E

IVREEYNE =17 3= Ik A= MW S
fif 3w
Department of Computer Science
College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

N % RS et - 2 P TRV E R AT A 1%
Predicting Resource Availability in a Multimedia Fog Compagtin
Platform

HHE
Yi-Ying Huang

E25E : 103062571
Student 1D:103062571

TEEH Y « RIENT Bt
Advisor: Cheng-Hsin Hsu, Ph.D.

HEERE] 1054 10 H
October, 2016

T A 2
i N

S TH-DEMEBEWE <BHE

o 2 S

o

S MR

10

D&

PEZ RIS - EARE (FINELNERETENFR) %
AR D ERERNERENEE o [SEAFNZHERERSNEREE
JREE A& T B W inp=E K o BN EREMER RMRAZ B ET
& (fog computing “FZAUMEE > BIE AR H Eimst B-F 2R AL
Ao FEIFEF o BRESIRALE (fog providen AR B HFNIRES (&

(fog users W TAE » i AcH T/EE 4 E (fog workers/devices °
HNEBMM S > FEF MM RSEE . (—) HERSRTERFRDN
i~ (Z) HHEETRENER - (=) SR T/EETHER
HEATHERR o AN S0 E e HIERER B R B IRET R o M
PR = (R H R 22 % - BB APk (Random Forest ~ 5 52 71 fif

(Gradient Boosting Trek S {HiZ%4H}# - (Neural Network » 3if: i F F
BB 2R A o I AR BERE R (desktop dataset 52
gL &R (datacenter dayas)éi WA EIRACE D BB REE
{5 F o B R O O RS < R T AR B R 4/5 17 L0V 28 S
i 15 AR EBE T TR 28 (hyperparameter o 45 RBUR
WAL BRI R S EB 2 ERANFD) o fEL TN > B RBS IRt E Bk A
FrOER > R ERE KB ERY WHEFREESE - RIMEH
AR B R T A L/5LA K BB B S R SR A TR o EERAE R
N () PRARAE R T B B A W A Bk AT B TEAME S E R 45 Bl
1#6.089612.00061 2 2 ~ (=) BUEREN] F &R & TR AT KBy
TAERWR D

Abstract

The personal devices such as laptops and smartphones agesheipped
with better hardware, which leads to stronger computindjteds. At the
same time, the demand of various multimedia applicatiogsires increasing
computational resources. We propose to build the multienéatj computing
platform, which aims at reducing the cost of using cloud cotimg. In this
platform, the fog provider receives the jobs from the fogrssad schedules
them to the fog workers/devices. There are three main relsgaoblems:
(i) prediction of the required amount of resources of thesjdb) prediction
of the available resources of the fog devices, and (iii) daheg the jobs
and the fog devices. This thesis focuses on the predictidheoAmount of
the available resources. We adopt three . machine learrgogitdms, namely,
the Random Forest, Gradient.Boosting Tree, and Neural Nepwarkimple-
ment them using open source libraries:. We apply two datadesktop and
datacenter datasets, where the traces come|from real uskrsachines in
the cloud datacenter, respectively. We 868&. of both datasets and perform
10-fold cross validation-to fine-tune the ‘hyperparametersefroposed al-
gorithms. The optimal combinations of the hyperparamdterisoth datasets
are different. We learned that when-the fog provider appl®s datasets, or
when the dataset dramatically changes, it is necessaryttmecthe hyperpa-
rameters. We implement a simulator and use the2@8t of both available
resource datasets and a real animation rendering jobsetiatadrive our
simulator. The simulation results show that: (i) the NeWNatwork-based
algorithm achieve$.08% and2.00% deviation in average for the desktop
and datacenter datasets, respectively, and (ii) more aiecprediction of the
amount of available resources leads to fewer failed jobs.

Contents

I B

Abstract

1

2

6

I ntroduction

Related Work

21 FogComputing e
2.2 SystemModeling
2.3 Availability Prediction e o

Research Problem

Solutions o

4.1 Solution Approachesii—a@is e, fa i .. oL Lo
4.2 Trace Collection & Used'Datasets = /.
4.3 Optimal Hyperparameters “is . ol oo v v v v o v e e e

Data-Driven Simulations
5.1 Setup
5.2 ReSUltS. e

Conclusion and Future Work

Bibliography

.11

List of Figures

1.1 Overview of our multimedia fog computing platform. 1
3.1 The architecture of our multimedia fog computing platio 8
3.2 The architecture of the available resource predictar.. 9
4.1 The procedure af0-fold cross validation. 16
4.2 The pseudocode of performing thdold cross validation. 17

4.3 Tuning the number of trees of RF-based algorithm for dgskiataset:

(a) R-square and (b) training time.* 7 1
4.4 Tuning the number of c'onsid_ered features of RF-basedthlgofor desk-

top dataset: (a) R-square aﬁd (b).training tme............. 18
4.5 Tuning the number of trees of G.B-.based algorithm for dgskiataset:

(@) R-square and (b) trainingtimes: ™.~ 8 1
4.6 Tuning the maximal depth of each tree GB-based algoritmadésktop

dataset: (a) R-square and (b) training time. 19
4.7 Tuning the number of considered features of GB-baseditilgo for

desktop dataset: (a) R-square and (b) training time. 19
4.8 Tuning the number of trees of RF-based algorithm for dettie dataset:

(@) R-square and (b) trainingtime. 0 2
4.9 Tuning the number of considered features of RF-baseditigofor dat-

acenter dataset: (a) R-square and (b) training time. 20
4.10 Tuning the number of trees of GB-based algorithm foraatter dataset:

(@) R-square and (b) trainingtime. 12
4.11 Tuning the maximal depth of each tree GB-based algofithofatacenter

dataset: (a) R-square and (b) training time. 21
4.12 Tuning the number of considered features of GB-basexdlitig for dat-

acenter dataset: (a) R-square and (b) training time. 22

5.1 Information of arrival jobs on each day: (a) the numbearokal jobs and
(b) total size of the arrivaljobs. 24

5.2

5.3

5.4

5.5

5.6

Deviation of three solutions for (a) desktop dataset @ddatacenter

dataset. 26
Simulation results for desktop dataset: (a) the coraglgibs ratio (%)

and (b) the number of failedjobs.| 6 2
Simulation results for desktop dataset: (a) the makeépaur) and (b)

the normalized CPU consumption. 27
Simulation results for datacenter dataset: (a) the ¢zegbjobs ratio (%)

and (b) the number of failedjobs. 7 2
Simulation results for datacenter dataset: (a) the smae(hour) and (b)

the normalized CPU consumption. 28

List of Tables

4.1
4.2

4.3

5.1

Sample statistics of datacenter dataset and desktapedst. 14
The optimal hyperparameters of RF-based algorithm fektde dataset

and datacenterdataset. L L o
The optimal hyperparameters of GB-based algorithm fekidg dataset

and datacenter dataset.

Statistics of the animation rendering dataset. 23

Vi

Chapter 1
| ntroduction

While the technologies are advancing, personal devicesautdptops and smartphones
are being equipped with better hardware, which leads tong&ocomputing abilities.
Meanwhile, the demand of various multimedia applicatia@wgiires increasing computa-
tional resources. To meet the demand, one possible solstiorrent the cloud servers.
However, it is expensive to fulfill extreme:demands of comagiohal resources solely
by purchasing cloud services. The're are seve"rgl limitatadrthe cloud computing. For
example, the cloud datacenter, s far away. from-the usersshwieads to long response
time. We propose to build a platform for-the multimedia apgiions based on the con-
cept offog computing which aims. at re_ducing_ the cost of using cloud computing. We
integrate the resources from the cloud; the edge cloud,lentby in our platform. The
cloud contains powerful machines. The edge cloud consfstievices such as routers
and WiFi access points. The fog contains personal devices asl desktop computers
and smartphones. There are many advantages by doing sodfople, the fog provides
many kinds of resources, including computational, commational, storage, and sen-
sory resources. Moreover, it reduces the network trafficdiysending everything to the

cloud.
Idling Resources Monitored Multimedia
Resources Applications
IS
< &
g

E

ﬁ_%
‘ Reals) 7))

Fog Provider Fog User

Fog Workers
Fog Devices

Figure 1.1: Overview of our multimedia fog computing plaitfo

Fig. 1.1 shows the overview of our fog computing platform faultimedia applica-
tions. The platform, ofog provider is the main manager of the system. It harvests the
computational, communicational, and storage resouraes thefog devicesand then
offers these resources to tfog users The fog devices include computing machines such
as the desktop computers and laptops, as well as the smaresgeuch as smartphones
and tablets. These devices are characterized by their dgmasrkload, i.e., they may not
always be fully loaded. For example, a desktop only workingsionple document pro-
cessing or a smartphone being charged may have much idBognees for extra comput-
ing tasks. The fog provider purchases these otherwise wesseurces from the devices
owners, calledog workers and resell these idling resources to the fog users. Compared
to the cloud computing platform, the fog computing platfasrmuch cost-effective by
saving costs of (i) buying factories and machines for thaakiter establishments, (ii)
building power distribution, cooling, and networking ssfsis, (iii) paying the electricity
consumption, and (iv) hiring administrative staffs to ntain the datacenter.

We consider the animation rendering as the sample multafedi computing appli-
cation. Animation rendering consumes'significant comgutesources, and the resource
demand is steadily increasing. In1995, Toy. Stdry requid @0 machine hours to ren-
der at 2 to 15 hours per frame [4]..In 2001, when rendering tbadters, Inc., Pixar spent
about 12 hours to render a single-frame with the-main characte[5]. In 2014, Disney
even needed to render Big Hero6 on a’55,000-core superconfgute[2]. As the qual-
ity of animation film improves, the demand and the cost on ¢ginelering farm increase as
well. It is a considerable cost to build a rendering farm otirey cloud resources to ren-
der the animation films. Therefore, we use animation rendeas a candidate application
for the multimedia fog computing platform.

While fog computing has aforementioned advantages for &r@meendering, the fog
devices and fog workers are characterized by their heteamtyeand uncertainty. Fog
devices include various computing devices with differgecsfications. The different
hardware integration leads to different computationabtégies. One animation render-
ing job may take different time periods to finish, which degeion the computational
power of the devices. In addition, the amount of residuabueses may also effect the
job completion time, e.g., a fully loaded desktop computéhWwetter hardware equip-
ments may not perform better than a mostly idling laptop. r&¥ea fog device behaves
constantly, its owner, the fog worker, may act uncertaiigr example, the fog worker
may turn on/off the device anytime, forget to charge up theode or move to a region
where the network signal is too weak to connect to the Interne

There are three main research problems for our multimedjadonputing platform.
The first one is to analyze the jobs from the fog users. Sineeethre various multi-

2

media applications, it is challenging to know the exact ekea time and required type
and amount of resources. In our scenario, we consider thmeation rendering as the
application. It requires a large amount of computationabueces since nowadays, each
frame contains so many materials. It also requires largagimetorage space to store the
raw data and the rendered results. If the fog user sets antulgadline for retrieving
the results, then stable and enough communicational res@ialso necessary. Hence, to
better utilize the resources, it is important to analyzejofss. The second one is to dis-
cover the usage pattern of the fog workers/devices andgirédi resource availability.
We assume that each fog worker has his own habit of using kisalelt may be effect
by personal lifestyle or his occupation. Whether and how nthelusage pattern is pre-
dictable differ from person to person. If the fog providealse to accurately predict the
available resources, he will be able to know how much regsucan be used in advance,
which may greatly help the job scheduling. After the fog pdev is able to tackle the pre-
vious two problems, the last problem is to schedule the jolostlhe available resources.
To improve the overall performance of.our platform, there several other issues to be
solved. For example, the predicted-results:may. turn out terbeg. In case the assigned
job cannot be completed as exp_ectéd, the fog provider may toegecide the number of
redundant rendering jobs. Namely, one rendering job igjasesito multiple fog devices
to guarantee that at least one of-them will be finished and &teshback successfully.
However, this consumes additional resourées_. The tradéaitreasing the redundancy
and avoiding resource wastes is a critical problem. Theipuswvork of our lab [23] has
studied the first research problem. As an-extension of tlsisareh project, this thesis
focuses on predicting the available resources of the fogdsy

Chapter 2

Related Work

2.1 Fog Computing

The concept ofog computingvas first proposed for Internet-of-Things applicationg[14
Since the centralized data centers are-unable to suppdeatémey-sensitive applications,
Bonomi et al. proposed the concept of fog computing. They défthe fog computing
as the extension of cloud computing to:the edgé networks chaeacteristics of the very
large amount of nodes include the mo‘bility, heterogeneaitg wide-spread geographical
distribution. Hence there are several chailénges sucheaserthestration and manage-
ment of the fog nodes. The Vaquero et al:i[32]} proposed a géned definition of the
fog computing. They further included. the resources of the @evices owned by the
public crowds into the definition. Collectively leveragirtetresources from datacenter,
edge networks, and the end devices, the generalized fogutorgprovides better sup-
port for multimedia applications. Since it takes advansagfeheterogeneous computing
resources, fog computing is a feasible choice for the deémsitive and resource-hungry
multimedia applications. The authors also pointed out nopen challenges ahead. Due
to the significant heterogeneity, it is critical to take caféhe problems such as discovery
and synchronization applications among the fog nodes dsaw#ie hardware limitations
of the devices.

There are some previous works similar to our concept of thiéimedia fog com-
puting platform. Sarmenta proposed the concept of volurdeeputing [30], which ag-
gregately utilizes the idling resources of desktops togrerfcomputationally-demanding
jobs, which is similar to our concept. The author mentioreasal research issues includ-
ing accessibility, applicability, reliability, and ecamdc issues. However, our platform is
different from the volunteer computing for several aspeEts example, volunteer com-
puting utilizes the resources from the volunteers. Theegfiley do not need to carefully
manage the resources. SETI@Home [12] is an experiment ilicp@source comput-

4

ing. Itis a volunteer computing application, which analyzadio signals from the space
and aims at detecting intelligent life outside the earthisnoject was launched in May
1999. [7] There have been millions of participants involwedhis project, which is a

very large-scale volunteer computing project. BOINC [11&igeneralized platform of

volunteer computing. It collectively aggregates the iglesources of the participants
and utilizes them for computational jobs of various fieldshsas mathematics, medical
science, environmental science, and astrophysics. Partis installed their application
can start contributing resources right away after conngdo the Internet. Different from

our multimedia fog computing platform, BOINC attracted tlodunteers by diverse long-
term and high-profile projects, such as finding aliens. Hetige platform does not face
some of our challenges, e.g., fog providers must guarahgdeatjob be completed on
time in order to meet the demands of the fog users.

2.2 System Modeling

Several studies have worked on-the availability modelindysystem modeling in the lit-
erature. Javadi et al. [24] aimed at.discovering' the subsithssimilar characteristics
and the availability models in a distr_ibljteﬂ system. Théaxgt applied three randomness
tests and finds out 21% of hosts:from the SETI@home datasetendnailability is in-
dependent of others and is distributed:in the.same way. Thenappliedk-means and
hierarchical clustering on those hosts, which optimalsutts in six clusters. The models
are evaluated using a resource brokering problem. Thetseswwed that their proposed
models are helpful for scheduling problem. Kondo et al. [@6p studied the availability
patterns and performed clustering techniques on the hdkis.authors examined hour-
in-day and day-of-week time features. After detecting th#guns, they used-means
clustering to determine hosts whose availability exhibitsilar time effects, which re-
sults in five clusters. The authors used a barrier synchatiniz application to show
how their correlated clusters improved the resource managein volunteer computing.
Rood et al. [29] presented the diurnal pattern of the usenhehiarough trace analyses.
The authors proposed a multi-state availability model dwih different availability states
and compared different predictors. They evaluated theracguof the predictors, which
outperforms existing solutions. They then proposed tlodirgplication technique which
improved job makespan with little redundancy. Shang el ¢onsidered user behavior
patterns on different days of a week. This study took adegsaf Dempster’s rules of
combination. The simulation results showed that their rhode take advantages of the
reliable nodes, which reduces the communicational burdenraproves the processing
power. Dabrowski et al. [18] utilized Markov chain model imalate large-scale grid

5

systems. The commercial success of the grid technology sniakecessary to develop
an analytical tool for simulating a complex system. The argHirst proposed the state
transition model for one task and then aggregated multgs& states, which is repre-
sented as a piece-wise homogeneous Markov chain. Theirlsiodgates a grid system,
and the Markov chain procedure consumes little computaki@sources.

2.3 Availability Prediction

Andrzejak et al. [13] computed a Nee Bayes classifier for each host to predict the CPU
availability. The authors assumed that the CPU of a hostheeilt00% available or 0%.
The evaluation results using traces from SETI@home prajectved that the proposed
solution can achieve 95% or greater accuracy. This studgmeed classification, which
only predicts whether a host is available or not. Our prediperforms regression, which
aims at a more accurate resource usage value. Brevik et #lugEsl one parametric
and two non-parametric prediction technigues to prediot fomg a host will be avail-
able. The authors applied three different datasets and@@djphe performances of three
techniques. The experimental results_showed that the @aearastimate technique is
sensitive to the characteristics of the apblieq data an@ihemial Method performs the
best. Carvalho et al. [17] proposed a prediction-model fopuese availability of a peer
in a peer-to-peer (P2P) desktop grid. ‘The ‘proposed methbdsisd on the Network of
Favours incentive mechanism. The authors found that higdsgurce contention leads
to larger prediction errors. Ramachandran et al. [28] algdistl the resource availabil-
ity prediction in a P2P desktop grid. In their architectuhs monitoring and prediction
engine logs the resource and group availability data peadlg. They used the previ-
ous week’s data to calculate the current week’s availgbilithe prediction results help
reduce the job migrations (job interruptions). Akioka et[20] applied Markov model-
based meta-predictor for one-step-ahead prediction oE#lg and network load. Their
solution takes seasonal variation for both resources iotsideration. The proposed
method can perform prediction for hours to days. To bettbedule the resources in a
grid environment, Wu et al. [33] proposed a hybrid model tedict the available grid
resources. Their solution integrates autoregressive haodetwo filters, the Kalman fil-
ter [25] and Savitzky-Golay smoothing filter [27]. They firsduced the data noise by
using the two filters, recursively computed autoregressoedficients and predicted the
value for future time points, and filtered the results for sthing. The results showed
that they can achieve up f-step-ahead prediction with prediction mean square error
of 0.04 on average. Yuan et al. [35] improved this work by proposinmemeter-level
adaptive method based on the previous hybrid model. Yan§j B4 also proposed a

6

multi-step-ahead prediction approach. Instead of diyqmikdict the load statistics, they
decomposed the steps. They first predicted the change rénige GPU load, and then
predicted the change direction, i.e., increase or decr@dsa they composed both results
as the final prediction. When performing the compositionglieng strategies, including
majority rule strategy and uniform decline strategy, anaize learning algorithm, Ad-
aboost algorithm, are applied. Doulamis et al. [20] usedr@idlering as the application.
The authors considered both modeling and workload prexictsing a combined fuzzy
classification and neural network. They investigated theeelering algorithms, the ray
tracing, the radiosity, and the Monte Carlo irradiance asialyThey conducted exper-
iments which showed the great performance of their propssédions. Di et al. [19]
designed a prediction method using Bayesian model and igagéstd the most effective
combination out of a set of candidate features. They used@y@dwace which includes
more than ten thousand heterogeneous hosts for experinidreg compared their pro-
posed solution against several other algorithms, inclydmethods related to the moving
averages, auto-regression, and noise filters. They rumadeypes of evaluation with dif-
ferent combinations of training and-testing-periods. Tisallts show that their proposed
solution outperforms others in t(_arm's of the long-term preain accuracy. They also im-
proved the precision of the pattern prediction under a |laddriring scenario. Gmach et
al. [22] characterized the workload deménd-patterns anplgsexd a workload placement
service. They aimed at efficiently utilizing-the resourcelpdor a large number of enter-
prise services. They run the evaluation using the data ahsimths involving more than
one hundred enterprise applications. Their results shdhaidthe prediction accuracy
achieves resource savings. They also found that the watktead prediction is helpful
when it is used for reasonably recent trend.

Chapter 3
Research Problem

The fog provider needs to schedule jobs from the fog userdtandvailable resources
from the fog devices. However, it is impossible to know ekalsbw much resources the
fog devices can provide in a certain future period. Thus veehistorical data to predict
this information. Itis naive that accurate prediction o tvailable resources can help job
scheduling in our platform. Each user may -have his own usagerp, which includes
daily and weekly regularities. We.apply machine learningdpstors as our solutions to
predict the resource availability .in a futuretime beriod.

| Completed Results |

Completed
Job Monitoring
Data

rr—r-rr-----------rYr_-—_-—_-—_-—-=—— i
| |
| |
: Completion Available Resource :
: Time Predictor Predictor :
: Prediction Prediction :
| S S

! Result Job Scheduler Result :
| |
| |
| | | I
| |
| |
| |

Main System

Figure 3.1: The architecture of our multimedia fog compgiftatform.

Fig. 3.1 illustrated the architecture of our multimedia fugmputing platform. Our
platform works as follows. When a person agrees to sell thagdiesources of his
machine, some general information about this fog devicéisbeichecked, such as the
number of its CPU cores, the CPU speed, and the amount of its RAMn The fog
provider continuously monitors the resource usage of tigewforkers. The monitored
resources include (i) computational resources, such as GERILRAM utilization, (ii)
storage resources, such as disk utilization and its 1/Odspeeed (iii) communicational

8

resources, such as the network type, speed, and transingitteided amount of data.
Above-mentioned resources are sampled at a predefinecefreguThe statistics along
with the timestamp are stored as the historical data. Thiéabl@resource predictor uses
the historical resources usage data to predict the amoavidable resources in a future
period. We assume that a fog worker with steady usage patitaynbe more easily to
predict. For example, a student who keeps regular hours maglly charge his smart-
phone at night, which consequently has much idling ressuwloeing some certain hours
of a day. The available resource predictor uses historiatd tb make prediction, and
uses actual data to compare with the predicted results taisether a fog worker has a
steady usage pattern. On the other hand, the charactemstibe rendering jobs, such
as the number of frames, polygons, and textures, are rat@slevell. These data are
used to predict the completion time of the rendering jobsnTthe job scheduler uses the
predicted available resources and the completion timehedide the job assignment to
the fog devices/workers. The rendering jobs will be distildl to the fog devices accord-
ing to the assignment from the job scheduler. After the fogads finish rendering, the
rendered results will be sent back-to the fog users. The atraiwonsumed resources
and the actual completion time are recorded and sent bable tog provider. The actual
statistics can be used to compare with the predicted oneshwan help the fog provider
more accurately perform the predictions: We highlight theilable resource predictor in
fig. 3.1 since it is the main focus of this thesis.

Fog Devices Job Scheduler [~
Monitoring Data
r—————————- 1 [_ _________ |
: Historical Data : : Available Resource ;_ Prediction
| Storage | | Predictor : Result
ez 1 e
o Predictor
Historical Data
T T T T T T T

Available Resource Predictor

Figure 3.2: The architecture of the available resourceipi@d

Fig. 3.2 gives a more detailed architecture of the availaeddeurce predictor. As we
mentioned above, the general device information and m@dteesource usage data will
be stored in the historical data storage. Currently, we assagh fog device a serial
number as the unique ID. To generate the predictor, we hawwraneter tuner. It is
responsible for tuning the hyperparameters and the paeasndyperparameters are the

9

parameters that are chosen by human beings offline, whicheamed using the large
historical data. By contrast, parameters are updated meguéntly to deal with the
dynamics of the data, e.g., new versions of fog applicationsnline updates of the model
parameters. With the fine-tuned parameters, we generagaédector, which produces
the prediction results and sends to the job scheduler onmgma

Then we describe our regression problem in detail. bt the set of all the machine
learning algorithm predictors that the fog provider usest R be the set of all kinds of
resources that the fog provider takes into consideratioanwte is scheduling the jobs.
For each algorithny € F, we determine its hyperparameters and train the parameters
for each of the dataset, which we denote By and P, respectively. LefD be the
historical data of the resource availabilityd is a matrix of the historical data, where
each row consists of the amount of available resources anddiected features. For
each considered resource= R, D, represents that each row consists of the amount of
available resource and the rest of the collected features. The objective of egiression
problem is to obtain the estimated valuig of the available resourceof a future time
instantt, wherev,, is the actual value of the available resourcef that future time
instantt. We aim at predicting the resultsof a future time period, aeset of successive
time instants. To simplify the formulation, successivendv within a time periodI are
rearranged to the vectgr r andy, ., -représenting the estimated and actual values of the
future time periodl’, respectively, The regréssi_on predictor can be charaetas

gT,T - F(Dr»HapaT)v (31)

where we cally the targetof our regression problem. That is, the fog provider first
chooses one of the machine learning algorithm predictodstla target resource to
predict. The historical data, the hyperparameters and ananpeters for this predictor,
and the target time interval are used as inputs. Then thegwedutputs the estimated
resource availability. Note that the predictors for eachsidered resource are computed
separately. It is because that we believe that for each fagexodifferent resources
should have its own pattern. For example, for a desktop owgeaistudent, the compu-
tational resource such as CPU may go high during daytime Bedaiis working hard or
playing games. Then the usage goes down during nighttimausedhe student goes to
sleep. As for the communicational resource such netwoddutinput, on the contrary, it
may go high during nighttime because the student is dowimgddrge files when he is
sleeping. Considering the difference of the resource usaigerps, we choose to compute
predictors for each resource separately.

10

Chapter 4
Solutions

We give details about our three solution approaches in #t§an. Since we conduct
data-drivensimulations, we describe the datasets we employed heren Waeshow the
process of tuning the hyperparameters of our predictors.

4.1 Solution Approac;hes

There is no standard answer for-which rﬁa_ch_ine learning lhgoibest fits a certain pre-
diction problem. Each algorithm méy leadtoits-accuracy exetution time depending
on how it constructs the predictor.. The fog provider may cwothe algorithm accord-
ing to the demands, such as the characteristics of the irgiat dxecution time, or the
accuracy. We consider three state-of-the-art machinailgpapproaches, Random For-
est, Gradient Boosting Tree, and Neural Network. Namely,et®|= {RF, GB, NN}.
Three algorithms have been used for regression problerok,asiWeb search ranking,
human pose estimation, computer vision, and speech hamtyvrecognition. Based
on these three algorithms, we have developed Random Fasstl{RF-based), Gradi-
ent Boosting Tree-based (GB-based), and Neural Networkdbalgerithms using open
source libraries from scikit-learn and xgboost [6, 8].

Both RF-based and GB-based algorithms are tree-based ensaetbieds, but they
are different from each other in the way of constructing tredjztion model. Ensemble
methods combine the prediction results of multiple basgnesbrs to improve the ro-
bustness over one single estimator. Although using maltstimators consumes longer
computation time, it usually leads to better accuracy. Eide methods construct their
base estimators with a given learning algorithm. RF-basgdrithm generates a num-
ber of independent decision trees. Each decision treeirsettavith random samples
from the training data. That is, when RF-based algorithm toots a decision tree, it
randomly selects several features and then randomly speaifihreshold value for these

11

features. It splits the dataset using previously seleaatufes and thresholds, and se-
lects the new feature and the threshold that reduce the stigla¢a entropy. RF-based
algorithm then makes predictions by averaging all decisiees’ prediction results. The
bias of RF-based algorithm usually slightly increases duiagéorandomness existed in
this algorithm. However, the averaging decreases then@javhich can compensate for
the increase because of the bias. Hence it can perform liedieia single decision tree.
In contrast, GB-based algorithm consists of a sequence &8 trea stage-wise fashion.
Each successive tree is built to predict the residuals opteeeding one. GB-based al-
gorithm’s trees are trained and combined using a more sigatsd weighting scheme.
Readers are referred to Friedman et al. [21] for more detaiRandom Forest and Gra-
dient Boosting Tree. NN-based algorithm is a relatively cboaped method. The neural
network consists of multiple layers, including input layleidden layer, and output layer.
Each layer contains one or more corresponding neuronsthesinput/output layer has
input/output neurons, and the hidden layer has hidden neurtm the neural network,
neurons at each layer are connected to the ones at the nekt THyese connection are
called synapses. Each synapse has its weight; which isl@eddwduring the training pro-
cess. At the beginning of the training phase, the neural orétwsed the input neurons
and random weights to generate the output neurons. Thecpeddialue are compared
with the actual output. Then the results are used to adjestvirights of the synapses.
The weights is updated according to'the Iéar_ning rate, wisichparameter that can be
determined for this solution. :

4.2 TraceCollection & Used Datasets

To run the simulations, we build up a trace collection progiesing C++. We call this
self-collected traces agesktop datasdor simplicity and denote it byD4.. We use the
open APIs provided by Microsoft [3] to get the machine infation and resource usage
statistics. Our program generates two files and stores tbeatly on the machine. Both
recorded data of the computational, storage, and comntione resources. The file
containing the machine information records the followinfprmation:

e Computational resources. the CPU speed, the number of the cores, the size of the
virtual memory, and the size of the physical memory.
e Storageresources. the size of the disk.

e Communicational resources. the description string of the network interface in use
and the type (Ethernet, IEEE 802.11 Wireless, IEEE 1394nkies IEEE 802.16
WiMax, and others).

12

The other file containing the resource usage statisticgdedbe following informa-
tion:

e Computational resources. the CPU utilization, the used amount of the virtual
memory, and the used amount of the physical memory.

e Storage resources. the used amount of the disk and the read/write speed of the
disk.

e Communicational resources. the maximal speed of the network interface and the
amount of the received/transmitted data.

The trace collection program records the above statistits the timestamp every0
seconds. We find5 volunteers for the trace collection where most of them aaelgate
students. Volunteers install our program on their machilesktop computers or laptops)
and submit the generated files. Most of them say that the resaononitoring program
did not make any effects to their daily use. Only one has tluason that the program
uses so much memory that he needstorestart it from time & tim

We further employ gerformance metrics.datasgi] to drive our simulator. The per-
formance metrics dataset is the resource .usagé records wirthal machines (VMs) of
a datacenter from BitBrains, a service provider serving mangrprises. The datacenter
dataset contains the resource usage statistics, inctuding

e Computational resources. the CPU cores, the CPU capacity, the CPU utilization,
the size of memory, and the memory usage.

e Storageresources: the disk read/write throughput.

e Communicational resources. the network received/transmitted throughput.

The dataset contains two subsets. One records the s&tétic250 VMs for 1 month,
while the other one records that @0 VMs for 3 months. We only adopt the latter one
with statistics of500 VMs, where the collection period is between July and Sep&mb
2013. For simplicity, we call the adopted sub-datasetttacenter datasen the follow-
ing manuscript and denote it By s.

The above-mentioned two datasets are used in our simuatienD = {Dge, Dya}-
From the collected data, our considered resources areitizatinn of CPU, the utiliza-
tion of memory, the usage of disk, and the network throughiufR = {CPU, MEM, DISK, NWK}.
As we have mentioned in 3, we choose to compute predictoesidn resource separately
since we consider the difference of the resource usagepattan the rest of the thesis,
we consider the utilization of CPU as an example. Namely, we le CPU and use
Dcpy as the training data, if not otherwise specified. For job daheg, we temporarily

13

only consider the CPU resources for now. Taking other ressurto consideration for
scheduling is a part of our future work. We use two datasetgdathe following reasons.
Our platform aims at recruiting fog workers who are real ssarthe world. To get a
more convincing dataset, we build up our own resource monggrogram and invite
real users to install it. During the trace collection, we@anter the situations that may
also happen to the fog provider, e.g., the fog devices areetuoff or are disconnected
from the Internet from time to time. We believe that the depkdlataset would produce
the simulation results closer to the reality. Nevertheldsg to the limit of time and re-
sources, we are unable to collect the statistics for such@ period and a large amount
of users. Thus we employ the datacenter dataset. This tiegdke records of VMs in a
datacenter, where the VMs are launched according to the’'usguirements. Normally,
there would not be idling resources. Since the enterpriggdqy the resources they rent,
they would not waste any of them. While we want to get insigtd the idling resources
of the machines, this case may not perfectly fit our scen&@vertheless, we can con-
sider the required resources from the enterprises as tiseicw@d resources by a real user.
Then there may also be usage patterns-in-this.dataset. Tiitg oddhe desktop dataset
and the quantity of the datacenter datasetare the mainmeasoadopt two datasets.

As listed above, we collected usage;statistics includingmatational, storage, and
communicational resources. Aceording-to different reseudemands of the jobs from
the fog users, the fog provider may need to predict differespurces in a future period
accordingly. In our simulation, we use the CPU utilizatioe, i the percentage of the
CPU usage, as our prediction target. Since we record the glenésrmation of each
fog device, we can acquire the exact amount of predictedadnlai CPU resources by
multiplying the CPU utilization by the CPU speed. When we finisgddjction, we use the
actual amount of predicted CPU resources to schedule therniagdobs.

Datacenter Dataset Desktop Dataset
Type of node VM in datacenter | desktop or laptop of a real user
Total # of nodes 500 25
Period 3 months 1 month
Sampling frequency 5 minutes 10 seconds
Total # of records 12,496,728 2,967,335
Avg. # of records 24,993 118,693
size of training set 9,997,696 2,373,909
size of testing set 2,499,032 593,426
of features 9 9
Prediction target | CPU utilization (%) CPU utilization (%)

Table 4.1: Sample statistics of datacenter dataset andogedatasets.

14

Table 4.1 provides some sample statistics of datacentetesidop datasets. As afore-
mentioned, the datacenter dataset contains recorg$)dfMs and the recording period
lasts for3 months. The sampling frequencysisinutes per record. There arg, 496, 728
records in total. Averagely, each VM ha$, 993 records.

According to Abu-Mostafa et al. [9], it is recommended toere a portion of the
dataset for testing, where the practical rule of thumb isetgervel /5 of the dataset.
Following the suggestions, we reservé of the whole dataset as the testing set for the
final testing. Namely, we perform the training procedusee, thel 0-fold cross validation,
on the restl/5 of the dataset as the training set. The testing set is usedttdate the
future data and is completely exclusive to the training pdare. The reason is to prevent
the generated predictor from knowing the future data in adeawhich keeps the fairness
and cleanness.

Therefore, for the datacenter dataset, we resgpVé of the dataset as training set
and the res20% as testing set. That i9, 997,696 and2, 499, 032 records are used for
training and testing, respectively. On the.other hand, gskibp dataset contains records
of 25 real users’ personal devices; including desktop compuatedslaptops, where the
recording period lasts for mont. The sampling. frequency 19 seconds per record.
There are2, 967, 335 records in total."Av_eragely, each node has, 693 records. We
split this dataset in the same way.: ThaBit (which equals ta@, 373,909) and 20%
(which equals t@93, 426) of the dataset are'used as training and testing set, resggct

Both datasets have the foIIowiIQgeétures:

e id: a unique ID for each node as an integer, e.g., 1, 2, ...

e epoch: the number of seconds since 1970-01-01 08:00:00iateger, e.g., 1451577600
for 2016-01-01 00:00:00.

e daylnMonth: the day of the month as an integer, e.g., 1,,31..

e daylnWeek: the day of the week as an integer, where Mondawmsl Sunday i3,
eg.,1,2, ..,7.

e isWeekend: whether the epoch time is between Saturday amth$as an boolean
value, e.g., 0 and 1.

e hourlnWeek: the hour of the week as an integer, e.g., 0, 167.
e hourinDay: the hour of the day as an integer, e.g., 0, 1,3.., 2
e minute: the minute of the hour as an integer, e.g.,0,19..,5

e daySlot: which slot of the day as an integer, where a day is ispb three slots,
e.g.,,0forOa.m.to7a.m., 1for8am. to 3 p.m., and 2 for 4 poil p.m.

15

The prediction target for the two datasets are both CPU atibn (%). Since we
possess the CPU speed of each node, itis equivalent to piteeliexact used CPU and the
CPU utilization. To keep a smaller data scale, we choose aigirthe CPU utilization.
When the prediction results is used for scheduling, the sdbechultiplies the utilization
by CPU speed to obtain exact CPU resources for decision making.

4.3 Optimal Hyperparameters

Hyperparameters are the preconfigured parameters thatatamenearned during the
training process. These parameters effect the structutkeoprediction model. That
is, different values of the hyperparameters lead to coralylelifferent models. They are
chosen by human beings offline by applying historical data.

_ A,
v trair

Round 1 | D D

Round 2 D, Diain Ay
Round 10 D, D Ao

ain

Figure 4.1: The procedute 06-fold cross validation.

For training, we performy/-fold cross validation to acquire the optimal hyperparam-
eters for the RF- and GB-based predictors. According to Abstifa et al. [9],V/-fold
cross validation is generally preferred over single vdiata 5-fold and10-fold are usu-
ally adopted. In practical, the rule of thumbWs= 10. Hence we perform0-fold cross
validation for training. Fig. 4.1 illustrates the procedwf the10-fold cross validation.
The whole dataset is split intt) equal-sized folds. In each round, one fold is used as
the validation seD,, and the rest folds are used as the training 9e¢.i,. The model is
generated by applying the training set and then evaluateéldeoyalidation set. This pro-
cedure repeati) times until each of the0 folds has been used &% once. Each round
i generates an performance scdre The final performance is the average of tideper-
formance scoresd = % Z}il A;. Fig. 4.2 illustrates the pseudocode of performing the
k-fold cross validation.

There are several hyperparameters for RF- and GB-based forsdidNVe perform
the cross validation on different combinations of valued eimoose the set with the best
performance. Note that we do not train the hyperparametdystb algorithms for both
datasets on the same machine. Because training the varimisagions consumes much

16

: Let A[l1,2,..., k| be anew array

. Divide the training data inté folds

. fori=1tokdo
Train and generate the model usihg- 1 folds except the'” fold
Test the model using thé" fold and calculate the performance scare
Alil =a

return Average(A)

N o g A w Ddh R

Figure 4.2: The pseudocode of performing thold cross validation.

time, we distribute the computational tasks to two machinasnely, an Intel 2.3 GHz
workstation and an Intel 1.6 GHz desktop. The differencéefttvo machines results in
incomparable execution time. Therefore, we train the hyaemeters in the following

way.
0.85r— 200

| T =7
0.84 :5/15(}

£ 0.83 2
= 5 100

o 0.82 : .%o
2 |
0.81 ; 50

10 30 50 70 90 110130150 10 30 50 70 90 110130 150
Number of Trees Number of Trees

(a) (b)

Figure 4.3: Tuning the number of trees of RF-based algorithndésktop dataset: (a)
R-square and (b) training time.

The following are the procedures how we tune the hyperpaemef both algo-
rithms for desktop dataset. For RF-based solution, the ipgpameters include (i) the
number of treeg and (ii) the number of considered featuresNamely,Hgr = {¢, f}.
Fig. 4.3 shows the R-square scores and training time witkreifft trees within the range
t = {2,4,8,10,20,...,150} when f = 7. We run the training program on an Intel 1.6
GHz desktop. We find that, when the number of trees increfisefR-square scores do
not improve much, and the training time keeps increasingce&Siwhent = 80, the R-
square score is slightly higher than the others, we mansatlyas80. We then fixt and
vary the number of considered features within the rafige {1,2,...,9}. We find that
the number of considered features do not have obvious sftecR-square results (see
fig. 4.4). We then choose to consider all the features, nanfiely9. That is, the optimal

17

0.85 120

=
0.845 g 109
g 2 80
=) R
= 0.84 =
o % 60
=
0.835| E 40
oc83—— —n 00— 20—
1 2 3 456 7 89 1 2 3 45 6 7 8 9
Number of Considered Features Number of Considered Features

(@) (b)

Figure 4.4: Tuning the number of considered features of Réedbalgorithm for desktop
dataset: (a) R-square and (b) training time.

hyperparameters fdDqe is Hrg = {t = 80, f = 9}.

1 80
)
Z 60
o 0.5 =
5 b &
% &= 40
X o &
o
220
H
05— -
10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100

Number of Trees Number of Trees

(@) (b)

Figure 4.5: Tuning the number of trees of GB-based algoritbndésktop dataset: (a)
R-square and (b) training time.

For GB-based solution, the hyperparameters include (i) tineber of trees, (ii) the
maximal depth of each tre¢ and (iii) the shrinkage (i.e., the learning rate). Namely,
Hgg = {n,d,s}. Fig. 4.5 shows the R-square scores and training time wiflerdift
trees within the range= {2, 4,8, 10, 20, ..., 100} whend = 30 ands = 0.1. We run the
training program on an Intel 2.3 GHz workstation. The nundfdreesn = 30 performs
the best. Therefore we fix the number of tree8(aand vary the rest two hyperparameters
within the rangesl = {5, 10, ...,50} ands = {0.05,0.1,0.2, ..., 1}. Following the same
procedure, we find that the maximal depth= 20 and the shrinkage = 0.2 leads
to the optimal R-square scores (see fig. 4.6 and 4.7, reselgtivlhat is, the optimal
hyperparameters fdDge is Hgg = {n = 30,d = 20, s = 0.2}.

18

o
©
[e2]
o

0.8 550
£ 40
£0.7 g
=] & 30
e 06 220
g
0.5 ;B 10!
0.4 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 10 20 30 40 50
Maximal Depth of Each Tree Maximal Depth of Each Tree

(@) (b)

Figure 4.6: Tuning the maximal depth of each tree GB-basedritthgn for desktop
dataset: (a) R-square and (b) training time.

0.88 11
=
0.86 £10
£ 0.84 2
~ 0.82 2
g
o= 8’
0.8 £
0.78 ‘ ‘ ‘ ‘ ‘ 7 ‘ ‘ ‘ ‘ ‘
0O 02 04 06 08 1 0O 02 04 06 08 1

Shrinkage Shrinkage
(a) (b)

Figure 4.7: Tuning the number of considered features of G&talgorithm for desktop
dataset: (a) R-square and (b) training time.

We tune the hyperparameters of both algorithms for dataceddtaset. Fig. 4.8
shows the R-square scores and training time with differedgstiwithin the range =
{2,4,8,10,20,...,90} when f = 7. We run the training program on an Intel 1.6 GHz
desktop. The results are similar with that of desktop dataséen the number of trees
increases, the R-square scores do not improve much, ancihiedytime keeps increas-
ing. Since whernt = 40, the R-square score is slightly higher than the others, we man
ually sett as40. We then fixt and vary the number of considered features within the
rangef = {1,2,...,9}. The R-square scores keep improving when the number of con-
sidered features increases. Although the improvementeoRtsquare score slows down
after the number of considered features reac¢h@ee fig. 4.9). We then choose to con-
sider all the features, namely, = 9. That is, the optimal hyperparameters 10g, is

19

6004
=
g

o 0.97, 450,
g g

[?; = 300
~ 0.96 &

Z 150
H

o0%5+——7—+— o
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Number of Trees Number of Trees

(@) (b)

Figure 4.8: Tuning the number of trees of RF-based algorithmadatacenter dataset: (a)
R-square and (b) training time.

1 350
=
0.9 E 3004
£ ¢ 250,
=0.8 S
s 2 200
| 2
0.7 S 150!
oc6n 0407n"-¥07""7" 7 o0 —————
1 2 3 45 6 7 8 9 1 2 3 45 6 7 8 9
Number of Considered Features Number of Considered Features

(@) (b)

Figure 4.9: Tuning the number of considered features of R¥edbalgorithm for datacen-
ter dataset: (a) R-square and (b) training time.

Hgr = {t = 40, f = 9}.

For GB-based solution, we perform the training procedurelairto that of desktop
dataset. Fig. 4.10 shows the R-square scores and trainiegitith different trees within
the rangen = {2,4,8,10,20,...,100} whend = 20 ands = 0.1. We run the training
program on an Intel 2.3 GHz workstation. The number of trees 20 performs the
best. Therefore we fix the number of trees28sand vary the rest two hyperparameters
within the rangesl = {5, 10, ...,60} ands = {0.05,0.1,0.2, ..., 1}. Following the same
procedure, we find that the maximal depth= 15 and the shrinkage = 0.2 leads to
the optimal R-square scores (see fig. 4.11 and 4.12, resplggtivi hat is, the optimal
hyperparameters fdDy, is Heg = {n = 20,d = 15, s = 0.2}.

The hyperparameters of RF-based algorithm for both datasethowed in 4.2, while

20

06— 150

| £l
0.5 éloo
2 0.4 2
= R=
g =
e 03 2 50
5
0.2 E
10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100
Number of Trees Number of Trees

(@) (b)

Figure 4.10: Tuning the number of trees of GB-based algorfibmaatacenter dataset:
(a) R-square and (b) training time.

0.7 : : : : : : 100
0.6 2 80
)
% 0.5 g 601
g =
o 0.4 t%o 401
i
0.3 © 20
=
0.2 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 10 20 30 40 50 60
Maximal Depth of Each Tree Maximal Depth of Each Tree

(@) (b)

Figure 4.11: Tuning the maximal depth of each tree GB-basgati#thm for datacenter
dataset: (a) R-square and (b) training time.

Desktop Datasel)q. | Datacenter Datasei) g,
Number of Treest, 90 40
Number of Features, 9 9

Table 4.2: The optimal hyperparameters of RF-based algorithh desktop dataset and
datacenter dataset.

that of GB-based algorithm for both datasets are showed in |4 tBe rest of the thesis,
we applied the hyperparameters derived from the tuningga®mentioned above if not
otherwise specified. We acknowledge that those derivecesadwedata-driven When
the characteristics of the data dramatically change, ieseasary to re-tune the hyper-
parameters. Moreover, when the fog provider applies newhmadearning approaches,
it is necessary to fine-tuned the hyperparameters followimgve procedure. Note that

21

0.65 30
E]
0.6 £ 25|
:
=0.55 = 20
c ¥
0.5 g 15 .
=
0.45 ‘ ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘ ‘
0 02 04 06 08 1 0O 02 04 06 08 1
Shrinkage Shrinkage

(@) (b)

Figure 4.12: Tuning the number of considered features of @80 algorithm for data-
center dataset: (a) R-square and (b) training time.

Desktop Datasel)q. | Datacenter Datasdbga
Number of Treesy 30 20
Depth of Treesd 20 _ 15
Shrinkage s O L 0.2

Table 4.3: The optimal hyperparame't_ers_ of GB-based algoritr desktop dataset and
datacenter dataset. : -

we tune the hyperparameters for the two datasets sepata¢elguse they are collected
in different settings and from completely unrelated obprctiups. For each dataset, we
combine the traces of all the nodes/users as one dataseé B&assume that there may
be relations of the usage patterns of the individuals. Famgte, in the desktop dataset,
most participants are students. People with geographiocaimity, the same career, or
other similarities may have similar usage pattern. Thefgnmation can also be encoded
as a feature and be used as the input for the machine leadgimgtlams. Collecting this
kind of information for predictor training is a part of ourtfwe work. Note that there are
more hyperparameters that can be tuned. We choose thelsevesdhat we consider the
most important as example. Note that we also try tuning tipeiparameters for the NN-
based algorithm. However, the results do not show obviearsls. Hence we empirically
choose to use one single hidden layehidden neurons and the learning rateé)af, and
do not show the procedures in the thesis.

22

Chapter 5
Data-Driven Simulations

In this section, we show the setup and our simulation results

5.1 Setup
We implemented a simulator of our.multimedia_ fog-computifagfprm using Java.
Feature .7 |~ Mean Std.
CPU Usage (%) 4= 1oL7g 11.7

RAM Usage' (KB) -380.7 147.5
Number of Frames | /11139, | 76.7
Number of Polygons | 63512.6 | 332868.8
Image Size (Pixels) | 131161.6| 17453.5
Completion Time(s) 104.1 194.2

Table 5.1: Statistics of the animation rendering dataset.

Our simulator requires the inputs for (a) the available veses of the fog device and
(b) the animation rendering jobs.

As we have mentioned in 4.2, we reseiy® of both dataset as the testing set for the
simulation. Datacenter dataset tad99, 032 records for testing, while desktop dataset
has593, 426 records. Each record contains the timestamp, the actualisnod avail-
able CPU resource, and the predicted amount of available Csduimee. Since the start
recording time is different for each node in both datasetus& Poisson process with a
mean arrival rate. = 30 minutes to generate the device arrival time. During eaclusim
lation, each device will be assigned its arrival time getestdy the Poisson process. For
one device, we subtract the first timestamp from the timgstaihevery resource record.
That is, we shift all the timestamp to let the timestamp of fir& record be). When
the simulation starts, we add the assigned arrival time fileerPoisson process to every

23

timestamp for that device.

X 104‘ ‘ ‘ ‘ ‘ ‘ ‘ X 10?

w H
MB)
w A

=
=

Total Job Size (
N

Number of Total Jobs (k)
N

o
o

Figure 5.1: Information of arrival jobs on each day: (a) thenber of arrival jobs and (b)
total size of the arrival jobs.

We apply ananimation rendering datasdtom the collaborated fog rendering com-
pany (the company name is withheld due to-a-non-disclosuexagent) for the simula-
tion. There ard 27, 791 records collected between September and November 201B. Eac
record is a rendering job submitted.from an animation studach record contains (a)
detailed characteristics of the animation renderingjabhsas the number frames and the
number of polygons, (b) resource usage information, sutcheaaverage CPU usage and
consumed GFLOPS, and (c) job processing statistics, sutie sisnestamp of submitting
the job, the timestamp of receiving the completed job, ard8timated monetary cost of
the job. Table 5.1 shows some sample statistics of the alwmagndering dataset.

When performing the simulation, we found that there are tegd®s arrived on a day.
This may be because the company is just newly started. Hayweeewant to simulate
a higher loaded scenario. Hence, we adjust the date of tivalaime to concentrate all
the jobs to arrive withiry days. For example, a job arrived at September 1st and another
arrived at September 8th are modified to arrive at the samevdhyheir original arrival
timing (HH:mm:ss) remained. Moreover, we increase the gizvery job by 100 times.
Fig. 5.1 are the information of arrival jobs on each day ofatpisted animation rendering
dataset. Fig. 5.1(a) shows the number of arrival jobs on efttte 7 days. As mentioned
before, there ar@27,791 jobs in total. With adjustment, there are averagely255.9
jobs arrived at a day, where day 4 has the most jobs $tfi31 ones, and day 7 has no
job. Fig. 5.1(b) shows the total size of the arrival jobs ooheday. Although day 4 has
the most jobs, day 2 has the largest total size of the jobs3&2, 463.4 GB.

To sum up, the following information are from the datase#g:tie timestamp of the
available resource record, (b) the arrival time of the reimggobs, and (c) the job size.

24

Besides the proposed RF-based, GB-based, and NN-basedratggnte implement
a perfect yet unrealistic Oracle algorithm. The Oracle algm schedules the jobs ac-
cording to the actual available resources. It is used as perupund of the performance
for the prediction algorithms.

We implement the efficieriarliest Start Schedul@ESS) [16, Chapter 3.2] algorithm.
Our job scheduler batches the arrived jobs every day, stéethem at 23:59, and starts
processing them in the next day.

The following are the performance metrics we considerediimsanulations.

e Deviation: The deviation between the predicted amount of availableureg and
the actual amount of available resource.

e Completed jobsratio: The ratio of the number of completed rendering jobs to the
number of total rendering jobs.

e Makespan: The total time to complete a set of rendering jobs submittetthé fog
user. The makespan of a rendering job-includes the time ftr pawcessing and
waiting. :

e Number of failed jobs: The number of réndering jobs that are failed. Jobs that are
not completed before a day'ends:or before the assigned dedices the system
(i.e., the device turns off or loses the netwiork connectame)considered as failed
and will not be rescheduled in ‘our simulation:

e Normalized CPU consumption: The average CPU consumption normalized to
that of the Oracle.

We run the simulation 10 times for the implemented solutioreanely, RF-based,
GB-based, and NN-based, and Oracle algorithms. We calcthlataverage simulation
results and present the 95% confidence intervals whenepécaiple.

5.2 Reaults

Since there is no job on day 7, we show the simulation resetisden day 1 and 6 for all
the performance metrics.

NN-based algorithm performs the most accurate prediction for both datasets.
Fig. 5.2 shows the deviation of RF-based, GB-based, and NBdagorithms for both
dataset. For both datasets, NN-based algorithm perforensnthst accurate prediction,
namely, the lowest deviation. It achieve$8% and2.00% deviation in average for
the desktop and datacenter datasets, respectively, whaalnsithe prediction results are
very close to the actual amounts of the available resourceb@Ed algorithm results in

25

(I RF EEEGB NN | (I RF BEEGB NN |

=
o

=

Q

o

Deviation (%)
=

a =

Deviation (%)

Figure 5.2: Deviation of three solutions for (a) desktomdat and (b) datacenter dataset.

\‘-R‘F -GB ‘-NN‘ :draclo\ ,84000 \—RF -GB ‘-NN‘I:IO‘racle\r
X2 S
= 100 23000
= <
~ <
o 98 £ 2000
% 961 _ '_(é 1000
e =
© Z
94 L 0
1 2 3 4 5 6 1 2 3 4 5 6
Day Day

Figure 5.3: Simulation results for desktop dataset: (a)ctirapleted jobs ratio (%) and
(b) the number of failed jobs.

11.91% and6.58% deviation in average for the desktop and datacenter datasspec-
tively. As for GB-based algorithm, it results in.88% and10.22% deviation in average
for the desktop and datacenter datasets, respectively.aBédand GB-based algorithm
both perform the worst in day 6 for the desktop datasets, evtiex deviation goes up
to 14.87% and 15.98%, respectively. We note that for the desktop dataset, GBebalse
gorithm outperforms RF-based algorithm on days 1, 2, and 8RBubased algorithm
outperforms GB-based algorithm on days 4, 5, and 6. For thecdater dataset, RF-
based algorithm always outperforms GB-based algorithms $hows that every dataset
has its characteristics and that algorithms may perforferaintly.

More accurate prediction leads to less failed jobs. Since we aggregate all the jobs
of the animation rendering dataset withirdays, there are a large number of jobs ar-
rived every day. While Figs. 5.3(a) and 5.5(a) show that tipreposed and the Oracle

26

| \-E,F EENGD NN :6racle\ © 1041 \‘-R‘F _GB NN I:Idracle"

= 25, £ 102
S =
= %
% Cg) 100/
2, 201
) =) i
% ?3 98
= 151 E; 961

11 Z

6 1 2 3 4 5 6

Figure 5.4: Simulation results for desktop dataset: (a)nlakespan (hour) and (b) the
normalized CPU consumption.

[N RF HEE GB EENN _Oracle] [EEWRF BB GB EEANN —JOracle]|

glOl §1500
£ 100 g
2 "2 1000
¢ 99 =
g B
2 Y
g 98 : }é 500
o
=
© 97 Z
I 0,
1 2 3 4 5 6 1 2 3 4 5 6
Day Day

Figure 5.5: Simulation results for datacenter dataseth@fompleted jobs ratio (%) and
(b) the number of failed jobs.

algorithms all complet®8% or higher of the jobs. Figs. 5.3(b) and 5.5(b) give a closer
look into the number of failed jobs. The Oracle algorithmutesin very few failed jobs
because it checks the actual amount of available resources scheduling the jobs. It
assigns jobs only when the active fog devices have sufficesdurces to finish them.
From Fig. 5.5(b), the GB-based algorithm which performs tleestvprediction leads to
the most failed jobs every day. Meanwhile, the NN-basedrdlgn which performs the
best prediction has the least failed jobs for most of the wemparing to the other two
algorithms.

From the results of the completed jobs ratio (see Figs. baB(@5.5(a)), the makespan
(see Figs. 5.4(a) and 5.6(a)), and normalized CPU consum(sige Figs. 5.4(b) and 5.6(b)),
we find that our three proposed solutions perform close t@tiaele. This shows that our

27

)

=
o
Ny

(I RF B GB B NN _Oracle] [RF EGB 0NN C_JOracle]|

101

100;
I gl 1l - all 7 all Ll

N
)

Makespan (hour)

©
@

Nor. CPU Consum. (%
©
©

N

w
©
~

Figure 5.6: Simulation results for datacenter dataseth@makespan (hour) and (b) the
normalized CPU consumption.

solutions can perform well with our fine-tuned hyperparasrset

28

Chapter 6
Conclusion and Future Work

In order to deal with the increasing demand of various ressiand to utilize the up-
grading computing devices, we proposed a multimedia fogpudimg platform. In this
platform, the fog provider receives the jobs from the fogresend schedules them to the
fog workers/devices. There are three_main research prabléinprediction of the re-
quired amount of resources of the jobs, (ii) pfed_iction efdlvailable resources of the fog
devices, and (iii) scheduling thé-jobs__and the' fog devicéss Thesis focuses on the pre-
diction of the available resources.' We: adopt three macleiaming algorithms, namely,
the Random Forest, Gradient Booéting Tr'eé, and Neural Nefvemidk implement them
using open source libraries. Since each dataset has itstwavaateristics, it is necessary
to fine-tune the hyperparameters for each dataset wheniagpihe algorithms. We apply
two datasets, desktop and datacenter datasets. The farmeself-collected trace lasting
for 1 month from the laptops or desktops Zif real users. The latter is an open dataset
lasting for3 months fromb00 machines in a datacenter. We &9€¢ of both datasets and
perform10-fold cross validation to fine-tune the hyperparameterdefgroposed algo-
rithms. The results show that the optimal hyperparameterisdth datasets are different.
We note that when the fog provider applies new datasets, enwiine dataset changes,
it is necessary to re-tune the hyperparameters. We impleameimulator and use the
rest20% of both available resource datasets and a real animatiaterieg jobs dataset
to drive our simulator. The simulation results show tha}:tlfe Neural Network-based
algorithm achieve$.08% and2.00% deviation in average for the desktop and datacen-
ter datasets, respectively, and (ii) more accurate piedidf the amount of available
resources leads to fewer failed jobs.

We are considering the following directions to improve coiugion: (i) Collect more
information as features. For the collected traces, we megrdemore information such
as the age and career on the premise of not invading peopikesy Since people in ap-
proximate ages or with the same occupation may have sinskgeipatterns, using these

29

information as the features may be possible to improve tadigtion accuracy. (ii) De-
sign a reliability mechanism. By recording the actual ald@daesource and the individual
activities in our platform, we can determine the relialibf the fog worker/device. For a
fog device which has regular usage pattern, or for a fog wosk® joins and leaves our
platform regularly, they can be considered with higheratglity. When scheduling the
jobs, fog workers/devices are prioritized to get jobs.) lidopt more machine learning
algorithms. So far we adopt three machine learning algostfor the available resource
prediction. There is no definite answer that which solutiestHits our problem. We
are considering to adopt more state-of-the-art machimaileg algorithms such as deep
learning. Last but not least, we are going to build up a resabesd of our multimedia fog
computing platform. Through a real working system, we maglate the feasibility of
our proposed solutions.

As we have mentioned in Chap. 1, we aimed at building the matlimfog comput-
ing platform. There are three main research problems foplaiform: (i) predicting the
required amount of the resources of the jobs from the fogsuger predicting the avail-
able resources of the fog devices, and'(iii) scheduling dhs pnd the fog devices. The
previous work of our lab [23] has studied the first problemerenwe use the RF-based
and GB-based algorithms to predict'fhe.'c'ompletion time ofabs. The difference be-
tween this thesis and the previous work is that, predictirailable resources in a future
time is a time series prediction problem. Not‘only do we adbptalgorithms that have
been used in the previous work, we furtherintroduce theal@atwork algorithm in this
thesis. The results show that NN-based solution perforrtiereccuracy, which encour-
ages us to adopt more machine learning algorithms that mayiteble for time series
prediction in the future. We are going to move forward to s of the problems to com-
plete the platform. When the fog provider is scheduling tis jéhere are more problems
to consider. For example, since a fog worker may leave theegyat any time before
he finishes and submits the assigned jobs, it is unreliabdassan a job to only one fog
worker. One possible solution is to assign duplicate jobsutiiple fog workers at a time.
When assigning more duplicate jobs may increase the retialilis, however, wasting
the resources of the platform. Optimizing the degree of tn@idate job assignment is
one of the problems we need to solve. Another problem is tiyvidre correctness of
the submitted results from the fog devices. In the futureaveegoing to solve the rest of
the problems and build up a prototype of the system to veufypyoposed solutions in
practice.

Here we look into the idea of the fog computing platform frorhigher viewpoint.
As aforementioned, we want to ease the burden of the cloutbpia However, we still
use the cloud computing resources as a backup plan. That iglam to integrate the re-

30

sources from the cloud, the edge cloud, and the fog. Thedoipare several challenges.
First, we need to deal with the uncertainty and heterogg¢ithe fog workers/devices.
The fog workers have different kinds of usage pattern and lodloising his device. To
better scheduling the resources and jobs, it is necessachglenging to make predic-
tions, which are the problems studied in [23] and this theB® second challenge is the
dynamicity of fog users’ requests. So far we only use animatendering as a sample
application. When we are considering a unified fog computilagfgrm, the jobs from
the fog users can be other kinds of multimedia application.ufllize various personal
devices, it is challenging to distribute the jobs and malegrtiexecutable on various op-
erating systems. The last one is to provide QoS guarantedseaesource limited fog
devices. When there are a large amount of requests and manycgedimited fog de-
vices, we need to tackle the QoS guarantee problem. Lastoblgast, we envision the
benefits that the fog computing platform can bring to ourrfetwhich makes it possible
to compute everywhere all over the world.

31

Bibliography

[1] BitBrains. htt ps://wwv. bi t brai ns. nl/sol vinity-en.

[2] Disney rendered its new animated film on a 55,000-coresugmputer.ht t ps:
/ I ww. engadget . com 2014/ 10/ 18/ di sney- bi g- hero- 6/ .

[3] Microsoft developer network (MSDN).htt ps://nmsdn. m crosoft. conf
en-us/ .

[4] Pixar by the numbers - from toy story.to bravehttp://collider.conl
pi xar - nunber s-t oy- st ory- brave/:

[5] Pixar by the numbers : from -toy'story fo| monsters univgrsi http://
col | i der. con pi xar -'nunbers- monster s- uni versi ty/ .

[6] Scikit-learn.htt p:// sci ki t=-learn.org:.
[7] SETI@homehttp://seti at hone. ber kel ey. edu/ .
[8] XGBoost.htt ps://github.com dm c/ xgboost.

[9] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. Lih.earning from datavolume 4.
AMLBook Singapore, 2012.

[10] S. Akioka and Y. Muraoka. Extended forecast of cpu antlvoek load on com-
putational grid. InCluster Computing and the Grid, 2004. CCGrid 2004. IEEE
International Symposium gpages 765-772. IEEE, 2004.

[11] D. P. Anderson. BOINC: A system for public-resource cotmmuand storage. In
Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Interoaal Workshop on
pages 4-10. IEEE, 2004.

[12] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.rtWener. SETI@
home: an experiment in public-resource computi@@mmunications of the ACM
45(11):56-61, 2002.

32

[13] A. Andrzejak, D. Kondo, and D. P. Anderson. Ensuringlective availability in
volatile resource pools via forecasting. Managing Large-Scale Service Deploy-
ment pages 149-161. Springer, 2008.

[14] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog commgfiand its role in the
internet of things. IfProc. of ACM Workshop on Mobile Cloud Computing (MCC)
pages 13-16, Helsinki, Finland, August 2012.

[15] J. Brevik, D. Nurmi, and R. Wolski. Automatic methods faiedicting machine
availability in desktop grid and peer-to-peer systems.Claster Computing and
the Grid, 2004. CCGrid 2004. IEEE International Symposium mages 190-199.
IEEE, 2004.

[16] P. Brucker and S. KnusComplex SchedulingSpringer, 2012.

[17] M. Carvalho, R. Miceli, P. D. M. Jr, F. Brasileiro, and R. LapePredicting the
quality of service of a peer-to-peer desktop:grid. Pimceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid @ating pages
649-654. IEEE Computer Societ_y, 2010,

[18] C. Dabrowski and F. Hunt. Using markov chain analysidiolg dynamic behaviour
in large-scale grid systems, Rroceedings of the Seventh Australasian Symposium
on Grid Computing and e-Research-Volume 88ges 29-40. Australian Computer
Society Inc., 20009.

[19] S.Di, D. Kondo, and W. Cirne. Google hostload predictiased on Bayesian model
with optimized feature combinatiodournal of Parallel and Distributed Computing
74(1):1820-1832, 2014.

[20] N. D. Doulamis, A. D. Doulamis, A. Panagakis, K. Dolkds,A. Varvarigou, and
E. Varvarigos. A combined fuzzy-neural network model fondimear prediction
of 3-D rendering workload in grid computingEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetic84(2):1235-1247, 2004.

[21] J. Friedman, R. Tibshirani, and T. Hasti@he Elements of Statistical Learning:
Data Mining, Inference, and Predictiorspringer, 2001.

[22] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Worklaaalysis and demand
prediction of enterprise data center applications2007 IEEE 10th International
Symposium on Workload Characterizatipages 171-180. IEEE, 2007.

33

[23] H. Hong, J. Chuang, and C. Hsu. Animation rendering onimeitia fog computing
platforms. InIEEE 8th International Conference on Cloud Computing Techmolo
and Science (CloudComEEE, 2016.

[24] B. Javadi, D. Kondo, J. Vincent, and D. P. Anderson. Discimg statistical mod-
els of availability in large distributed systems: An emgali study of seti@ home.
Parallel and Distributed Systems, IEEE Transactions2#2(11):1896-1903, 2011.

[25] R. E. Kalman. A new approach to linear filtering and pré&dit problems.Journal
of basic Engineering82(1):35-45, 1960.

[26] D. Kondo, A. Andrzejak, and D. P. Anderson. On corrafledgailability in internet-
distributed systems. IRroceedings of the 2008 9th IEEE/ACM International Con-
ference on Grid Computingpages 276—283. IEEE Computer Society, 2008.

[27] S. J. OrfanidisIntroduction to Signal ProcessindPrentice-Hall, Inc., 1995.

[28] K. Ramachandran, H. Lutfiyya, and-M. Perry. Decentraliapproach to resource
availability prediction using.group: availability in a p2psktop grid.Future Gener-
ation Computer Systema8(6):854-860, 2012.

[29] B. Rood and M. J. Lewis, | -Grid resource availability predio-based scheduling
and task replicationJournal-of Grid:Computing7(4):479-500, 2009.

[30] L. SarmentaVolunteer computingPhD thesis, Massachusetts Institute of Technol-
ogy, 2001.

[31] L. Shang, Z. Wang, X. Zhou, X. Huang, and Y. Cheng. TM-D@&ust model based
on computer users’ daily behavior for desktop grid platfotmProceedings of the
2007 symposium on Component and framework technology ingaghrmance
and scientific computingages 59-66. ACM, 2007.

[32] L. Vaquero and L. Merino. Finding your way in the fog: Taxds a comprehensive
definition of fog computing. ACM SIGCOMM Computer Communication Review
44(5):27-32, October 2014.

[33] Y. Wu, Y. Yuan, G. Yang, and W. Zheng. Load predictionngsihybrid model
for computational grid. 2007 8th IEEE/ACM International Conference on Grid
Computing pages 235-242. IEEE, 2007.

[34] D. Yang, J. Cao, C. Yu, and J. Xiao. A multi-step-ahead CPadl Iprediction ap-
proach in distributed system. @loud and Green Computing (CGC), 2012 Second
International Conference gmages 206—213. IEEE, 2012.

34

[35] Y. Yuan, Y. Wu, G. Yang, and W. Zheng. Adaptive hybrid nebdor long term
load prediction in computational grid. @luster Computing and the Grid, 2008.
CCGRID’08. 8th IEEE International Symposium, @ages 340-347. IEEE, 2008.

35

