequence Number TimeStamp Mark

461 54231 51971449 0
457 54232 51971449 0
454 54233 51971449 1
465 54233 51971449 0
465 54233 51971449 0
465 54233 51971449 0

1365 54234 51972945 0
1361 54235 51972945 0
1361 54236 51972945 0
1359 54237 51972945 1
1373 54237 51972945 0
1373 54237 51972945 0
1373 54237 51972945 0

287 54238 51974186 0
287 54239 51974186 0
285 54240 51974186 1
295 54240 51974186 0
295 54240 51974186 0
295 54240 51974186 0

FaceTime’s redundancy ratio in Figure 4(c) lies in between
Google+ and Skype. We now closely examine its loss recovery
strategy. In Table III, we compare RTP header traces of
FaceTime without and with packet losses. Without packet
loss, RTP packet sequence number increases at pace 1. All
packets carrying the same timestamp are from a same video
frame, the last packet carries Mark 1. Due to video encoding
structure, some frames are larger, and have more packets. But
all RTP packets contain more than 750 bytes. For the trace
with packet loss, immediately following the last packet of a

frame, we spot some packets, (marked in shade), carrying the
same sequence number and timestamp as the last packet of
the frame. The payload of those packets are all different from
each other, suggesting that they are not duplicate packets. They
have identical length, which is larger than the length of all
the previous packets in the frame. Finally, with packet loss,
all frames are broken into multiple packets, some with short
length, e.g., 285. In all our experiments, FaceTime generates
much more shorter packets after we inject packet losses.

All these observations strongly suggest that a frame-based
FEC scheme is implemented by FaceTime. Original video
packets in a frame are put into one FEC block. Redundancy
packets are generated to protect original packets. A FEC
redundancy packet has to be longer than all original packets it
protects. Since it is generated immediately after a video frame
is encoded, it has the same timestamp as the original video
packets in that frame. Finally, if a FEC block only has one
original video packet, then the FEC redundancy ratio has to
be multiple of 100%, which is too coarse. Also short FEC
blocks (in terms of the number of packets) is vulnerable to
bursty loss. To achieve finer FEC redundancy control and
higher robustness against bursty losses, for a small video frame
that can be fit into one large packet, one should packetize the
frame into multiple small packets, and put them into one long
FEC block. This explains why FaceTime generates more short
packets when packet losses are injected.

D. Rate Control

To avoid congestion along the video transmission path, all
three applications adapt their sending rates and video rates
to the available network bandwidth. We test their bandwidth
tracking capability through a sequence of bandwidth limiting
experiments. As illustrated in Figure 5, we use network emu-
lator to set the available network bandwidth, and then record
their sending rate and video rate. We start with “unlimited”
bandwidth, and record their rates. Both Google+ and Skype set
their video rates between 300 and 400 kbps. FaceTime starts at
700 kbps. Two minutes into the “unlimited” bandwidth setting,
we set the available bandwidth to be 200 kbps higher than
each system’s current sending rate, and then keep dropping
the bandwidth limit by 100kbps every 2 minutes. While all
three system can pick a video rate lower than the available
bandwidth, their aggressiveness is quite different.

• Skype chooses a very aggressive video rate to fully
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Fig. 5. Total Rate and Video Rate Adaptation with Available Bandwidth

utilize the available bandwidth. Since Skype use FEC, the
sending rate even often exceeds the available bandwidth.
This will cause congestion losses, which in turn trigger
more aggressive FEC. We will revisit this in Sec. V-B.

• Google+ also sets its video rate close to the available
network bandwidth. Since Google+ uses retransmission,
its sending rate is very close to its video rate, and mostly
below the bandwidth constraint. It won’t trigger many
congestion losses.

• When there is bandwidth limit, FaceTime is the most
conservative among the three. It always reserve a consid-
erable bit rate margin. Interestingly, it can always track
the available bandwidth well. Even though FaceTime also
uses FEC, due to its conservative video rate selection, it
will not trigger congestion losses by itself. So the FEC
redundancy is kept very low in this set of experiments.

V. CONFERENCING QUALITY OVER WIRELESS

Wireless networks are much more volatile than wireline
networks. The unique challenge for mobile video call is to
maintain stable realtime video streaming quality in the face
of various network impairments, such as random and bursty
packet loss, long delay and delay jitter, and time-varying cross-
traffic. In this section, we analyze the impact of network
impairments on the delivered video quality.

A. Video Conferencing Quality

As with any video streaming service, a user in a video
conferencing is sensitive to the perceptual quality of the
delivered video, which is determined by various encoding
parameters, such as video frame size, frame rate, and quanti-
zation levels [14]. The delivered user perceptual video quality
increases as the delivered video rate increases. Since video
conferencing is to facilitate realtime interaction, users are also
highly sensitive to end-to-end video delays, video playback
continuity and smoothness. To achieve good overall video
conferencing quality, a user’s video has to be streamed con-
sistently at high rate and low delay.

We first compare the voice delay of the three systems over
WiFi or cellular with the voice delay of the native phone call
service from the carrier. We use the voice delay measurement
technique developed in [20]. As reported in Table IV, the
phone call service is more stable than the three systems. It is

not surprising, given that wireless carriers reserve bandwidth
for their phone call services. Another interesting finding is
that, over Cellular network, the mean voice delay of Skype is
the lowest among all applications, including phone service.
One explanation is that Skype does not synchronize voice
and video and maintains a short playback buffer for voice.
We are more interested in the video quality of the three

TABLE IV
VOICE DELAY (MILLISEC) IN A 5-MINUTE CALL

Wireless Phone FaceTime Skype Google+
Type mean std mean std mean std mean std

Cellular 336.8 32.5 554.9 133.8 205.2 99.2 392.2 345.7
WiFi N/A 325.0 115.8 160.3 103.8 153.8 123.1

systems over either WiFi (Figure 6) or Cellular (Figure 7),
with strong or weak signal. For each system in each network
condition, we plot the total video rate, the one-way packet
delay calculated from packet traces, and the one-way video
delay collected using the technique presented in Section III-B.
The rate curves visually illustrate the video quality variations
over time. The measured video delays not only quantify
how much delay each system introduces to realtime user
interaction, but also enable us to assess the video playback
continuity and smoothness. Specifically, spikes in a video
delay curve are resulted from video freezes. In the example
of Figure 2, whenever the received video freezes, the received
stopwatch freezes. Meanwhile, the stopwatch in the source
video continues to advance. Consequently, the reading gap of
the two stopwatches ramps up quickly until the freeze stops
and new video is rendered in the received video window.

It is also interesting to notice how different systems recover
from video freezes. For FaceTime and Google+, after each
delay spike, video delay jumps back to the normal level; but
in Skype, video delay gradually goes back to the normal level.
We believe this is due to different policies to handle delayed
video frames. In FaceTime and Google+, whenever there is a
video freeze, they choose not to display the subsequent frames
with long delays. Video playback resumes only after a new
video frame is received with acceptable delay. That is when
the measured video delay jumps back to the normal level.
Skype chooses to display received frames with long delays.
To catch up with the realtime conferencing, Skype also plays
the delayed frames in a fast-forward fashion. This explains



(a) FaceTime - strong signal (b) Google+ Hangout - strong signal (c) Skype - strong signal

(d) FaceTime - weak signal (e) Google+ Hangout - weak signal (f) Skype - weak signal

Fig. 6. One-way Video Delay for FaceTime Skype and Google+ Hangout over WiFi

(a) FaceTime - strong signal (b) Google+ Hangout - strong signal (c) Skype - strong signal

(d) FaceTime - weak signal (e) Google+ Hangout - weak signal (f) Skype - weak signal

Fig. 7. One-way Video Delay for FaceTime Skype and Google+ Hangout over Cellular

the gradual video delay decrease after each spike. Skype’s
scheme to handle delayed frames has a major problem when
packet delay is bursty. This is obvious in our experiments on
subway, as illustrated in Figure 8. The round-trip video delay
can go as high as 14 seconds. Such high video delay spikes
are likely triggered by severely delayed video packets during
hand-over periods. When delayed video packets finally arrive,
Skype displays the corresponding late video frames in a fast-
forward fashion to catch up the realtime video playback. It
takes long time for Skype to bring the video delay back to the

normal level. This significantly degrades user’s conferencing
experience. In the same subway experiment setting, Google+
and FaceTime also experience high video delay spikes. But
they recover faster than Skype by discarding overly delayed
frames. Due to space limit, we refer interested readers to our
technical report [21] for the video delay curves of Google+
and FaceTime on subway.

The major problem of Google+ Hangout is video freezes,
with duration of 3 to 5 seconds. Skype also experiences video
freezes. The difference is the durations of freezes are shorter -
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Fig. 9. Correlation between Packet Loss Bursts and Video Freeze In
FaceTime over Weak Cellular Link

most time are within 2 seconds. But besides freezes, Skype
also suffers nonuniform speed playback. FaceTime has the
best performance in terms of video smoothness among three
applications. But still, freeze happens from time to time,
lasting around 0.5 to 1 second. Given the observed video
quality, we want to find out how various network impairments
contribute to video conferencing quality degradation.

B. Impact of Packet Losses

Naturally, we first check whether video freezes are triggered
by packet losses. We identify packet losses by matching packet
traces collected at the sender side and the receiver side.
For FaceTime and Skype, packets can be matched by their
payload even if they go through a relay server. Google+ relay
servers change packet payload, packets are instead matched
by their RTP headers. For FaceTime and Skype, packet
losses identified this way are indeed the end-to-end packet
losses. Google+ employs selective persistent retransmission,
the identified packet losses are the end-to-end packet losses
not recovered by Google+’s retransmission algorithm, which
affect the delivered video quality.

TABLE V
PACKET LOSSES TWO SECONDS BEFORE FREEZES

Process FaceTime Skype Google+
Cell WiFi Cell WiFi Cell WiFi

Before freezes 5.00 9.98 3.70 8.59 2.63 4.86
Overall 0.43 4.58 0.33 1.78 0.44 4.71

For each video freeze in Figure 6 and 7 which lasts for
at least 1 second, we count how many packets were lost
in the two-second period immediately before the freeze. We
then calculate the average loss number over all freezes, and

compare it with the average packet loss number in all two-
second periods over the entire experiment. Table V shows
that in most cases, the average packet loss number before a
video freeze is significantly higher than the overall average,
suggesting a strong correlation between video freezes and
packet losses. Meanwhile, it should also be noticed that in
some cases (e.g. Google+ with strong WiFi signal in Table
V), the correlation is weak. We conjecture that in those cases
video freezes are mainly due to long packet delays and delay
jitters. We will come back to this issue in Section V-C.

TABLE VI
DISTRIBUTION OF LOSS BURST LENGTH

Systems WiFi Cellular
Strong Weak Strong Weak

L1 3.2 752 0.8 80.4
Facetime L2 0.4 83.4 0.2 4.4

L3+ 4 13.6 9 6.2
L1 17.2 839.8 2.8 48.0

Google+ L2 2.6 139.2 4.0 13.6
L3+ 7.2 18.0 5.2 5.8
L1 3.2 354.8 7.8 102.4

Skype L2 0 21.8 1.2 14.0
L3+ 1.2 14.8 1.0 8.2

Skype and FaceTime both adopt FEC to recover from packet
losses. Due to realtime encoding and decoding, their FEC
blocks have to be short. However, it is well-known that short
FEC blocks are vulnerable to bursty packet losses. In Table
VI, we present the numbers of loss bursts with length 1 (L1),
length 2 (L2), and length longer than 2 (L3+) for five groups
of 600-second video calls in both strong and weak signal. We
can see that weak signals triggers bursty losses. As for WiFi,
due to higher video throughput, we see more bursty losses than
Cellular. Figure 9 visually illustrates the correlation between
loss bursts and freezes in FaceTime over weak cellular link.

Packet losses can have more profound negative impact
on video conferencing quality than broken FEC blocks. As
discussed in Section IV-C and IV-D, Skype aggressively
increases its FEC ratio as packet loss rate goes up. Meanwhile,
Skype doesn’t change its video rate and still tries to take all
the available bandwidth. Whenever there is congestion, the
available bandwidth shrinks, and packets get lost, Skype still
try to add more FEC redundant packets to recover from packet
losses. Those FEC redundant packets add fuel to the fire and
further increase packet losses. We demonstrated this vicious
circle by adding bandwidth constraint to the WiFi router. Due
to space limit, please see our technical report [21] for detail.
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Fig. 10. CDF Plot Of One-Way Packet Delay



C. Impact of Packet Delays

Google+ uses application layer retransmission to recover
from packet loss. It works well in computer-based video calls
where each computer is connected to a close-by conferencing
server with RTT around 10 ms [20]. Unfortunately, wireless
links introduce long RTTs. In [18], a ping-style measurement
showed that in New York the average RTT of WiFi and
Cellular is 111.9 ms and 282.0 ms, respectively, and New
York’s RTT performance is already on the upper-middle class
among all 15 metro areas. We also measured the one-way
packet delay between our video sender and receiver. Figure 10
shows that one-way delay variance could go as high as 400
ms. Under such long delays, a retransmitted packet is often
useless since it has passed its realtime playback deadline.

From Figure 6 and 7, we can visually observe the correlation
between packet delays and video delays. To quantify the
correlation, we calculate the correlation coefficients between
the two at different time lags. Specifically, Let Dp(t) be the
measured delay of a packet captured at the receiver side at its
local clock time t; Dv(t) be the stopwatch reading difference
recognized from the receiver screenshot captured at its local
clock time t. Using the collected packet delay and video delay
traces, we can estimate the cross-correlation function between
video delay and packet delay as:

γv,p(τ) =
E[(Dv(t+ τ)− D̄v)(Dp(t)− D̄p)]√
E[(Dv(t)− D̄v)2]E[(Dp(t)− D̄p)2]

,

where D̄v and D̄p are the observed average video delay and
packet delay in each experiment. Note, due to video playback
buffering, decoding and rendering delays, the video displayed
in the received video window at time t are decoded from
packets received before t. So the maximum cross-correlation
should be observed at some time lag τ > 0. As reported in
Table VII, the correlation is not significant in strong WiFi
networks, but is very obvious for weak WiFi, and Cellular,
strong or weak. This is mainly because Cellular introduces
longer packet delays than WiFi even with strong signals.

TABLE VII
CORRELATION BETWEEN PACKET DELAY AND VIDEO DELAY

Systems WiFi Cellular
Strong Weak Strong Weak

Facetime 0.06 0.61 0.48 0.41
Google+ 0.13 0.54 0.33 0.46
Skype 0.22 0.74 0.19 0.59

VI. CONCLUSION

In this paper, we presented our measurement study on
mobile video call systems. Through an extensive set of mea-
surements over a wide range of wireless network conditions,
we showed that mobile video call quality is highly vulnerable
to bursty packet losses and long packet delays; while FEC
can be used to recover random packet losses, the inability to
differentiate congestion losses from random losses can trigger
vicious congestion cycles; conservative video rate selection
and FEC redundancy schemes often lead to better video
conferencing quality; and end-to-end video delay is highly

correlated to end-to-end packet delay in cellular networks,
regardless of the signal strength. Insights obtained in this study
can be used to guide the design of new solutions to deliver
high-quality video calls in wireless networks.
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