
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

於多媒體霧計算平臺中預測資源可用性

Predicting Resource Availability in a Multimedia Fog Computing

Platform

黃宜瑩

Yi-Ying Huang

學號：103062571

Student ID:103062571

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 105年 10月

October, 2016

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

於
多
媒
體
霧
計
算
平
臺
中
預
測
資
源
可
用
性

黃
宜
瑩

撰

105
10

中中中文文文摘摘摘要要要

隨著科技的進步，個人裝置（例如筆記型電腦與智慧型手機）擁

有較以往更佳的硬體效能。同時，各種不同的多媒體應用對於運算資

源產生了逐漸增加的需求。 對於這樣的情境，我們採用多媒體霧計

算（fog computing）平臺的概念，目標為減少使用雲端計算平臺的成

本。在此平臺中，服務提供者（fog provider）接收來自於服務使用者

（fog users）的工作，並分配給工作者／裝置（fog workers/devices）。

對於實現此概念，主要有三個研究議題：（一）預測完成工作所需的

資源、 （二）預測裝置可提供的資源、 （三）對於工作與可用資源

進行排程。 本論文主要針對預測裝置可提供的資源進行研究。 我們

採用三個機器學習演算法：隨機森林（Random Forest）、梯度提升樹

（Gradient Boosting Tree）與神經網路（Neural Network），並使用開

源函式庫實作。我們使用兩組資料：使用者資料（desktop dataset）與

數據中心資料（datacenter dataset），兩者的資源紀錄分別來自於真實

使用者與數據中心裡的機器。我們使用兩組資料的4/5進行10次交叉驗

證，得出機器學習演算法所需的超參數（hyperparameter）。結果顯示

兩組資料所需的最佳超參數是不同的。從此可知，當服務提供者採用

新的資料，或是資料有大量變異時，必須重新微調超參數。我們使用

兩組資料剩下的1/5以及真實的動畫處理資料來進行模擬。實驗結果顯

示：（一）神經網路演算法對於兩組資料可達到預測值與實際值分別

僅6.08%與2.00%的差異、（二）較準確的可用資源量預測可使失敗的

工作量減少。

i

Abstract

The personal devices such as laptops and smartphones are being equipped
with better hardware, which leads to stronger computing abilities. At the
same time, the demand of various multimedia applications requires increasing
computational resources. We propose to build the multimedia fog computing
platform, which aims at reducing the cost of using cloud computing. In this
platform, the fog provider receives the jobs from the fog users and schedules
them to the fog workers/devices. There are three main research problems:
(i) prediction of the required amount of resources of the jobs, (ii) prediction
of the available resources of the fog devices, and (iii) scheduling the jobs
and the fog devices. This thesis focuses on the prediction ofthe amount of
the available resources. We adopt three machine learning algorithms, namely,
the Random Forest, Gradient Boosting Tree, and Neural Network, and imple-
ment them using open source libraries. We apply two datasets, desktop and
datacenter datasets, where the traces come from real users and machines in
the cloud datacenter, respectively. We use80% of both datasets and perform
10-fold cross validation to fine-tune the hyperparameters of the proposed al-
gorithms. The optimal combinations of the hyperparametersfor both datasets
are different. We learned that when the fog provider appliesnew datasets, or
when the dataset dramatically changes, it is necessary to re-tune the hyperpa-
rameters. We implement a simulator and use the rest20% of both available
resource datasets and a real animation rendering jobs dataset to drive our
simulator. The simulation results show that: (i) the NeuralNetwork-based
algorithm achieves6.08% and 2.00% deviation in average for the desktop
and datacenter datasets, respectively, and (ii) more accurate prediction of the
amount of available resources leads to fewer failed jobs.

ii

Contents

中中中文文文摘摘摘要要要 i

Abstract ii

1 Introduction 1

2 Related Work 4
2.1 Fog Computing . 4
2.2 System Modeling . 5
2.3 Availability Prediction .. 6

3 Research Problem 8

4 Solutions 11
4.1 Solution Approaches . 11
4.2 Trace Collection & Used Datasets .12
4.3 Optimal Hyperparameters .16

5 Data-Driven Simulations 23
5.1 Setup . 23
5.2 Results . 25

6 Conclusion and Future Work 29

Bibliography 32

iii

List of Figures

1.1 Overview of our multimedia fog computing platform. 1

3.1 The architecture of our multimedia fog computing platform. 8

3.2 The architecture of the available resource predictor. 9

4.1 The procedure of10-fold cross validation. 16

4.2 The pseudocode of performing thek-fold cross validation. 17

4.3 Tuning the number of trees of RF-based algorithm for desktop dataset:

(a) R-square and (b) training time. 17

4.4 Tuning the number of considered features of RF-based algorithm for desk-

top dataset: (a) R-square and (b) training time. 18

4.5 Tuning the number of trees of GB-based algorithm for desktop dataset:

(a) R-square and (b) training time. 18

4.6 Tuning the maximal depth of each tree GB-based algorithm for desktop

dataset: (a) R-square and (b) training time. 19

4.7 Tuning the number of considered features of GB-based algorithm for

desktop dataset: (a) R-square and (b) training time. 19

4.8 Tuning the number of trees of RF-based algorithm for datacenter dataset:

(a) R-square and (b) training time. 20

4.9 Tuning the number of considered features of RF-based algorithm for dat-

acenter dataset: (a) R-square and (b) training time. 20

4.10 Tuning the number of trees of GB-based algorithm for datacenter dataset:

(a) R-square and (b) training time. 21

4.11 Tuning the maximal depth of each tree GB-based algorithmfor datacenter

dataset: (a) R-square and (b) training time. 21

4.12 Tuning the number of considered features of GB-based algorithm for dat-

acenter dataset: (a) R-square and (b) training time. 22

5.1 Information of arrival jobs on each day: (a) the number ofarrival jobs and

(b) total size of the arrival jobs. .. 24

iv

5.2 Deviation of three solutions for (a) desktop dataset and(b) datacenter

dataset. 26

5.3 Simulation results for desktop dataset: (a) the completed jobs ratio (%)

and (b) the number of failed jobs. 26

5.4 Simulation results for desktop dataset: (a) the makespan (hour) and (b)

the normalized CPU consumption. 27

5.5 Simulation results for datacenter dataset: (a) the completed jobs ratio (%)

and (b) the number of failed jobs. 27

5.6 Simulation results for datacenter dataset: (a) the makespan (hour) and (b)

the normalized CPU consumption. 28

v

List of Tables

4.1 Sample statistics of datacenter dataset and desktop datasets. 14

4.2 The optimal hyperparameters of RF-based algorithm for desktop dataset

and datacenter dataset. 21

4.3 The optimal hyperparameters of GB-based algorithm for desktop dataset

and datacenter dataset. 22

5.1 Statistics of the animation rendering dataset. 23

vi

Chapter 1

Introduction

While the technologies are advancing, personal devices suchas laptops and smartphones

are being equipped with better hardware, which leads to stronger computing abilities.

Meanwhile, the demand of various multimedia applications requires increasing computa-

tional resources. To meet the demand, one possible solutionis to rent the cloud servers.

However, it is expensive to fulfill extreme demands of computational resources solely

by purchasing cloud services. There are several limitations of the cloud computing. For

example, the cloud datacenter is far away from the users, which leads to long response

time. We propose to build a platform for the multimedia applications based on the con-

cept of fog computing, which aims at reducing the cost of using cloud computing. We

integrate the resources from the cloud, the edge cloud, and the fog in our platform. The

cloud contains powerful machines. The edge cloud consists of devices such as routers

and WiFi access points. The fog contains personal devices such as desktop computers

and smartphones. There are many advantages by doing so. For example, the fog provides

many kinds of resources, including computational, communicational, storage, and sen-

sory resources. Moreover, it reduces the network traffic by not sending everything to the

cloud.

Figure 1.1: Overview of our multimedia fog computing platform.

1

Fig. 1.1 shows the overview of our fog computing platform formultimedia applica-

tions. The platform, orfog provider, is the main manager of the system. It harvests the

computational, communicational, and storage resources from thefog devices, and then

offers these resources to thefog users. The fog devices include computing machines such

as the desktop computers and laptops, as well as the smart devices such as smartphones

and tablets. These devices are characterized by their dynamic workload, i.e., they may not

always be fully loaded. For example, a desktop only working on simple document pro-

cessing or a smartphone being charged may have much idling resources for extra comput-

ing tasks. The fog provider purchases these otherwise wasted resources from the devices

owners, calledfog workers, and resell these idling resources to the fog users. Compared

to the cloud computing platform, the fog computing platformis much cost-effective by

saving costs of (i) buying factories and machines for the datacenter establishments, (ii)

building power distribution, cooling, and networking systems, (iii) paying the electricity

consumption, and (iv) hiring administrative staffs to maintain the datacenter.

We consider the animation rendering as the sample multimedia fog computing appli-

cation. Animation rendering consumes significant computing resources, and the resource

demand is steadily increasing. In 1995, Toy Story required 800,000 machine hours to ren-

der at 2 to 15 hours per frame [4]. In 2001, when rendering the Monsters, Inc., Pixar spent

about 12 hours to render a single frame with the main character in it [5]. In 2014, Disney

even needed to render Big Hero 6 on a 55,000-core supercomputer farm [2]. As the qual-

ity of animation film improves, the demand and the cost on the rendering farm increase as

well. It is a considerable cost to build a rendering farm or renting cloud resources to ren-

der the animation films. Therefore, we use animation rendering as a candidate application

for the multimedia fog computing platform.

While fog computing has aforementioned advantages for animation rendering, the fog

devices and fog workers are characterized by their heterogeneity and uncertainty. Fog

devices include various computing devices with different specifications. The different

hardware integration leads to different computational capabilities. One animation render-

ing job may take different time periods to finish, which depends on the computational

power of the devices. In addition, the amount of residual resources may also effect the

job completion time, e.g., a fully loaded desktop computer with better hardware equip-

ments may not perform better than a mostly idling laptop. Even if a fog device behaves

constantly, its owner, the fog worker, may act uncertainly.For example, the fog worker

may turn on/off the device anytime, forget to charge up the device, or move to a region

where the network signal is too weak to connect to the Internet.

There are three main research problems for our multimedia fog computing platform.

The first one is to analyze the jobs from the fog users. Since there are various multi-

2

media applications, it is challenging to know the exact execution time and required type

and amount of resources. In our scenario, we consider the animation rendering as the

application. It requires a large amount of computational resources since nowadays, each

frame contains so many materials. It also requires large enough storage space to store the

raw data and the rendered results. If the fog user sets an urgent deadline for retrieving

the results, then stable and enough communicational resource is also necessary. Hence, to

better utilize the resources, it is important to analyze thejobs. The second one is to dis-

cover the usage pattern of the fog workers/devices and predict the resource availability.

We assume that each fog worker has his own habit of using his device. It may be effect

by personal lifestyle or his occupation. Whether and how muchthe usage pattern is pre-

dictable differ from person to person. If the fog provider isable to accurately predict the

available resources, he will be able to know how much resources can be used in advance,

which may greatly help the job scheduling. After the fog provider is able to tackle the pre-

vious two problems, the last problem is to schedule the jobs and the available resources.

To improve the overall performance of our platform, there are several other issues to be

solved. For example, the predicted results may turn out to bewrong. In case the assigned

job cannot be completed as expected, the fog provider may need to decide the number of

redundant rendering jobs. Namely, one rendering job is assigned to multiple fog devices

to guarantee that at least one of them will be finished and submitted back successfully.

However, this consumes additional resources. The tradeoffof increasing the redundancy

and avoiding resource wastes is a critical problem. The previous work of our lab [23] has

studied the first research problem. As an extension of this research project, this thesis

focuses on predicting the available resources of the fog devices.

3

Chapter 2

Related Work

2.1 Fog Computing

The concept offog computingwas first proposed for Internet-of-Things applications [14].

Since the centralized data centers are unable to support thelatency-sensitive applications,

Bonomi et al. proposed the concept of fog computing. They defined the fog computing

as the extension of cloud computing to the edge networks. Thecharacteristics of the very

large amount of nodes include the mobility, heterogeneity,and wide-spread geographical

distribution. Hence there are several challenges such as the orchestration and manage-

ment of the fog nodes. The Vaquero et al. [32] proposed a generalized definition of the

fog computing. They further included the resources of the end devices owned by the

public crowds into the definition. Collectively leveraging the resources from datacenter,

edge networks, and the end devices, the generalized fog computing provides better sup-

port for multimedia applications. Since it takes advantages of heterogeneous computing

resources, fog computing is a feasible choice for the delay-sensitive and resource-hungry

multimedia applications. The authors also pointed out moreopen challenges ahead. Due

to the significant heterogeneity, it is critical to take careof the problems such as discovery

and synchronization applications among the fog nodes as well as the hardware limitations

of the devices.

There are some previous works similar to our concept of the multimedia fog com-

puting platform. Sarmenta proposed the concept of volunteer computing [30], which ag-

gregately utilizes the idling resources of desktops to perform computationally-demanding

jobs, which is similar to our concept. The author mentioned several research issues includ-

ing accessibility, applicability, reliability, and economic issues. However, our platform is

different from the volunteer computing for several aspects. For example, volunteer com-

puting utilizes the resources from the volunteers. Therefore, they do not need to carefully

manage the resources. SETI@Home [12] is an experiment in public resource comput-

4

ing. It is a volunteer computing application, which analyzes radio signals from the space

and aims at detecting intelligent life outside the earth. This project was launched in May

1999. [7] There have been millions of participants involvedin this project, which is a

very large-scale volunteer computing project. BOINC [11] isa generalized platform of

volunteer computing. It collectively aggregates the idling resources of the participants

and utilizes them for computational jobs of various fields such as mathematics, medical

science, environmental science, and astrophysics. Participants installed their application

can start contributing resources right away after connecting to the Internet. Different from

our multimedia fog computing platform, BOINC attracted the volunteers by diverse long-

term and high-profile projects, such as finding aliens. Hence, this platform does not face

some of our challenges, e.g., fog providers must guarantee that a job be completed on

time in order to meet the demands of the fog users.

2.2 System Modeling

Several studies have worked on the availability modeling and system modeling in the lit-

erature. Javadi et al. [24] aimed at discovering the subsetswith similar characteristics

and the availability models in a distributed system. The authors applied three randomness

tests and finds out 21% of hosts from the SETI@home dataset whose availability is in-

dependent of others and is distributed in the same way. Then they appliedk-means and

hierarchical clustering on those hosts, which optimally results in six clusters. The models

are evaluated using a resource brokering problem. The results showed that their proposed

models are helpful for scheduling problem. Kondo et al. [26]also studied the availability

patterns and performed clustering techniques on the hosts.The authors examined hour-

in-day and day-of-week time features. After detecting the patterns, they usedk-means

clustering to determine hosts whose availability exhibitssimilar time effects, which re-

sults in five clusters. The authors used a barrier synchronization application to show

how their correlated clusters improved the resource management in volunteer computing.

Rood et al. [29] presented the diurnal pattern of the user behavior through trace analyses.

The authors proposed a multi-state availability model withfive different availability states

and compared different predictors. They evaluated the accuracy of the predictors, which

outperforms existing solutions. They then proposed their job replication technique which

improved job makespan with little redundancy. Shang et al. [31] considered user behavior

patterns on different days of a week. This study took advantages of Dempster’s rules of

combination. The simulation results showed that their model can take advantages of the

reliable nodes, which reduces the communicational burden and improves the processing

power. Dabrowski et al. [18] utilized Markov chain model to simulate large-scale grid

5

systems. The commercial success of the grid technology makes it necessary to develop

an analytical tool for simulating a complex system. The authors first proposed the state

transition model for one task and then aggregated multiple task states, which is repre-

sented as a piece-wise homogeneous Markov chain. Their model simulates a grid system,

and the Markov chain procedure consumes little computational resources.

2.3 Availability Prediction

Andrzejak et al. [13] computed a Naı̈ve Bayes classifier for each host to predict the CPU

availability. The authors assumed that the CPU of a host is either 100% available or 0%.

The evaluation results using traces from SETI@home projectshowed that the proposed

solution can achieve 95% or greater accuracy. This study performed classification, which

only predicts whether a host is available or not. Our predictor performs regression, which

aims at a more accurate resource usage value. Brevik et al. [15] used one parametric

and two non-parametric prediction techniques to predict how long a host will be avail-

able. The authors applied three different datasets and compared the performances of three

techniques. The experimental results showed that the parameter estimate technique is

sensitive to the characteristics of the applied data and theBinomial Method performs the

best. Carvalho et al. [17] proposed a prediction model for resource availability of a peer

in a peer-to-peer (P2P) desktop grid. The proposed method isbased on the Network of

Favours incentive mechanism. The authors found that higherresource contention leads

to larger prediction errors. Ramachandran et al. [28] also studied the resource availabil-

ity prediction in a P2P desktop grid. In their architecture,the monitoring and prediction

engine logs the resource and group availability data periodically. They used the previ-

ous week’s data to calculate the current week’s availability. The prediction results help

reduce the job migrations (job interruptions). Akioka et al. [10] applied Markov model-

based meta-predictor for one-step-ahead prediction of theCPU and network load. Their

solution takes seasonal variation for both resources into consideration. The proposed

method can perform prediction for hours to days. To better schedule the resources in a

grid environment, Wu et al. [33] proposed a hybrid model to predict the available grid

resources. Their solution integrates autoregressive model and two filters, the Kalman fil-

ter [25] and Savitzky-Golay smoothing filter [27]. They firstreduced the data noise by

using the two filters, recursively computed autoregressivecoefficients and predicted the

value for future time points, and filtered the results for smoothing. The results showed

that they can achieve up to50-step-ahead prediction with prediction mean square error

of 0.04 on average. Yuan et al. [35] improved this work by proposing aparameter-level

adaptive method based on the previous hybrid model. Yang et al. [34] also proposed a

6

multi-step-ahead prediction approach. Instead of directly predict the load statistics, they

decomposed the steps. They first predicted the change range of the CPU load, and then

predicted the change direction, i.e., increase or decrease. Then they composed both results

as the final prediction. When performing the composition, weighting strategies, including

majority rule strategy and uniform decline strategy, and machine learning algorithm, Ad-

aboost algorithm, are applied. Doulamis et al. [20] used 3-Drendering as the application.

The authors considered both modeling and workload prediction using a combined fuzzy

classification and neural network. They investigated threerendering algorithms, the ray

tracing, the radiosity, and the Monte Carlo irradiance analysis. They conducted exper-

iments which showed the great performance of their proposedsolutions. Di et al. [19]

designed a prediction method using Bayesian model and investigated the most effective

combination out of a set of candidate features. They used Google trace which includes

more than ten thousand heterogeneous hosts for experiments. They compared their pro-

posed solution against several other algorithms, including methods related to the moving

averages, auto-regression, and noise filters. They run several types of evaluation with dif-

ferent combinations of training and testing periods. The results show that their proposed

solution outperforms others in terms of the long-term prediction accuracy. They also im-

proved the precision of the pattern prediction under a load balancing scenario. Gmach et

al. [22] characterized the workload demand patterns and proposed a workload placement

service. They aimed at efficiently utilizing the resource pools for a large number of enter-

prise services. They run the evaluation using the data of sixmonths involving more than

one hundred enterprise applications. Their results showedthat the prediction accuracy

achieves resource savings. They also found that the workload trend prediction is helpful

when it is used for reasonably recent trend.

7

Chapter 3

Research Problem

The fog provider needs to schedule jobs from the fog users andthe available resources

from the fog devices. However, it is impossible to know exactly how much resources the

fog devices can provide in a certain future period. Thus we use historical data to predict

this information. It is naive that accurate prediction of the available resources can help job

scheduling in our platform. Each user may have his own usage pattern, which includes

daily and weekly regularities. We apply machine learning predictors as our solutions to

predict the resource availability in a future time period.

Figure 3.1: The architecture of our multimedia fog computing platform.

Fig. 3.1 illustrated the architecture of our multimedia fogcomputing platform. Our

platform works as follows. When a person agrees to sell the idling resources of his

machine, some general information about this fog devices will be checked, such as the

number of its CPU cores, the CPU speed, and the amount of its RAM. Then the fog

provider continuously monitors the resource usage of the fog workers. The monitored

resources include (i) computational resources, such as CPU and RAM utilization, (ii)

storage resources, such as disk utilization and its I/O speed, and (iii) communicational

8

resources, such as the network type, speed, and transmitted/received amount of data.

Above-mentioned resources are sampled at a predefined frequency. The statistics along

with the timestamp are stored as the historical data. The available resource predictor uses

the historical resources usage data to predict the amount ofavailable resources in a future

period. We assume that a fog worker with steady usage patternmay be more easily to

predict. For example, a student who keeps regular hours may usually charge his smart-

phone at night, which consequently has much idling resources during some certain hours

of a day. The available resource predictor uses historical data to make prediction, and

uses actual data to compare with the predicted results to seewhether a fog worker has a

steady usage pattern. On the other hand, the characteristics of the rendering jobs, such

as the number of frames, polygons, and textures, are recorded as well. These data are

used to predict the completion time of the rendering jobs. Then the job scheduler uses the

predicted available resources and the completion time to schedule the job assignment to

the fog devices/workers. The rendering jobs will be distributed to the fog devices accord-

ing to the assignment from the job scheduler. After the fog devices finish rendering, the

rendered results will be sent back to the fog users. The amount of consumed resources

and the actual completion time are recorded and sent back to the fog provider. The actual

statistics can be used to compare with the predicted ones, which can help the fog provider

more accurately perform the predictions. We highlight the available resource predictor in

fig. 3.1 since it is the main focus of this thesis.

Figure 3.2: The architecture of the available resource predictor.

Fig. 3.2 gives a more detailed architecture of the availableresource predictor. As we

mentioned above, the general device information and monitored resource usage data will

be stored in the historical data storage. Currently, we assign each fog device a serial

number as the unique ID. To generate the predictor, we have a parameter tuner. It is

responsible for tuning the hyperparameters and the parameters. Hyperparameters are the

9

parameters that are chosen by human beings offline, which canbe tuned using the large

historical data. By contrast, parameters are updated more frequently to deal with the

dynamics of the data, e.g., new versions of fog applications, or online updates of the model

parameters. With the fine-tuned parameters, we generate thepredictor, which produces

the prediction results and sends to the job scheduler on demand.

Then we describe our regression problem in detail. LetF be the set of all the machine

learning algorithm predictors that the fog provider uses. LetR be the set of all kinds of

resources that the fog provider takes into consideration when he is scheduling the jobs.

For each algorithmf ∈ F, we determine its hyperparameters and train the parameters

for each of the dataset, which we denote byHf andPf , respectively. LetD be the

historical data of the resource availability.D is a matrix of the historical data, where

each row consists of the amount of available resources and the collected features. For

each considered resourcer ∈ R, Dr represents that each row consists of the amount of

available resourcer and the rest of the collected features. The objective of our regression

problem is to obtain the estimated valueṽr,t of the available resourcer of a future time

instant t, wherevr,t is the actual value of the available resourcer of that future time

instantt. We aim at predicting the results of a future time period, i.e., a set of successive

time instants. To simplify the formulation, successiveṽ andv within a time periodT are

rearranged to the vector̃yr,T andyr,T, representing the estimated and actual values of the

future time periodT, respectively. The regression predictor can be characterized as

ỹr,T = F(Dr,H,P,T), (3.1)

where we cally the target of our regression problem. That is, the fog provider first

chooses one of the machine learning algorithm predictors and the target resourcer to

predict. The historical data, the hyperparameters and the parameters for this predictor,

and the target time interval are used as inputs. Then the predictor outputs the estimated

resource availability. Note that the predictors for each considered resource are computed

separately. It is because that we believe that for each fog worker, different resources

should have its own pattern. For example, for a desktop ownedby a student, the compu-

tational resource such as CPU may go high during daytime because he is working hard or

playing games. Then the usage goes down during nighttime because the student goes to

sleep. As for the communicational resource such network throughput, on the contrary, it

may go high during nighttime because the student is downloading large files when he is

sleeping. Considering the difference of the resource usage patterns, we choose to compute

predictors for each resource separately.

10

Chapter 4

Solutions

We give details about our three solution approaches in this section. Since we conduct

data-drivensimulations, we describe the datasets we employed here. Then we show the

process of tuning the hyperparameters of our predictors.

4.1 Solution Approaches

There is no standard answer for which machine learning algorithm best fits a certain pre-

diction problem. Each algorithm may lead to its accuracy andexecution time depending

on how it constructs the predictor. The fog provider may choose the algorithm accord-

ing to the demands, such as the characteristics of the input data, execution time, or the

accuracy. We consider three state-of-the-art machine learning approaches, Random For-

est, Gradient Boosting Tree, and Neural Network. Namely, we letF = {RF,GB,NN}.

Three algorithms have been used for regression problems, such as Web search ranking,

human pose estimation, computer vision, and speech handwriting recognition. Based

on these three algorithms, we have developed Random Forest-based (RF-based), Gradi-

ent Boosting Tree-based (GB-based), and Neural Network-based algorithms using open

source libraries from scikit-learn and xgboost [6,8].

Both RF-based and GB-based algorithms are tree-based ensemblemethods, but they

are different from each other in the way of constructing the prediction model. Ensemble

methods combine the prediction results of multiple base estimators to improve the ro-

bustness over one single estimator. Although using multiple estimators consumes longer

computation time, it usually leads to better accuracy. Ensemble methods construct their

base estimators with a given learning algorithm. RF-based algorithm generates a num-

ber of independent decision trees. Each decision tree is trained with random samples

from the training data. That is, when RF-based algorithm constructs a decision tree, it

randomly selects several features and then randomly specifies a threshold value for these

11

features. It splits the dataset using previously selected features and thresholds, and se-

lects the new feature and the threshold that reduce the highest data entropy. RF-based

algorithm then makes predictions by averaging all decisiontrees’ prediction results. The

bias of RF-based algorithm usually slightly increases due tothe randomness existed in

this algorithm. However, the averaging decreases the variance, which can compensate for

the increase because of the bias. Hence it can perform betterthan a single decision tree.

In contrast, GB-based algorithm consists of a sequence of trees in a stage-wise fashion.

Each successive tree is built to predict the residuals of thepreceding one. GB-based al-

gorithm’s trees are trained and combined using a more sophisticated weighting scheme.

Readers are referred to Friedman et al. [21] for more details on Random Forest and Gra-

dient Boosting Tree. NN-based algorithm is a relatively complicated method. The neural

network consists of multiple layers, including input layer, hidden layer, and output layer.

Each layer contains one or more corresponding neurons, i.e., the input/output layer has

input/output neurons, and the hidden layer has hidden neurons. In the neural network,

neurons at each layer are connected to the ones at the next layer. These connection are

called synapses. Each synapse has its weight, which is calculated during the training pro-

cess. At the beginning of the training phase, the neural network used the input neurons

and random weights to generate the output neurons. The predicted value are compared

with the actual output. Then the results are used to adjust the weights of the synapses.

The weights is updated according to the learning rate, whichis a parameter that can be

determined for this solution.

4.2 Trace Collection & Used Datasets

To run the simulations, we build up a trace collection program using C++. We call this

self-collected traces asdesktop datasetfor simplicity and denote it byDde. We use the

open APIs provided by Microsoft [3] to get the machine information and resource usage

statistics. Our program generates two files and stores them locally on the machine. Both

recorded data of the computational, storage, and communicational resources. The file

containing the machine information records the following information:

• Computational resources: the CPU speed, the number of the cores, the size of the

virtual memory, and the size of the physical memory.

• Storage resources: the size of the disk.

• Communicational resources: the description string of the network interface in use

and the type (Ethernet, IEEE 802.11 Wireless, IEEE 1394 Firewire, IEEE 802.16

WiMax, and others).

12

The other file containing the resource usage statistics records the following informa-

tion:

• Computational resources: the CPU utilization, the used amount of the virtual

memory, and the used amount of the physical memory.

• Storage resources: the used amount of the disk and the read/write speed of the

disk.

• Communicational resources: the maximal speed of the network interface and the

amount of the received/transmitted data.

The trace collection program records the above statistics with the timestamp every10

seconds. We find25 volunteers for the trace collection where most of them are graduate

students. Volunteers install our program on their machine (desktop computers or laptops)

and submit the generated files. Most of them say that the resource monitoring program

did not make any effects to their daily use. Only one has the situation that the program

uses so much memory that he needs to restart it from time to time.

We further employ aperformance metrics dataset[1] to drive our simulator. The per-

formance metrics dataset is the resource usage records of the virtual machines (VMs) of

a datacenter from BitBrains, a service provider serving many enterprises. The datacenter

dataset contains the resource usage statistics, including:

• Computational resources: the CPU cores, the CPU capacity, the CPU utilization,

the size of memory, and the memory usage.

• Storage resources: the disk read/write throughput.

• Communicational resources: the network received/transmitted throughput.

The dataset contains two subsets. One records the statistics of 1, 250 VMs for 1 month,

while the other one records that of500 VMs for 3 months. We only adopt the latter one

with statistics of500 VMs, where the collection period is between July and September

2013. For simplicity, we call the adopted sub-dataset thedatacenter datasetin the follow-

ing manuscript and denote it byDda.

The above-mentioned two datasets are used in our simulations, i.e.,D = {Dde,Dda}.

From the collected data, our considered resources are the utilization of CPU, the utiliza-

tion of memory, the usage of disk, and the network throughput, i.e.,R = {CPU,MEM,DISK,NWK}.

As we have mentioned in 3, we choose to compute predictors foreach resource separately

since we consider the difference of the resource usage patterns. In the rest of the thesis,

we consider the utilization of CPU as an example. Namely, we let r = CPU and use

DCPU as the training data, if not otherwise specified. For job scheduling, we temporarily

13

only consider the CPU resources for now. Taking other resources into consideration for

scheduling is a part of our future work. We use two datasets due to the following reasons.

Our platform aims at recruiting fog workers who are real users in the world. To get a

more convincing dataset, we build up our own resource monitoring program and invite

real users to install it. During the trace collection, we encounter the situations that may

also happen to the fog provider, e.g., the fog devices are turned off or are disconnected

from the Internet from time to time. We believe that the desktop dataset would produce

the simulation results closer to the reality. Nevertheless, due to the limit of time and re-

sources, we are unable to collect the statistics for such a long period and a large amount

of users. Thus we employ the datacenter dataset. This dataset is the records of VMs in a

datacenter, where the VMs are launched according to the users’ requirements. Normally,

there would not be idling resources. Since the enterprises pay for the resources they rent,

they would not waste any of them. While we want to get insight into the idling resources

of the machines, this case may not perfectly fit our scenario.Nevertheless, we can con-

sider the required resources from the enterprises as the consumed resources by a real user.

Then there may also be usage patterns in this dataset. The reality of the desktop dataset

and the quantity of the datacenter dataset are the main reasons we adopt two datasets.

As listed above, we collected usage statistics including computational, storage, and

communicational resources. According to different resource demands of the jobs from

the fog users, the fog provider may need to predict differentresources in a future period

accordingly. In our simulation, we use the CPU utilization, i.e., the percentage of the

CPU usage, as our prediction target. Since we record the general information of each

fog device, we can acquire the exact amount of predicted available CPU resources by

multiplying the CPU utilization by the CPU speed. When we finish prediction, we use the

actual amount of predicted CPU resources to schedule the rendering jobs.

Datacenter Dataset Desktop Dataset

Type of node VM in datacenter desktop or laptop of a real user

Total # of nodes 500 25

Period 3 months 1 month

Sampling frequency 5 minutes 10 seconds

Total # of records 12,496,728 2,967,335

Avg. # of records 24,993 118,693

size of training set 9,997,696 2,373,909

size of testing set 2,499,032 593,426

of features 9 9

Prediction target CPU utilization (%) CPU utilization (%)

Table 4.1: Sample statistics of datacenter dataset and desktop datasets.

14

Table 4.1 provides some sample statistics of datacenter anddesktop datasets. As afore-

mentioned, the datacenter dataset contains records of500 VMs and the recording period

lasts for3 months. The sampling frequency is5 minutes per record. There are12, 496, 728

records in total. Averagely, each VM has24, 993 records.

According to Abu-Mostafa et al. [9], it is recommended to reserve a portion of the

dataset for testing, where the practical rule of thumb is to reserve1/5 of the dataset.

Following the suggestions, we reserve1/5 of the whole dataset as the testing set for the

final testing. Namely, we perform the training procedure, i.e., the10-fold cross validation,

on the rest4/5 of the dataset as the training set. The testing set is used to simulate the

future data and is completely exclusive to the training procedure. The reason is to prevent

the generated predictor from knowing the future data in advance, which keeps the fairness

and cleanness.

Therefore, for the datacenter dataset, we reserve80% of the dataset as training set

and the rest20% as testing set. That is,9, 997, 696 and2, 499, 032 records are used for

training and testing, respectively. On the other hand, the desktop dataset contains records

of 25 real users’ personal devices, including desktop computersand laptops, where the

recording period lasts for1 month. The sampling frequency is10 seconds per record.

There are2, 967, 335 records in total. Averagely, each node has118, 693 records. We

split this dataset in the same way. That is80% (which equals to2, 373, 909) and20%

(which equals to593, 426) of the dataset are used as training and testing set, respectively.

Both datasets have the following9 features:

• id: a unique ID for each node as an integer, e.g., 1, 2, ...

• epoch: the number of seconds since 1970-01-01 08:00:00 as aninteger, e.g., 1451577600

for 2016-01-01 00:00:00.

• dayInMonth: the day of the month as an integer, e.g., 1, 2, ..., 31.

• dayInWeek: the day of the week as an integer, where Monday is1 and Sunday is7,

e.g., 1, 2, ..., 7.

• isWeekend: whether the epoch time is between Saturday and Sunday as an boolean

value, e.g., 0 and 1.

• hourInWeek: the hour of the week as an integer, e.g., 0, 1, ..., 167.

• hourInDay: the hour of the day as an integer, e.g., 0, 1, ..., 23.

• minute: the minute of the hour as an integer, e.g., 0, 1, ..., 59.

• daySlot: which slot of the day as an integer, where a day is split into three slots,

e.g., 0 for 0 a.m. to 7 a.m., 1 for 8 a.m. to 3 p.m., and 2 for 4 p.m.to 11 p.m.

15

The prediction target for the two datasets are both CPU utilization (%). Since we

possess the CPU speed of each node, it is equivalent to predictthe exact used CPU and the

CPU utilization. To keep a smaller data scale, we choose to predict the CPU utilization.

When the prediction results is used for scheduling, the scheduler multiplies the utilization

by CPU speed to obtain exact CPU resources for decision making.

4.3 Optimal Hyperparameters

Hyperparameters are the preconfigured parameters that can not be learned during the

training process. These parameters effect the structure ofthe prediction model. That

is, different values of the hyperparameters lead to completely different models. They are

chosen by human beings offline by applying historical data.

Figure 4.1: The procedure of10-fold cross validation.

For training, we performV -fold cross validation to acquire the optimal hyperparam-

eters for the RF- and GB-based predictors. According to Abu-Mostafa et al. [9],V -fold

cross validation is generally preferred over single validation. 5-fold and10-fold are usu-

ally adopted. In practical, the rule of thumb isV = 10. Hence we perform10-fold cross

validation for training. Fig. 4.1 illustrates the procedure of the10-fold cross validation.

The whole dataset is split into10 equal-sized folds. In each round, one fold is used as

the validation setDv, and the rest9 folds are used as the training setDtrain. The model is

generated by applying the training set and then evaluated bythe validation set. This pro-

cedure repeats10 times until each of the10 folds has been used asDv once. Each round

i generates an performance scoreAi. The final performance is the average of the10 per-

formance scores:A = 1

10

∑
10

i=1
Ai. Fig. 4.2 illustrates the pseudocode of performing the

k-fold cross validation.

There are several hyperparameters for RF- and GB-based predictors. We perform

the cross validation on different combinations of values and choose the set with the best

performance. Note that we do not train the hyperparameters of both algorithms for both

datasets on the same machine. Because training the various combinations consumes much

16

1: LetA[1, 2, . . . , k] be a new array

2: Divide the training data intok folds

3: for i = 1 to k do

4: Train and generate the model usingk − 1 folds except theith fold

5: Test the model using theith fold and calculate the performance scorea

6: A[i] = a

7: return Average(A)

Figure 4.2: The pseudocode of performing thek-fold cross validation.

time, we distribute the computational tasks to two machines, namely, an Intel 2.3 GHz

workstation and an Intel 1.6 GHz desktop. The difference of the two machines results in

incomparable execution time. Therefore, we train the hyperparameters in the following

way.

10 30 50 70 90 110 130 150
0.8

0.81

0.82

0.83

0.84

0.85

R
-s
q
u
ar
e

Number of Trees

(a)

10 30 50 70 90 110 130 150
0

50

100

150

200

T
ra
in
in
g
T
im

e
(m

in
)

Number of Trees

(b)

Figure 4.3: Tuning the number of trees of RF-based algorithm for desktop dataset: (a)

R-square and (b) training time.

The following are the procedures how we tune the hyperparameters of both algo-

rithms for desktop dataset. For RF-based solution, the hyperparameters include (i) the

number of treest and (ii) the number of considered featuresf . Namely,HRF = {t, f}.

Fig. 4.3 shows the R-square scores and training time with different trees within the range

t = {2, 4, 8, 10, 20, ..., 150} whenf = 7. We run the training program on an Intel 1.6

GHz desktop. We find that, when the number of trees increases,the R-square scores do

not improve much, and the training time keeps increasing. Since whent = 80, the R-

square score is slightly higher than the others, we manuallysett as80. We then fixt and

vary the number of considered features within the rangef = {1, 2, ..., 9}. We find that

the number of considered features do not have obvious effects on R-square results (see

fig. 4.4). We then choose to consider all the features, namely, f = 9. That is, the optimal

17

1 2 3 4 5 6 7 8 9
0.83

0.835

0.84

0.845

0.85
R
-s
q
u
ar
e

Number of Considered Features

(a)

1 2 3 4 5 6 7 8 9
20

40

60

80

100

120

T
ra
in
in
g
T
im

e
(m

in
)

Number of Considered Features

(b)

Figure 4.4: Tuning the number of considered features of RF-based algorithm for desktop

dataset: (a) R-square and (b) training time.

hyperparameters forDde is HRF = {t = 80, f = 9}.

10 20 30 40 50 60 70 80 90100
−0.5

0

0.5

1

R
-s
q
u
ar
e

Number of Trees

(a)

10 20 30 40 50 60 70 80 90100
0

20

40

60

80

T
ra
in
in
g
T
im

e
(m

in
)

Number of Trees

(b)

Figure 4.5: Tuning the number of trees of GB-based algorithm for desktop dataset: (a)

R-square and (b) training time.

For GB-based solution, the hyperparameters include (i) the number of treesn, (ii) the

maximal depth of each treed, and (iii) the shrinkages (i.e., the learning rate). Namely,

HGB = {n, d, s}. Fig. 4.5 shows the R-square scores and training time with different

trees within the ranget = {2, 4, 8, 10, 20, ..., 100} whend = 30 ands = 0.1. We run the

training program on an Intel 2.3 GHz workstation. The numberof treesn = 30 performs

the best. Therefore we fix the number of trees as30 and vary the rest two hyperparameters

within the rangesd = {5, 10, ..., 50} ands = {0.05, 0.1, 0.2, ..., 1}. Following the same

procedure, we find that the maximal depthd = 20 and the shrinkages = 0.2 leads

to the optimal R-square scores (see fig. 4.6 and 4.7, respectively). That is, the optimal

hyperparameters forDde is HGB = {n = 30, d = 20, s = 0.2}.

18

10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9
R
-s
q
u
ar
e

Maximal Depth of Each Tree

(a)

10 20 30 40 50
0

10

20

30

40

50

60

T
ra
in
in
g
T
im

e
(m

in
)

Maximal Depth of Each Tree

(b)

Figure 4.6: Tuning the maximal depth of each tree GB-based algorithm for desktop

dataset: (a) R-square and (b) training time.

0 0.2 0.4 0.6 0.8 1
0.78

0.8

0.82

0.84

0.86

0.88

R
-s
q
u
ar
e

Shrinkage

(a)

0 0.2 0.4 0.6 0.8 1
7

8

9

10

11

T
ra
in
in
g
T
im

e
(m

in
)

Shrinkage

(b)

Figure 4.7: Tuning the number of considered features of GB-based algorithm for desktop

dataset: (a) R-square and (b) training time.

We tune the hyperparameters of both algorithms for datacenter dataset. Fig. 4.8

shows the R-square scores and training time with different trees within the ranget =

{2, 4, 8, 10, 20, ..., 90} whenf = 7. We run the training program on an Intel 1.6 GHz

desktop. The results are similar with that of desktop dataset. When the number of trees

increases, the R-square scores do not improve much, and the training time keeps increas-

ing. Since whent = 40, the R-square score is slightly higher than the others, we man-

ually sett as40. We then fixt and vary the number of considered features within the

rangef = {1, 2, ..., 9}. The R-square scores keep improving when the number of con-

sidered features increases. Although the improvement of the R-square score slows down

after the number of considered features reaches5 (see fig. 4.9). We then choose to con-

sider all the features, namely,f = 9. That is, the optimal hyperparameters forDda is

19

10 20 30 40 50 60 70 80 90
0.95

0.96

0.97

0.98
R
-s
q
u
ar
e

Number of Trees

(a)

10 20 30 40 50 60 70 80 90
0

150

300

450

600

T
ra
in
in
g
T
im

e
(m

in
)

Number of Trees

(b)

Figure 4.8: Tuning the number of trees of RF-based algorithm for datacenter dataset: (a)

R-square and (b) training time.

1 2 3 4 5 6 7 8 9
0.6

0.7

0.8

0.9

1

R
-s
q
u
ar
e

Number of Considered Features

(a)

1 2 3 4 5 6 7 8 9
100

150

200

250

300

350

T
ra
in
in
g
T
im

e
(m

in
)

Number of Considered Features

(b)

Figure 4.9: Tuning the number of considered features of RF-based algorithm for datacen-

ter dataset: (a) R-square and (b) training time.

HRF = {t = 40, f = 9}.

For GB-based solution, we perform the training procedure similar to that of desktop

dataset. Fig. 4.10 shows the R-square scores and training time with different trees within

the rangen = {2, 4, 8, 10, 20, ..., 100} whend = 20 ands = 0.1. We run the training

program on an Intel 2.3 GHz workstation. The number of treesn = 20 performs the

best. Therefore we fix the number of trees as20 and vary the rest two hyperparameters

within the rangesd = {5, 10, ..., 60} ands = {0.05, 0.1, 0.2, ..., 1}. Following the same

procedure, we find that the maximal depthd = 15 and the shrinkages = 0.2 leads to

the optimal R-square scores (see fig. 4.11 and 4.12, respectively). That is, the optimal

hyperparameters forDda is HGB = {n = 20, d = 15, s = 0.2}.

The hyperparameters of RF-based algorithm for both datasetsare showed in 4.2, while

20

10 20 30 40 50 60 70 80 90100
0.1

0.2

0.3

0.4

0.5

0.6
R
-s
q
u
ar
e

Number of Trees

(a)

10 20 30 40 50 60 70 80 90100
0

50

100

150

T
ra
in
in
g
T
im

e
(m

in
)

Number of Trees

(b)

Figure 4.10: Tuning the number of trees of GB-based algorithmfor datacenter dataset:

(a) R-square and (b) training time.

10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

R
-s
q
u
ar
e

Maximal Depth of Each Tree

(a)

10 20 30 40 50 60
0

20

40

60

80

100

T
ra
in
in
g
T
im

e
(m

in
)

Maximal Depth of Each Tree

(b)

Figure 4.11: Tuning the maximal depth of each tree GB-based algorithm for datacenter

dataset: (a) R-square and (b) training time.

Desktop Dataset,Dde Datacenter Dataset,Dda

Number of Trees,t 90 40

Number of Features,f 9 9

Table 4.2: The optimal hyperparameters of RF-based algorithm for desktop dataset and

datacenter dataset.

that of GB-based algorithm for both datasets are showed in 4.3. In the rest of the thesis,

we applied the hyperparameters derived from the tuning process mentioned above if not

otherwise specified. We acknowledge that those derived values aredata-driven. When

the characteristics of the data dramatically change, it is necessary to re-tune the hyper-

parameters. Moreover, when the fog provider applies new machine learning approaches,

it is necessary to fine-tuned the hyperparameters followingabove procedure. Note that

21

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65
R
-s
q
u
ar
e

Shrinkage

(a)

0 0.2 0.4 0.6 0.8 1
10

15

20

25

30

T
ra
in
in
g
T
im

e
(m

in
)

Shrinkage

(b)

Figure 4.12: Tuning the number of considered features of GB-based algorithm for data-

center dataset: (a) R-square and (b) training time.

Desktop Dataset,Dde Datacenter Dataset,Dda

Number of Trees,n 30 20

Depth of Trees,d 20 15

Shrinkage,s 0.2 0.2

Table 4.3: The optimal hyperparameters of GB-based algorithm for desktop dataset and

datacenter dataset.

we tune the hyperparameters for the two datasets separately, because they are collected

in different settings and from completely unrelated objectgroups. For each dataset, we

combine the traces of all the nodes/users as one dataset. Since we assume that there may

be relations of the usage patterns of the individuals. For example, in the desktop dataset,

most participants are students. People with geographical proximity, the same career, or

other similarities may have similar usage pattern. These information can also be encoded

as a feature and be used as the input for the machine learning algorithms. Collecting this

kind of information for predictor training is a part of our future work. Note that there are

more hyperparameters that can be tuned. We choose the several ones that we consider the

most important as example. Note that we also try tuning the hyperparameters for the NN-

based algorithm. However, the results do not show obvious trends. Hence we empirically

choose to use one single hidden layer,7 hidden neurons and the learning rate of0.7, and

do not show the procedures in the thesis.

22

Chapter 5

Data-Driven Simulations

In this section, we show the setup and our simulation results.

5.1 Setup

We implemented a simulator of our multimedia fog computing platform using Java.

Feature Mean Std.

CPU Usage (%) 19.7 11.7

RAM Usage (KB) 380.7 147.5

Number of Frames 113.9 76.7

Number of Polygons 63512.6 332868.8

Image Size (Pixels) 131161.6 17453.5

Completion Time (s) 104.1 194.2

Table 5.1: Statistics of the animation rendering dataset.

Our simulator requires the inputs for (a) the available resources of the fog device and

(b) the animation rendering jobs.

As we have mentioned in 4.2, we reserve1/5 of both dataset as the testing set for the

simulation. Datacenter dataset has2, 499, 032 records for testing, while desktop dataset

has593, 426 records. Each record contains the timestamp, the actual amount of avail-

able CPU resource, and the predicted amount of available CPU resource. Since the start

recording time is different for each node in both dataset, weuse Poisson process with a

mean arrival rateλ = 30 minutes to generate the device arrival time. During each simu-

lation, each device will be assigned its arrival time generated by the Poisson process. For

one device, we subtract the first timestamp from the timestamp of every resource record.

That is, we shift all the timestamp to let the timestamp of thefirst record be0. When

the simulation starts, we add the assigned arrival time fromthe Poisson process to every

23

timestamp for that device.

1 2 3 4 5 6 7
0

1

2

3

4
x 10

4

Day

N
u
m
b
er

o
f
T
o
ta
l
J
o
b
s
(k
)

(a)

1 2 3 4 5 6 7
0

1

2

3

4

x 10
8

Day

T
o
ta
l
J
o
b
S
iz
e
(M

B
)

(b)

Figure 5.1: Information of arrival jobs on each day: (a) the number of arrival jobs and (b)

total size of the arrival jobs.

We apply ananimation rendering datasetfrom the collaborated fog rendering com-

pany (the company name is withheld due to a non-disclosure agreement) for the simula-

tion. There are127, 791 records collected between September and November 2015. Each

record is a rendering job submitted from an animation studio. Each record contains (a)

detailed characteristics of the animation rendering job, such as the number frames and the

number of polygons, (b) resource usage information, such asthe average CPU usage and

consumed GFLOPS, and (c) job processing statistics, such asthe timestamp of submitting

the job, the timestamp of receiving the completed job, and the estimated monetary cost of

the job. Table 5.1 shows some sample statistics of the animation rendering dataset.

When performing the simulation, we found that there are too few jobs arrived on a day.

This may be because the company is just newly started. However, we want to simulate

a higher loaded scenario. Hence, we adjust the date of the arrival time to concentrate all

the jobs to arrive within7 days. For example, a job arrived at September 1st and another

arrived at September 8th are modified to arrive at the same daywith their original arrival

timing (HH:mm:ss) remained. Moreover, we increase the sizeof every job by 100 times.

Fig. 5.1 are the information of arrival jobs on each day of theadjusted animation rendering

dataset. Fig. 5.1(a) shows the number of arrival jobs on eachof the7 days. As mentioned

before, there are127, 791 jobs in total. With adjustment, there are averagely18, 255.9

jobs arrived at a day, where day 4 has the most jobs with34, 731 ones, and day 7 has no

job. Fig. 5.1(b) shows the total size of the arrival jobs on each day. Although day 4 has

the most jobs, day 2 has the largest total size of the jobs, i.e., 382, 463.4 GB.

To sum up, the following information are from the datasets: (a) the timestamp of the

available resource record, (b) the arrival time of the rendering jobs, and (c) the job size.

24

Besides the proposed RF-based, GB-based, and NN-based algorithms, we implement

a perfect yet unrealistic Oracle algorithm. The Oracle algorithm schedules the jobs ac-

cording to the actual available resources. It is used as an upper bound of the performance

for the prediction algorithms.

We implement the efficientEarliest Start Schedule(ESS) [16, Chapter 3.2] algorithm.

Our job scheduler batches the arrived jobs every day, schedules them at 23:59, and starts

processing them in the next day.

The following are the performance metrics we considered in our simulations.

• Deviation: The deviation between the predicted amount of available resource and

the actual amount of available resource.

• Completed jobs ratio: The ratio of the number of completed rendering jobs to the

number of total rendering jobs.

• Makespan: The total time to complete a set of rendering jobs submitted by the fog

user. The makespan of a rendering job includes the time for both processing and

waiting.

• Number of failed jobs: The number of rendering jobs that are failed. Jobs that are

not completed before a day ends or before the assigned deviceleaves the system

(i.e., the device turns off or loses the network connection)are considered as failed

and will not be rescheduled in our simulation.

• Normalized CPU consumption: The average CPU consumption normalized to

that of the Oracle.

We run the simulation 10 times for the implemented solutions, namely, RF-based,

GB-based, and NN-based, and Oracle algorithms. We calculatethe average simulation

results and present the 95% confidence intervals whenever applicable.

5.2 Results

Since there is no job on day 7, we show the simulation results between day 1 and 6 for all

the performance metrics.

NN-based algorithm performs the most accurate prediction for both datasets.

Fig. 5.2 shows the deviation of RF-based, GB-based, and NN-based algorithms for both

dataset. For both datasets, NN-based algorithm performs the most accurate prediction,

namely, the lowest deviation. It achieves6.08% and 2.00% deviation in average for

the desktop and datacenter datasets, respectively, which means the prediction results are

very close to the actual amounts of the available resource. RF-based algorithm results in

25

1 2 3 4 5 6
0

5

10

15

Day

D
ev
ia
ti
o
n
(%

)

RF GB NN

(a)

1 2 3 4 5 6
0

5

10

Day

D
ev
ia
ti
o
n
(%

)

RF GB NN

(b)

Figure 5.2: Deviation of three solutions for (a) desktop dataset and (b) datacenter dataset.

1 2 3 4 5 6
94

96

98

100

Day

C
o
m
p
le
te
d
J
o
b
s
(%

)

RF GB NN Oracle

(a)

1 2 3 4 5 6
0

1000

2000

3000

4000

Day

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

RF GB NN Oracle

(b)

Figure 5.3: Simulation results for desktop dataset: (a) thecompleted jobs ratio (%) and

(b) the number of failed jobs.

11.91% and6.58% deviation in average for the desktop and datacenter datasets, respec-

tively. As for GB-based algorithm, it results in11.88% and10.22% deviation in average

for the desktop and datacenter datasets, respectively. RF-based and GB-based algorithm

both perform the worst in day 6 for the desktop datasets, where the deviation goes up

to 14.87% and15.98%, respectively. We note that for the desktop dataset, GB-based al-

gorithm outperforms RF-based algorithm on days 1, 2, and 3, but RF-based algorithm

outperforms GB-based algorithm on days 4, 5, and 6. For the datacenter dataset, RF-

based algorithm always outperforms GB-based algorithm. This shows that every dataset

has its characteristics and that algorithms may perform differently.

More accurate prediction leads to less failed jobs. Since we aggregate all the jobs

of the animation rendering dataset within7 days, there are a large number of jobs ar-

rived every day. While Figs. 5.3(a) and 5.5(a) show that threeproposed and the Oracle

26

1 2 3 4 5 6

15

20

25

Day

M
a
ke
sp
a
n
(h
o
u
r)

RF GB NN Oracle

(a)

1 2 3 4 5 6

96

98

100

102

104

Day

N
o
r.

C
P
U

C
o
n
su
m
.
(%

)

RF GB NN Oracle

(b)

Figure 5.4: Simulation results for desktop dataset: (a) themakespan (hour) and (b) the

normalized CPU consumption.

1 2 3 4 5 6

97

98

99

100

101

Day

C
o
m
p
le
te
d
J
o
b
s
(%

)

RF GB NN Oracle

(a)

1 2 3 4 5 6
0

500

1000

1500

Day

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

RF GB NN Oracle

(b)

Figure 5.5: Simulation results for datacenter dataset: (a)the completed jobs ratio (%) and

(b) the number of failed jobs.

algorithms all complete98% or higher of the jobs. Figs. 5.3(b) and 5.5(b) give a closer

look into the number of failed jobs. The Oracle algorithm results in very few failed jobs

because it checks the actual amount of available resources when scheduling the jobs. It

assigns jobs only when the active fog devices have sufficientresources to finish them.

From Fig. 5.5(b), the GB-based algorithm which performs the worst prediction leads to

the most failed jobs every day. Meanwhile, the NN-based algorithm which performs the

best prediction has the least failed jobs for most of the timecomparing to the other two

algorithms.

From the results of the completed jobs ratio (see Figs. 5.3(a) and 5.5(a)), the makespan

(see Figs. 5.4(a) and 5.6(a)), and normalized CPU consumption (see Figs. 5.4(b) and 5.6(b)),

we find that our three proposed solutions perform close to theOracle. This shows that our

27

1 2 3 4 5 6
23

24

25

Day

M
a
ke
sp
a
n
(h
o
u
r)

RF GB NN Oracle

(a)

1 2 3 4 5 6
97

98

99

100

101

102

Day

N
o
r.

C
P
U

C
o
n
su
m
.
(%

)

RF GB NN Oracle

(b)

Figure 5.6: Simulation results for datacenter dataset: (a)the makespan (hour) and (b) the

normalized CPU consumption.

solutions can perform well with our fine-tuned hyperparameters.

28

Chapter 6

Conclusion and Future Work

In order to deal with the increasing demand of various resources and to utilize the up-

grading computing devices, we proposed a multimedia fog computing platform. In this

platform, the fog provider receives the jobs from the fog users and schedules them to the

fog workers/devices. There are three main research problems: (i) prediction of the re-

quired amount of resources of the jobs, (ii) prediction of the available resources of the fog

devices, and (iii) scheduling the jobs and the fog devices. This thesis focuses on the pre-

diction of the available resources. We adopt three machine learning algorithms, namely,

the Random Forest, Gradient Boosting Tree, and Neural Network, and implement them

using open source libraries. Since each dataset has its own characteristics, it is necessary

to fine-tune the hyperparameters for each dataset when applying the algorithms. We apply

two datasets, desktop and datacenter datasets. The former is a self-collected trace lasting

for 1 month from the laptops or desktops of25 real users. The latter is an open dataset

lasting for3 months from500 machines in a datacenter. We use80% of both datasets and

perform10-fold cross validation to fine-tune the hyperparameters of the proposed algo-

rithms. The results show that the optimal hyperparameters for both datasets are different.

We note that when the fog provider applies new datasets, or when the dataset changes,

it is necessary to re-tune the hyperparameters. We implement a simulator and use the

rest20% of both available resource datasets and a real animation rendering jobs dataset

to drive our simulator. The simulation results show that: (i) the Neural Network-based

algorithm achieves6.08% and2.00% deviation in average for the desktop and datacen-

ter datasets, respectively, and (ii) more accurate prediction of the amount of available

resources leads to fewer failed jobs.

We are considering the following directions to improve our solution: (i) Collect more

information as features. For the collected traces, we may record more information such

as the age and career on the premise of not invading people’s privacy. Since people in ap-

proximate ages or with the same occupation may have similar usage patterns, using these

29

information as the features may be possible to improve the prediction accuracy. (ii) De-

sign a reliability mechanism. By recording the actual available resource and the individual

activities in our platform, we can determine the reliability of the fog worker/device. For a

fog device which has regular usage pattern, or for a fog worker who joins and leaves our

platform regularly, they can be considered with higher reliability. When scheduling the

jobs, fog workers/devices are prioritized to get jobs. (iii) Adopt more machine learning

algorithms. So far we adopt three machine learning algorithms for the available resource

prediction. There is no definite answer that which solution best fits our problem. We

are considering to adopt more state-of-the-art machine learning algorithms such as deep

learning. Last but not least, we are going to build up a real testbed of our multimedia fog

computing platform. Through a real working system, we may evaluate the feasibility of

our proposed solutions.

As we have mentioned in Chap. 1, we aimed at building the multimedia fog comput-

ing platform. There are three main research problems for ourplatform: (i) predicting the

required amount of the resources of the jobs from the fog users, (ii) predicting the avail-

able resources of the fog devices, and (iii) scheduling the jobs and the fog devices. The

previous work of our lab [23] has studied the first problem, where we use the RF-based

and GB-based algorithms to predict the completion time of thejobs. The difference be-

tween this thesis and the previous work is that, predicting available resources in a future

time is a time series prediction problem. Not only do we adoptthe algorithms that have

been used in the previous work, we further introduce the neural network algorithm in this

thesis. The results show that NN-based solution performs better accuracy, which encour-

ages us to adopt more machine learning algorithms that may besuitable for time series

prediction in the future. We are going to move forward to the rest of the problems to com-

plete the platform. When the fog provider is scheduling the jobs, there are more problems

to consider. For example, since a fog worker may leave the system at any time before

he finishes and submits the assigned jobs, it is unreliable toassign a job to only one fog

worker. One possible solution is to assign duplicate jobs tomultiple fog workers at a time.

When assigning more duplicate jobs may increase the reliability, it is, however, wasting

the resources of the platform. Optimizing the degree of the duplicate job assignment is

one of the problems we need to solve. Another problem is to verify the correctness of

the submitted results from the fog devices. In the future, weare going to solve the rest of

the problems and build up a prototype of the system to verify our proposed solutions in

practice.

Here we look into the idea of the fog computing platform from ahigher viewpoint.

As aforementioned, we want to ease the burden of the cloud platform. However, we still

use the cloud computing resources as a backup plan. That is, we plan to integrate the re-

30

sources from the cloud, the edge cloud, and the fog. The following are several challenges.

First, we need to deal with the uncertainty and heterogeneity of the fog workers/devices.

The fog workers have different kinds of usage pattern and habit of using his device. To

better scheduling the resources and jobs, it is necessary yet challenging to make predic-

tions, which are the problems studied in [23] and this thesis. The second challenge is the

dynamicity of fog users’ requests. So far we only use animation rendering as a sample

application. When we are considering a unified fog computing platform, the jobs from

the fog users can be other kinds of multimedia application. To utilize various personal

devices, it is challenging to distribute the jobs and make them executable on various op-

erating systems. The last one is to provide QoS guarantees onthe resource limited fog

devices. When there are a large amount of requests and many resource limited fog de-

vices, we need to tackle the QoS guarantee problem. Last but not least, we envision the

benefits that the fog computing platform can bring to our future, which makes it possible

to compute everywhere all over the world.

31

Bibliography

[1] BitBrains. https://www.bitbrains.nl/solvinity-en.

[2] Disney rendered its new animated film on a 55,000-core supercomputer.https:

//www.engadget.com/2014/10/18/disney-big-hero-6/.

[3] Microsoft developer network (MSDN).https://msdn.microsoft.com/

en-us/.

[4] Pixar by the numbers - from toy story to brave.http://collider.com/

pixar-numbers-toy-story-brave/.

[5] Pixar by the numbers - from toy story to monsters university. http://

collider.com/pixar-numbers-monsters-university/.

[6] Scikit-learn.http://scikit-learn.org.

[7] SETI@home.http://setiathome.berkeley.edu/.

[8] XGBoost.https://github.com/dmlc/xgboost.

[9] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. Lin.Learning from data, volume 4.

AMLBook Singapore, 2012.

[10] S. Akioka and Y. Muraoka. Extended forecast of cpu and network load on com-

putational grid. InCluster Computing and the Grid, 2004. CCGrid 2004. IEEE

International Symposium on, pages 765–772. IEEE, 2004.

[11] D. P. Anderson. BOINC: A system for public-resource computing and storage. In

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on,

pages 4–10. IEEE, 2004.

[12] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@

home: an experiment in public-resource computing.Communications of the ACM,

45(11):56–61, 2002.

32

[13] A. Andrzejak, D. Kondo, and D. P. Anderson. Ensuring collective availability in

volatile resource pools via forecasting. InManaging Large-Scale Service Deploy-

ment, pages 149–161. Springer, 2008.

[14] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the

internet of things. InProc. of ACM Workshop on Mobile Cloud Computing (MCC),

pages 13–16, Helsinki, Finland, August 2012.

[15] J. Brevik, D. Nurmi, and R. Wolski. Automatic methods for predicting machine

availability in desktop grid and peer-to-peer systems. InCluster Computing and

the Grid, 2004. CCGrid 2004. IEEE International Symposium on, pages 190–199.

IEEE, 2004.

[16] P. Brucker and S. Knust.Complex Scheduling. Springer, 2012.

[17] M. Carvalho, R. Miceli, P. D. M. Jr, F. Brasileiro, and R. Lopes. Predicting the

quality of service of a peer-to-peer desktop grid. InProceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pages

649–654. IEEE Computer Society, 2010.

[18] C. Dabrowski and F. Hunt. Using markov chain analysis to study dynamic behaviour

in large-scale grid systems. InProceedings of the Seventh Australasian Symposium

on Grid Computing and e-Research-Volume 99, pages 29–40. Australian Computer

Society Inc., 2009.

[19] S. Di, D. Kondo, and W. Cirne. Google hostload predictionbased on Bayesian model

with optimized feature combination.Journal of Parallel and Distributed Computing,

74(1):1820–1832, 2014.

[20] N. D. Doulamis, A. D. Doulamis, A. Panagakis, K. Dolkas,T. A. Varvarigou, and

E. Varvarigos. A combined fuzzy-neural network model for non-linear prediction

of 3-D rendering workload in grid computing.IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 34(2):1235–1247, 2004.

[21] J. Friedman, R. Tibshirani, and T. Hastie.The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2001.

[22] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workloadanalysis and demand

prediction of enterprise data center applications. In2007 IEEE 10th International

Symposium on Workload Characterization, pages 171–180. IEEE, 2007.

33

[23] H. Hong, J. Chuang, and C. Hsu. Animation rendering on multimedia fog computing

platforms. InIEEE 8th International Conference on Cloud Computing Technology

and Science (CloudCom). IEEE, 2016.

[24] B. Javadi, D. Kondo, J. Vincent, and D. P. Anderson. Discovering statistical mod-

els of availability in large distributed systems: An empirical study of seti@ home.

Parallel and Distributed Systems, IEEE Transactions on, 22(11):1896–1903, 2011.

[25] R. E. Kalman. A new approach to linear filtering and prediction problems.Journal

of basic Engineering, 82(1):35–45, 1960.

[26] D. Kondo, A. Andrzejak, and D. P. Anderson. On correlated availability in internet-

distributed systems. InProceedings of the 2008 9th IEEE/ACM International Con-

ference on Grid Computing, pages 276–283. IEEE Computer Society, 2008.

[27] S. J. Orfanidis.Introduction to Signal Processing. Prentice-Hall, Inc., 1995.

[28] K. Ramachandran, H. Lutfiyya, and M. Perry. Decentralized approach to resource

availability prediction using group availability in a p2p desktop grid.Future Gener-

ation Computer Systems, 28(6):854–860, 2012.

[29] B. Rood and M. J. Lewis. Grid resource availability prediction-based scheduling

and task replication.Journal of Grid Computing, 7(4):479–500, 2009.

[30] L. Sarmenta.Volunteer computing. PhD thesis, Massachusetts Institute of Technol-

ogy, 2001.

[31] L. Shang, Z. Wang, X. Zhou, X. Huang, and Y. Cheng. TM-DG: atrust model based

on computer users’ daily behavior for desktop grid platform. In Proceedings of the

2007 symposium on Component and framework technology in high-performance

and scientific computing, pages 59–66. ACM, 2007.

[32] L. Vaquero and L. Merino. Finding your way in the fog: Towards a comprehensive

definition of fog computing.ACM SIGCOMM Computer Communication Review,

44(5):27–32, October 2014.

[33] Y. Wu, Y. Yuan, G. Yang, and W. Zheng. Load prediction using hybrid model

for computational grid. In2007 8th IEEE/ACM International Conference on Grid

Computing, pages 235–242. IEEE, 2007.

[34] D. Yang, J. Cao, C. Yu, and J. Xiao. A multi-step-ahead CPU load prediction ap-

proach in distributed system. InCloud and Green Computing (CGC), 2012 Second

International Conference on, pages 206–213. IEEE, 2012.

34

[35] Y. Yuan, Y. Wu, G. Yang, and W. Zheng. Adaptive hybrid model for long term

load prediction in computational grid. InCluster Computing and the Grid, 2008.

CCGRID’08. 8th IEEE International Symposium on, pages 340–347. IEEE, 2008.

35

