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Abstract

We focus on the problem of efficient communications over sggeet-
works with asymmetric bandwidth and capability. We propasesource-
constrained asymmetric redundancy elimination algortR@ARE) to lever-
age downlink bandwidth and receiver capability to accédetiae uplink data
transfer. RCARE can be deployed on a client or a proxy. Diffefiemh ex-
isting asymmetric algorithms, RCARE uses flexible matchinghmasm to
identify redundant data, and allocates a small sender ¢adiesorb the high
downlink traffic overhead. Compared to redundancy elimamaglgorithms,
RCARE provides a scalable sender cache which is adaptive basedaurce
and performance. We evaluate RCARE with real traffic tracegcit from
multiple servers and a campus gateway., The trace-drivealsiion results
indicate that RCARE achieves: higher goodput gains and redumseslidk
traffic compared to existing asymmetric:.communication atgms. We de-
sign an adaptation algorithm for resource-constrainedessrsending multi-
ple data streams. Our algorithm takes samples from datnssrand predicts
how to invest cache size on-individual‘data streams to aemmsaximal up-
link goodput gain. The adaptation algorithm-improves thedput gain by
up to 87% compared to the baseline:-In first 10% of data strésonted by
the optimal goodput gains), RCARE achieves up to 40.5% goodguatan
average.
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Chapter 1

Introduction

1.1 Overview

Content redundancy often exists in network traffic. Variegundancy eliminatioml-
gorithms [4,6, 16,18, 24, 29, 33] leverage the redundancyenyling condensed informa-
tion rather than redundant data, in-order.to increaseytiwelput which is the effective
application-level throughput, excluding pr(_)to'cot andeimecovery overhead. We define
goodput gainof a redundant elimination élgo_rithm as the relative goadmprovement
compared to the standard TCP transfer. When the resources sérider and receiver
are unconstrained, the existing redundancy‘eliminatigoréhms may achieve nontriv-
lal goodput gains. However, many network communicatiomages haveasymmetric
resource constraints in terms of netwadndwidthand end-deviceapability.

Fig. 1.1(a) illustrates the bandwidth asymmetry. This acenoften occurs in the ac-
cess networks. Example access networks with asymmetridvbdth are Asymmetric
Digital Subscriber Lines (ADSLs), cable modems, 3G/4Gutefl networks, and hybrid
satellite-terrestrial access [7, 23], in which a high spsséllite downlink is paired with a
telephone line for uplink traffic. The downlink bandwidthtbise channels could be up
to 1,000 times higher than the uplink bandwidth [9, 12, 31 tb business concerns and
technology limitations. Sharing large files, such as doaumsanusic, videos, and pic-
tures over these channels results in long upload time, sagdayouts, and degraded user
experience. Fig. 1.1(b) shows capability asymmetry amarggsh In this scenario, end-
devices, such as smartphones and sensors, have limitedrgneiz®, processing power,
and battery capacity. Moreover, the end-devices are oft¢@rdgeneous in capability.
Although these hosts are not capable to run complex algositthey are often connected
to powerful servers and clouds. Recently, the negative itspafccapability asymmetry
are gradually surfacing, for example: (i) more smartphopieations push computa-
tions into the cloud, which may dramatically increase thevoek traffic [21], and (ii)
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Figure 1.1: We consider both: (a) bandwidth and (b) capgl@bymmetric scenarios.

the Internet of Things (IoT) paradigm connects a huge numbsensors to the public
Internet, which imposes tremendous traffic load [8, 36].

We collectively call network communications over bandwidind capability asym-
metric channels aasymmetric communicationsThe existing redundancy elimination
algorithms [4, 6, 16, 18, 24, 29, 33] can not: (i) utilize essige downlink bandwidth to
increase uplink goodput gain in bandwidth-asymmetric seesanor (i) be executed on
resource-constrained end-devices in cabability asynmengtenarios. Therefore, users
of asymmetric communications have'.to resort to upgradiag tthannels or end-devices,
which are costly and could render some business modelsitgsis vHence, a redundancy
elimination algorithm designed for resource-constrainegmmetric communication is
desirable.

In this thesis, we study the problem of increasing uplinkdmd in asymmetric com-
munications by capitalizing on the otherwise wasted dawnbandwidth and receiver
capability. More specifically, we design a new asymmetrimcwnication algorithm on
top of the transport protocols to maximize the uplink goddypain. Several asymmet-
ric communication algorithms have been proposed in thealisee [3, 10,13, 14,22, 32].
Trang et al. [28] use synthetic traces to evaluate the padoce of these algorithms, but
their performance on actual network traffic has never baatiest. In the thesis, we em-
ploy real network traces to evaluate the existing asymmetimmunication algorithms,
and identify their limitations.

To cope with their limitations, we develop marameterizedresource-Constrained
Asymmetric Redundancy Elimination (RCARE) algorithm, whiclgéneral in the sense
that many system parameters can be adjusted on-the-fly. 3&/gpedpose an adaptation
mechanism to optimally allocate the resources among da&anss. We empirically study
the data strearoharacteristics, quantified by several featyresch as entropy and packet
size. In particular, several data stream features are cmtprom the first few hundreds
of network packets belonging to a data stream, and the opalaation arrangement is

2



Table 1.1: Per-packet performance of dynamic algorithms

Algorithm Bits from Receiver Bits from Sender Rounds

DBES (H+01)logN | H+™%N 1 0(1) | H+0(1)
TreeQuery 2N —1 H+ ™8l 1 0O(1) 1
ListQuery INVE|[log N1 | kH + ™98 1 O(1) 1
QueueQuery |[NYE|[logN] | kH + ™%X 4 O(1) 1

decided based on an empirically-trainreddelso as to maximize the goodput gain. The
model is derived using a large set of real life network trazmgkected from a high-speed
campus network [20]. Trace-driven simulations indicatat tine proposed RCARE al-
gorithm outperforms the existing asymmetric communicaadgorithms and is close to
redundancy elimination algorithms. Moreover, RCARE is muchenftexible and suit-
able under heterogeneous network and host resource dotsstra

The rest of this thesis is organized as follows. In this chig@fec. 1.2 surveys the
related work in the literature. We conduct trace-drivenuations in Sec. 1.3 to quan-
tify the performance of the existing asymmetric communaragtlgorithms. Based on
the findings made in Sec. 1.3, we:propose a:new.asymmetridtaigoand evaluate the
performance in Ch. 2. Ch. 3 proposes. an adaptation mechanisnuftiple data streams
and shows the goodput gains of RCARE: Ch. 4.concludes this thesis.

1.2 Related Work

1.2.1 Asymmetric Communication Algorithms

The existing asymmetric communication algorithms can begmaized into two classes:
static and dynamic. The static asymmetric communicatiablem is first considered
by Adler and Maggs [3]. The problem is static because it agsutime communication
packets follow a known and fixed probability distributionn particular, the problem
considers a sender sendiig packets to a receiver. The packets are chosen fiom
possible packets following a probability distribution tieknown to the receiver but not
the sender. The entropy of this distribution is denoted addler and Maggs propose two
algorithms to increase the uplink goodput. The static mwbis also considered in other
work [10, 22, 32], in which new algorithms are proposed. Wer& these algorithms as
static algorithms.

It is reported that the static problem is built on top of a sr@assumption that the
receiver knows the probability distribution of packetsjeths unrealistic [13,14]. Gagie
therefore considers a dynamic problem, in which multiplerts sendV/ packets to a

3



server, and these packets are chosen fropackets (out ofV possible packets in total)
following a probability distribution that is unknown to hosenders and the receiver [13,
14]. Gagie writes the distribution entropy As and proposes algorithms for the dynamic
problem [13]. We refer to these algorithms as dynamic algors. In our work, we do
not assume a receiver knows the probability distributiothefpackets, and thus we only
consider dynamic algorithms throughout this thesis.

We present the main idea behind dynamic algorithms belowme@dly, each asym-
metric communication algorithm maintaingacheat the receiver, to keep track bseen
packets sent from one or more senders, whésea system parameter. The receiver uses
this cache in the following way. For each incoming packetd réceiveguessethe packet
according to the cache, amagksthe sender if the guess is correct. The sender either: (i)
confirms the correctness of the guess and moves on to the aexetpor (ii) sends the
receiver aintto adjust its guess on the same packet in the next round. Eatlefis de-
livered in multiple rounds > 1. A receiver updates its cache once successfully receiving
a packet, in order to leverage on the known packet pattere¥ogr guess rounds.

We emphasize that the cache is online-and consists of notseely packets but also
their statistics such as hit counts and last-seen timesta8ipce the packet distribution is
unknown and dynamic, the receiver may saturate all eduttguesses, and has to ask
the sender to transmit the packet as-is: A 'sender also sepaiskat as-is if the number
of roundsr exceeds an algorithm-specific thre_shqlgx, in order to avoid long latency.

Table 1.1 summarizes the asymptotic performance of vaasysmetric communi-
cation algorithms. We briefly describe the algorithms below

e Dynamic Bit-Efficient-Split (DBES) uses a leaf oriented binary search tree of seen
packets as the cache, in which distinct packets are stolegiasgraphically sorted
leaf nodes. To make a guess on each new packet, the recaiverses the cache
from its root, and transmits the packet stored at the cumede to the sender. The
sender replies witkmaller, larger, or same With smaller/larger, the receiver then
descends one-level closer to the leaf nodes. When runniraf aotes, the receiver
requests the sender to send the packet itself. DBES-sgts= cc.

e TreeQuery, different from DBES, it reduces the number of communicatmmds
by encoding the whole binary search tree inttaga bundle The receiver transmits
the binary tree to the sender, and the sender replies wittnahersal path also in a
single data bundle. The sender transmits a packet as-isahitot be found in the
tree. TreeQuery sets,., = 1.

e ListQuery maintains a cache of seen packets sorted by their hit connten-
decreasing order. Different from TreeQuery, ListQuerysus@arametet > 1 to
control the amount of downlink traffic. That is, the receieacodes the sublist of

4



thet!/* most popular packets into a data bundle and transmits ieteghder. If the
new packet is in the sublist, the sender transmits its itleation; otherwise, the
sender transmits that packet itself. ListQuery sgis = 1.

e QueueQueryis very similar to ListQuery. The main difference is, insteaf a
sublist of most popular packets, the receiver transmitssaigoft'/* most recently
seen packets to the sender.

Trang et al. [28] implement DBES and ListQuery algorithms 8- simulator [25].
They conduct simulations with synthetic traces and obs249é uplink goodput gain. In
my thesis, we also conduct trace-driven simulations gbaifite potential of DBES, List-
Query, and QueueQuery using real network traces. The semdtindicated in Sec. 1.3.

1.2.2 Redundancy Elimination Algorithms

There are several redundancy elimination algorithms megan the literature, which
can also be used to increase uplink geedput of asymmetricnzorications to some de-
gree. These algorithms can be categor_ized_ into two classdsie compression algo-
rithms [18, 24, 33] and protocol-independent redundanayieation algorithms [4, 6].
Yang et al. [18, 33] implement LZ77 c'orﬁprgssion algorithnthw/LSI architecture. It
uses the content addressable membry to design a high-speedanpressor. Munteanu
et al. [24] use LZ compression algorithm to do the packet aesgion on the fly. They
evaluate the performance using HTTP traffic. The resulsahat it can reduce the traf-
fic up to 38%. Online compression algorithms compress thematload in real time and
have been deployed in commercial routers [29]. Protoaddendent redundancy elim-
ination algorithms remove duplicated packets. For examplédggarwal et al. [4], the
server maintains per-client caches for downlink redungastienination. Some of these
algorithms have been employed as WAN optimization techesd].

In redundancy elimination algorithms, the fingerprintingosithm is one of the main
factors in detecting redundant data. The fingerprintingigm and it's configuration
also affects the processing speed. Aggarwal et al. [4] atalthe performance of cur-
rent fingerprinting algorithms such as MODP, MAXP, and FIXEIhey then propose
a new fingerprinting algorithm, called SAMPLEBYTE, which isuah faster than cur-
rent algorithms. Halepovic et al. [15] study on the influelméesampling overlap and
oversampling. Overlap and oversampling incur much higkerteead but they improve
redundancy elimination by 9-14%. They observe the conigrg &lso affect the perfor-
mance. For example, text data has higher probability toeaehbetter results than com-
pressed data. They propose a method to dynamically adpisttinpling period based on
the textiness ratio. With the method, they can avoid unrssecgoversampling to reduce

5



overhead.

In contrast to RCARE, while redundancy elimination algorithih$,16,18,24,29,33]
may reduce the uplink traffic amount, they cannot leveragdawnlink bandwidth and
receiver capability for faster upload speed. Moreoverstexy redundancy elimination
algorithms demand considerable resources, including mer@®U cycles, and energy
at senders, and thus are not suitable when the senders iméeel Iresources. Last, unlike
the proposed RCARE, they cannot leverage redundancy acrosplmsénders.

Recently, Zohar et al. [35] study the downlink redundancyniglation problem in
clouds. They proposeraceiver-driverredundancy elimination algorithm, called PACK
to shift the resource demands from the senders in cloudséo/ers on residential/corporate
networks, so as to reduce the cost of cloud customers. PAGK thiansmitted data to-
gether, which is like a chain. It uses these chains to predéecinext incoming data so
as to reduce the transmitting cost. -PACK is-propably the wiokest to the proposed
RCARE algorithm, despite PACK'was-designed to minimize the costood customers
at the expense of potentially oVerIoading.mobi.ie compudas sensors that are down-
loading from cloud. While PACK shifts all the ovérhead from ader to a receiver, our
RCARE allows dynamic resource’allocations between the semdieregeiver for higher
goodput gains without overloading-the receivers. The astbb[35] mention that PACK
IS more suitable to larger objects such as video and emadlatients, and recommend to
fall back to sender-driven (traditional) redundancy efiation algorithm [35] for smaller
objects. In fact, even for videos, PACK leads to slightly logeodput gain compared to
a sender-driven redundancy elimination algorithm as tepan [35].

Compared to RCARE, the existing redundancy elimination algmst [1, 4, 6, 18,
24, 29, 33, 35] suffer from three limitations: (i) they reguhigh computational power
at the sender to identify data redundancy and large stoqaamedor caching historical
traffic, which are not available at resource-constraineuises, (ii) they do not leverage
redundancy among data from different senders, which coalddmtrivial, especially in
mobile and 10T applications, and (iii) they do not capitalthe already-paid downlink
bandwidth and receiver capability.

Last, a preliminary version of this work was presented intLale [19]. This thesis
contains a new adaptation algorithm, more extensive aisalgsd additional simulation
results, compared to [19].



Table 1.2: Packet traces from real servers

Trace Server Type Location Duration (hr) | Size (MB)
T1 | Enterprise Server US East Coast 168 59
T2 | Enterprise Server US West Coast 98 153
T3 Home Server Taiwan 60 404
T4 Home Server US West Coast 122 821
T5 | University Server, Canada West Coast a7 12,568
530, £30 s 50
£ g £ 40
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Figure 1.2: Goodput gains achieved by ListQuery, resutisifr(a) protocol-independent
cache, (b) HTTP cache, and (c) per-protocol caches withecsize 1 GB.

1.3 Limitations of Cufrent Asymmetric Communication
Algorithms '

Table 1.1 presents the asymptotic performance of the duagymmetric algorithms.

While the asymptotic analysis sheds some lights on the eftewtss and efficiency of
the algorithms, it does not reveal the potential of theserélyms in real life scenarios. In

this section, we collect actual network traces from realess; and conduct trace-driven
simulations to quantify the performance of these algorghm

1.3.1 Potential of Asymmetric Communication Algorithms

We collected egress packet traces from five real serversenm@ise, home, and university
networks using cpdunp. All the servers ran Linux, and had 4-12 local users. We col-
lected the traces without asking users to change their dadge patterns. Some services,
e.g., Web services, may have many anonymous remote usdske IT@ summrized the
information of individual traces. The trace files enableaigdrform realistic trace-driven
simulations.

Trang et al. [28] implemented the DBES, ListQuery, and Queaws@algorithms in
the NS-2 simulator. We however found that conducting NSr2usations is quite time
consuming. Therefore, we also developed our own evenedsimulator using C/C++,
which runs more than 100 times faster than NS-2 when the mkti@pology is simple.
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We ran several simulations using both NS-2 and our simylatot carefully compared
the simulation results to verify the correctness of our $atau. In the rest of this work,
we report the simulation results from our own simulator.

We let the packet size be 1,500 bytes, and vary the cachersizeXto 1,500 MB.
We setk = 1 for ListQuery and QueueQuery algorithms. We conduct twe sesimula-
tions. First, we use each trace file to drive the simulatohwite of the three considered
algorithms. This is to emulate the scenarios where a préindependent cache is used
between any pair of sender and receiver. Second, we split teace file into smaller
trace files based on their port numbers. We then run the siaralavith the split trace
files, so as to emulate the scenarios where a per-protocoésaemployed. We use the
uplink goodput gain as the performance metric. The goodaun ig defined as the rela-
tive goodput increase of an asymmetric communication @lynrcompared to a standard
TCP data stream.

The simulation results indicate that DBES never results sitpe goodput gain. Fur-
thermore, throughout our simulations, QueueQuery alwakigeges similar, but slightly
worse uplink goodput gain compared-to ListQuery. Therefwesonly report results from
ListQuery. We found that the uplink goodput gain does notaase when cache size is
larger than 250 MB; hence, we only-plot the results with cache is [3, 250]. We first
present the results from ListQuery.:We p.lot its protocalependent uplink goodput gain
in Fig. 1.2(a). This figure shows that only bne trace (T1) itssn uplink goodput gain
higher than 7%; three traces (T2, T3;-and T5) lead to neddigia 2%) uplink good-
put gain. Next, we report the per-protocol uplink goodpuHaiTP traffic in Fig. 1.2(b).
Compared to Fig. 1.2(a), the uplink goodput gain of HTTP isegally higher. Never-
theless, majority of the traces (T2, T3, and T5) still leadrmall (< 3%) uplink goodput
gain. Last, we compute the uplink per-protocol goodput gdimdividual traces, and
plot their mean, minimum, and maximum gains in Fig. 1.2(d)isTigure shows that the
uplink goodput gains are low, with exceptions of the HTTPr{(i89) and SMTP (port
25) protocols. Even for HTTP and SMTP, the worst per-tradenkgoodput gains are
< 10%.

1.3.2 Discussion

We take a closer look at the packets in the traces to detertinéneot causes of the in-
ferior performance of the current asymmetric communicasitgorithms. We found that
these algorithms are limited in the sense that they onlyrégesthe redundancy ekact-
matchpackets. In actual traffic traces, however, exact-matclkgiacdo not occur too
often. Rather, we often observe packets that are almost mgtelkcept a fewcritical
bytesthat are different from one another. Despite there is a hgglumdancy between

8



the two packets, the current algorithms will treat them #edint packets. Furthermore,
a common byte range may appear in different positions of tackets, which are then
considered as different packets by the current algoritifake HTTP packets as exam-
ples, meta-data such as timestamps, cookie IDs, and hitcawa critical bytes, which

may have variable length. This in turn results in divesffieets We refer to packets that
only differ by critical bytes and diverse offsets @artial-matchpackets. We believe that
the current algorithms achieve low uplink goodput gainsalose they cannot identify the
partial-matches. We develop a new asymmetric communicaigorithm to address this
limitation in the next section.

1.4 Contributions

This thesis makes the following main contributions:

e We propose an asymmetric redundancy elimination algoriR@ARE, which, to
the best of our knowledge, is thefirst redundancy elimimaailgorithm tailored for
resource-constrained asymmetric-communications.

e We study the correlation between unlink goodput gain and staeam features, and

derive an adaptation algarithms for a_||'()ca_ting the cache based on data stream
features.

e Extensive trace-driven simulations show that RCARE outperéahe state-of-the-
art asymmetric communication algorithms [13, 14] by far:top0 times improve-
ment on uplink goodput gain and up to 384 times reduction omntlok traffic
amount are observed.



Chapter 2

RCARE

In this chapter, we present a first efficient asymmetric redany elimination algorithm.
We conduct trace-drvien simulations to evaluate the pevémce and compare it with
existing algorithms.

2.1 Anew Asymmetric Communication Algorithm: RCARE

We present the RCARE algorithm in this section; For the easeegBptation, we consider
a single data stream in this section. Other deployment siosnaill be discussed in Ch. 3.

2.1.1 Overview

The main objective of RCARE is to maximize the uplink goodpuingay supporting
partial-match, which allows us to capitalize common byteges with arbitrary offsets
and lengths shared between the current and a historicaépatke secondary objective
of RCARE is to be parameterized, in order to adapt to data streatisliverse charac-
teristics. RCARE resides in between the transport and apiplic&yers, and provides
a boosted uplink data transfer service to applications. Eifillustrates that RCARE
can be deployed on two hosts of asymmetric communicatioigs 2FL(a)), or on an in-
network proxy (Fig. 2.1(b)). Fig. 2.1 only presents a siriigdi network topology. More
elaborated topologies are possible. For example, two lodsisymmetric communica-
tions may connect through a common proxy for goodput gaibsihdirections. Multiple
proxies at different Internet Service Providers (ISPs) adag collaborate with each other
by establishing high-bandwidth channels among them.
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Figure 2.1: RCARE can be deployed on: (a) hosts and (b) proxies.

2.1.2 Packet Caches

Similar to existing asymmetric communication algorithrRCARE maintains a cache
of historical packets at the receiver. We let the receivehesasize be3, MB, which

Is determined by the receiver’s capability. RCARE also allesa packet cache at the
sender, and we let the sender cache siz_é?bMB, which is determined by the sender
capability. At the sender, each new packet is compared sigtie historical packets in
the sender cache to find the Iongesf corﬁmon byte range. Thehimgibyte ranges are
then encoded for reducing the uplirik data 'ré'dundancy.

In RCARE, the receiver cache cannot.be smaller than the sendee,catherwise
some encoded byte ranges might not be decodable at theaecg&iverefore, we have
B, > B,. Having a larger receiver cache makes sense for capabditgtrained mobile
and sensing devices, because the receivehefpthe senders to memorize more histor-
ical packets for higher uplink goodput gain. More specificdahe receiver periodically
transmits a subset of the receiver cache to the sender. Tidersthen uses this cache
subset to replace the old, potentially outdated, sendérecathis is referred to asache
update The receiver also keeps a copy of the sender cache for tloglidecpurpose,
which is called sender caclsbadowin RCARE.

The cache update is performed once evepackets, whereipdate frequency is a
system parameter. The update frequency controls the tifdastoveen downlink traffic
amount and uplink goodput gain, because less frequent egpdasult in more outdated
sender cache, but save some downlink traffic. In RCARE, we assiuengize of each
cache update i, for simplicity. That is, the receiver alwaysls up the entire sender
cache in each cache update.

Given thatB, > B,, RCARE may not copy the entire receiver cache to the sender.
Therefore, RCARE has to definesalection policyo maximize the chance of identifying

More elaborated update strategies are possible, e.galgathe updates or incremental cache updates
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common byte ranges at the sender for higher uplink goodpmat géypical selection
policies include: (i) Most-Recently-Used (MRU) and (ii) Mdsrequently-Used (MFU)
packets. We consider a genehgfbrid policy P; (0 < 5 < 1), which selects3 MRU
and1 — 5 MFU packets. It is clear tha®s; covers the full spectrum of selection policies
between (and including) MRU and MFU. Upon there is a commate bbgnge falls in
a packet, RCARE increases its hit count by one and/or updat&ssitseen timestamp.
Different from f, 5 does not affect the downlink traffic amount, yet may affeetuiplink
goodput gain.

2.1.3 Efficient Partial-Match Algorithm

A simple approach to find common byte ranges between therdyreeket and a single
historical packet in the sender cache is to traverse threugtysingle byte of that histor-
ical packet. Then the simple approach checks all histopaakets in the sender cache.
Such a naive approach is clearly not feasible in real-tinséesys given the huge number
of comparisons to be done. To speed up:the partial-matclegsowe employ the follow-
ing techniques: (i) selecting representative windowsh@shing representative windows,
(iii) locating matching byte range, and (iv). encoding theiching byte range. These tech-
niques are inspired by redundancy_ elimin_at_i_on algorithmthe literature [4, 5, 15, 27].
We discuss these techniques in details below:.

Selecting representative windowsTo avoid excessive computational complexity at
the receiver, each packet is scanned-and marked with oneltplepresentativevin-
dows, where each window is-bytes long. We refer tay as the window size. The partial-
match process uses these representative windowsatasingpoints to locate matching
byte ranges and thus the complexity can be controlled. Mereave use a window sam-
pling frequency to throttle the number of representative windows. In patic RCARE
only considerd /p qualified representative windows for the sake of lower caotanal
complexity.w andp are system parameters, and could affect the performance oRECA
We empirically compared severalandp values and found that = 32 andp = 64 result
in a good tradeoff between running time and uplink goodput.ga

After determining the window size and sampling frequenayneed to design a policy
on choosing the representative windows. Aggarwal et alpfépose a policy called
SAMPLEBYTE, and show it outperforms other policies. We ad8pMPLEBYTE in
RCARE. Specifically, the receiver maintainsrarkerlist of m byte values, wheré <
m < 256. Whenever the receiver sees a new packet, it traverses thewegy byte of that
packet, and compares its value against the markers’ valtiisere is a match at offset
z, the receiver selects,  + w — 1] as the representative window, and skig8 bytes in
order to comply with the sampling frequency. RCARE dynamicedignputes the marker
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list based on the occurrence frequency of all byte valuessadhe receiver cache. This
Is closer to a dynamic approach recently proposed by Halemval. [15]. Different
from redundancy elimination algorithms [4, 5, 15, 27], RCAREIpes the complexity
of computing the marker list, along with other computatiotesthe powerful receiver.
RCARE employs a marker list refresh thresh@ld packets, for statistically meaningful
marker lists. The receiver updates the marker list onceyevgr= max(f,7,,) packets,
and transmits the list to the sender. Wellgt= 1, 000 if not otherwise specified.

Hashing representative windows.To facilitate fast lookup, we employ Jenkins Hash
function [17] to compute a 32-bit hash code, referred tdiagerprint The receiver
maintains a hash table with fingerprint as keys, aridstorical packet 1D, offset as
values, where historical packet ID points to a specific packehe cache. This is called
the fingerprint table, which is sent to the sender wheneeardteiver does a cache update.
The sender uses this fingerprint table for common byte ramgeaups.

Locating matching byte range. For each packet, the sender uses the marker list
to locate all representative windows in it. - The sender th@mputes their fingerprints.
Comparing against the fingerprint-table, the sender finds tserfiatching window. It
then expands the matching win_doW to the left and right one byter another, so as to
maximize the matching byte range. Thisiis similar'to thetsgyproposed in [4,5, 27].

Encoding the matching byte range.The sender sendshistorical packet ID, offset,
length> instead of the byte range. itself. T.he_receiver uses the seradbe shadow to
reconstruct the original byte range. Given that the tuptaush shorter than the raw byte
range, RCARE may achieve high goodput gain.

2.2 Trace-Driven Simulations

We quantify the performance of RCARE in this section.

2.2.1 Setup

We extend the event-driven simulator presented in Secl td3support RCARE. We
compare RCARE against ListQuery, because ListQuery outpesfatl other asymmet-
ric communication algorithms in terms of the uplink goodgatn, which is also shown
in Sec. 1.3.1. We also implement EndRE [4] and GZip [34] aloniin the simulator
for comparisons. The EndRE algorithm employs symmetric eaébr sender-driven re-
dundancy elimination, while GZip compresses the payloaghoh packet before sending
it out. We use actual network traces collected in Sec. 1se& Table 1.2) to drive the
simulator. We conduct both protocol-independent and petepol simulations. In the
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Figure 2.2: Uplink goodput gain achieved by various proteceample results from: (a)
T1and (b) T5.

latter case, we split each network trace into multiple protepecific traces. We ignore
the protocols with fewer than 1,000 packets. We programithalator to report the per-
formance results after each round of simulation. We comgigefollowing performance
metrics: (i) uplink goodput gain in percentage, (ii) relatoverhead, which is defined as
the ratio of downlink traffic amount:and.the raw uplink trafimount in percentage, and
(i) per-packet encoding and decoding time in‘msec.

For RCARE and EndRE, we let marker list length = 10, update frequency =
1,000, receiver cache sizB, = 64,-sender cache sizB, = 16, selection policy param-
eter = 0.1, and trace file be T1, if not otherwise specified. We emphatiat for
fair comparisons, the sender and receiver-cache sizkgleall the storage overhead, in
particular the fingerprint tables. For EndRE, the sender aoéiver cache sizes must be
identical, while the proposed RCARE allows the users to spec#ynaller sender cache
size. Various system parameters, including the updateémcy, selection policy param-
eter, and sender cache size, are varied in the simulatiosisidy their implications on
system performance.

2.2.2 Results

Improved uplink goodput gain. We first compare the uplink goodput gain achieved by
all considered algorithms. For fair comparisons, wédet= B, € {1,4,16, 64,256,512}
andf = 1 since EndRE only supports this configuration. We plot the samgsults from
T1 and T5 in Fig. 2.2, in which we skip, = B, = 512 for brevity, as it leads to the
similar results as3, = B, = 256. Note that, in this figure, RCARE achieves similar
uplink goodput gain as EndRE; therefore their lines overl@h wach other. Fig. 2.2(a)
shows that RCARE outperforms GZip whéh = B, > 4. Moreover, RCARE always
outperforms ListQuery: up to 1.54 times of uplink goodpuiga possible. Fig. 2.2(b)
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_ _ Figure 2.4: Implications oB, andB;
achieved by various protocols, overall

on uplink goodput gain.
results from all traces.

shows that RCARE significantly outperforms ListQuery: aboutis@s uplink goodput
gain improvement is observed. Fig. 2.3 present the ovegalllts. This figure shows
that RCARE constantly outperforms List_Quéry_. Given that List€y and GZip lead to
inferior performance, and EndRE dictates = B, (thus is inflexible), we concentrate on
the evaluation of RCARE in the restof this section.

Implications of B, and B,. We va'ryB,n e.-{-l., 4,16,64, 256,512}, andBs = {1, 4, 16,64}.
We plot the uplink goodput gain in Fig. 2.4, in-which we zoortoi®, € [0, 100]. We
make two observations. First, with, > 4, larger receiver cache leads to higher uplink
goodput gain. Second, when sender cache Bize= 1, larger receiver cache actually
leads tolower goodput gain. We believe this is because larBemeans more room for
selecting representative windows, and thus scenariossmitill B, are more sensitive to
the quality of window selection policy. Fig. 2.4 reveals tlght correlation betweets,
and B,: a joint decision on them need to be made for a good tradedivden uplink
goodput gain and resource consumption. The algorithm tamyeally adjustB, and B,
are shown in Ch. 3.

Diversity of uplink goodput gain. We plot the protocol-independent and per-protocol
uplink goodput gain in Fig. 2.5. This figure shows that theiewdd gain of RCARE is
quite diverse: 3-32% for protocol-independent case (Fig(a?) and 2-57% for per-
protocol case (Fig. 2.5(b)). In particular, SMTP (25), PGR895), and NFS (2049)
achieve more than 40% gains. Fig. 2.5(b) also shows thaatigerof gains of a protocal
with different traces could be large. For example, the HTHdRqzol with different traces
achieves very different gains. Hence, the uplink goodpint gafRCARE highly depends
on the payload content.

Tradeoff between uplink goodput gain and relative overheadWhile larger sender

15



0
IS
o

w
Q@

N
Q@

[En
Q@

Uplink Goodput Gain (%

Q

Figure 2.5: Diverse goodput gains from: (a) various tra@sfidnd (b) per-protocol trace

files.

T1 T2 T3 T4 T5
Trace File

(@)

£ 40
£ -t
3 30| i
5 B
Z20 AT
s ¥
g -<- RCARE
é 10y -~ ListQuery
2
5 0 : ‘ ‘
0 20 40 60

Sender Cache Size (MB)

@)

o]
o

IN
Q@

N
Q

Uplink Goodput Gain (%)

Q

Relative Overhead

22

25 80 949 995 2049
Port Number

(b)

10000 _ _.-. L b B B “
=
o
100 R U o
101 , .--*"7777
1
-+- RCARE
~oListQuery
0
0 20 40 60
Sender Cache Size (MB)
(b)

Figure 2.6: Tradeoff between: (a) uplink goodput gain ardélative overhead.

16




1 10
——T1 —~—T1
?08 -e-T2 = 81 -e-T2
5 -5 T3 B
206 -A-TY o 61 =13
E T5 g e Wi m g oo | = A=TY -
I I oot 1 c - T5
- * -
3 &
“o02 o 2lppmzcguzs s g
B S S 4 ————— = ===~ \d d
o bbb o | ‘ !
0 20 40 60 0 20 40 60
Sender Cache Size (MB) Sender Cache Size (MB)

(@) (b)

Figure 2.7: Time complexity of RCARE, per-packet: (a) encodind (b) decoding time.

cache results in higher uplink goodput gain, it also leadsitme downlink traffic. We
plot the uplink goodput gain and relative overhead of RCARE aistQuery withB, €
{1,4,16,32,48,64} in Fig. 2.6. Fig. 2.6(a) shows that RCARE and ListQuery leadrte si
ilar gain whenB, < 32, and RCARE outperforms ListQuery whéh > 32. Fig. 2.6(b)
shows the relative overhead. It clearlyillustrates thatQuery suffers from huge rela-
tive overhead: it incurs up to 18,450 times of downlink t@admount, compared to the
raw uplink traffic amount. In contrast, RCARE usesa small sendehe toabsorba
huge portion of the downlink traffic;:and only incurs at mo8tt4nes of downlink traffic
amount (not visible in this figure dueto the Y-axis'scale)ioklis almost 384 times lower
than that of ListQuery.

Encoding and decoding time. Fig. 2.7 shows per-packet encoding and decoding
time, collected from a commodity 3.4 GHz Intel i7 Linux PC. & geceiver cache size
to B, = 64 and vary sender cache sizg. This figure demonstrates the efficiency of
RCARE algorithm: encoding overhead is less than 0.5 msec winlelécoding over-
head is less than 5.2 msec. Moreover, RCARE is scalable to the caze because
the lines in this figure are almost flat. We take a closer loak fard that the decoding
time in Fig. 2.7(b) is increasing with a small slope. This ecause of receiver needs
more resources to compute the cache update for the server Bthieacreases. In these
two figures, the T5 costs more CPU times because it has long&agabsize than oth-
ers. For example, the average payload size of T5 is abou® b@@s, while that of T2
is only 300 bytes. We acknowledge that despite we consitléineacomputational over-
head in the simulator when calculating encoding/decodmeg,tthe reported results might
not include certain overhead in real systems, e.g., theheegr incurred by the network
stack and the multitasking overhead of Operating Systenosettieless, we believe our
RCARE can run in real time after some code optimization. IntaggeRCARE in a real
network stack is our future work.
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2.2.3 Observations

We made two observations on the performance of RCARE algoritiirafahe simulation
results. First, RCARE outperforms the existing asymmetric roomcation algorithms
by a large margin. Second, the achieved goodput gain variesdue to: (i) diverse
characteristics of data streams and (ii) different systamampeters. In extreme cases,
RCARE may lead to negligible goodput gain, or even result in gabkbss Therefore,
how to select the best system parameters for each data sgredtital to the performance
of RCARE. We conduct extensive simulations in the next secéind derive an adaptation
mechanism for this purpose.
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Chapter 3

Dynamic Adaptation Algorithm and
Large-Scale Simulations

In this chapter, we conduct simulations to study how RCARE'sesysparameters and
data stream characteristics affect the uplink goodput.géfa then propose a practical
adaptation algorithm for RCARE.

3.1 Data Stream Analysis’ -

In order to study how system parameters and data streamctiiastics affect the uplink
goodput gain, we collect real-life traffic trace for furtheralysis. We then recommend
the best configuration for later simulations.

3.1.1 Real-Life Traffic Trace Collection

We need a larger set of packet traces to make statisticaiynmgful analysis. To achieve
that, we collected actual packet traces from a campus nktj26] at National Chiao
Tung University, Taiwan. More specifically, we rarcpdunp on an access router to
record all the packets, including the headers and paylo@dth a 2 TB hard disk, we
collected 10-hour traces from 12:00 to 22:00 on Februark,212. Fig. 3.1 shows the
per-hour traffic amount, which reveals that 7 p.m. is the geak. We recorded 1,632
GB packet data in total. The traces contain 3,358 distinstd® the local network and
3,598,829 distinct IPs from the Internet. We divided thedmainto data streams, based
on each packet’s 4-tuple, including source/destinatidpdR. To ensure that each data
stream has at least a chance to update the cache, and to a&yoidetup overhead of
short-living data streams, we only consider data streamgelothan 2 MB data amount.
This gives us 22,330 data streams for our analysis preseeted.
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3.1.2 Data Stream Characteristics

The data streams have diverse characteristics, which mdgdmibed by traffiéeatures
The traffic features affect the performance of the RCARE allgorjtand provide hints on
selecting the best system parameters for optimal uplinidgobgain. We consider the
following data stream features in this article.

e Port number Different protocols may inherently carry different amoohredun-
dancy. For example, HTTP protocol mostly carries uneneymtata, which is
easier to compress, while HTTPS protocol carries encrygéd, which is harder
to compress. The port number is a good hint for the employesank protocol of
a data stream. We consider the source port throughout #gssth

e ASClI ratiod. ASCII data generally contains more redundancy, comparboh&ry
data. Therefore, the percentage of data in ASCII may be a gabdaitor for data
redundancy.

e Entropy H. The average entfopy ofthe identified byte ranges is the ofiostt
indicator of the expected information amount carried by liyge ranges. How-
ever, computing average entropy-\@ariable-lengthbyte ranges is complex, and
thus we compute average. entropy of 32-byte ldmgd-lengthdata blocks. We
empirically found that the entroby of-32-byte blocks appmoates the entropy of
variable-length byte ranges well, compared to 4-, 8-, 11td, @4-byte data blocks.

e Mean packet lengthLarge packet length might lead to lower header and control
overhead and thus higher goodput gain.

e Standard deviation of packet lengtiMore uniform packet length may indicate
bulky data transfers, which may consist of more data reduryda

Depending on the features of each data stream, a differenf sgstem parameters
may be selected for maximizing the goodput gain. The prapBE2ARE algorithm takes
the following system parameters: Receiver cache BizeSender cache sizB,, Marker
list lengthm, Selection policy parametét, and Update frequency. We study how the
data stream features and system parameters affect thelgayadp in the next section.

To simplify the problem of choosing the best parameters, @fnd multiple profiles
for data streams with different features. Each profile iasof a set of pre-defined
parameters, which will be empirically derived in the restio$ section. In particular, this
is done by conducting extensive trace-driven simulatioitls diverse traffic traces.
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3.1.3 Simulation-Based Analysis

We modify the simulator used in Sec. 2.2.1, so that each dagars is considered sepa-
rately. In particular, we create a separate cache for eaehstt@am, and apply RCARE
with different parameters to each data stream. We recordegdting goodput gain for
each set of parameters. We also analyze and report thedsaitieach data stream. We
note that although we consider all the data blocks when amagjyhe data stream features,
only the firsta: data blocks of each new data stream are sampled in real s/stdat is,
we will use sample features to approximate the featureseoftimplete data streams.

We choose three-hour sample traces from 12:00, 15:00, af.19/e use each data
stream to drive our RCARE simulator and calculate the averageofall the 8,147 data
streams from the sample traces. We consider three simulatienarios, in which we
assumeB, = B, for simplicity. If not otherwise specified, we I&t. = B, = 4, m = 10,

a = 1,000,000, 5 = 0.1, andf = 1,000. In scenario |, we varyn = {5, 10, 20, 40, 80}.

In scenario Il, we let3 = {0,0.1,0.25,0.5,0.75,1}. In scenario Ill, we choos¢ =
{10, 100, 1000, 10000, 100000}. We report-the Simulation results from each scenario in
the following. o S A S

Scenario I. Fig. 3.3(a) plots t.he average gbo'dput gain and processeepspith dif-
ferent marker numbers. The processing-'speed is measureddpa &hd gathered from a
commodity 2.6 GHz AMD workstation: Thfsl figure reveals thilh@ugh more markers
slightly increase the goodput gain, mere markers also leddgher computation over-
head. From our simulation results, the processing speedifer 10 is 230 Mbps and
m = 20 is 80 Mbps. Hence, we recommend < 20 to keep up with the Ethernet line
speed.

Scenario Il. We report the average goodput gain with different selegpiolicy 5 in
Fig. 3.3(b), which reveals that = 0.1 results in the highest goodput gain. Hence we
recommends = 0.1.

Scenario lll. Fig. 3.3(c) plots the average goodput gain and downlink losad un-
der different update frequengy We estimate the downlink overhead by computing the
down/up raticbetween the downlink traffic amount over uplink traffic ambodrhis figure
reveals that while smalf results in higher goodput gain, it also leads to higher dawn/
ratio. Hence, we recommeryd= 1,000. This gives a reasonable down/up ratio of 8.97,
which is roughly in-line with many ISP’s asymmetric accetanp, e.g., Verizon’s DSL
plan [30] offers a downlink of 7.1 Mbps to 15 Mbps with an ugliof 768 Kbps.

In summary, we recommend = 10, § = 0.1, andf = 1,000 for the best tradeoff
between performance (uplink goodput gain) and overheaat §sising speed and up/down
ratio). If not otherwise specified, we use this configurationfollowing simulations.
Last, we note that the uplink goodput gains shown in Figqa3.3.3(b), and 3.3(c) are
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not as high as we observed in earlier sections. This is utadetable because these figures
present the average goodput gain oatdata streams. The observation emphasizes the
importance of identifying those data streams with more dedandancy, so that we can
allocate more resources to them for higher overall goodpirt. gn the next section, we
present a detailed prediction model for this purpose.

3.2 Dynamic Adaptation Algorithm

In this section, we use the configuration recommended alodwaitd the prediction model
to estimate the goodput gain. With the prediction model, e®igh an adaptation algo-
rithm which dynamically invests cache size to each datastre
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3.2.1 Prediction Model

We develop a prediction model that allows us to estimate twgut gain by analyz-
ing a few packets at the beginning of each data stream. Weogrtipe aforementioned
8,147 sample data streams to drive our simulator. We stuslyefation between good-
put gain and individual data stream features, under vagacke sizeB = B, = B, €
{1,2,4,8,16,32,64}.

We first analyze the implication of source port number onnkpfioodput gain, and
plot the average goodput gain of each port number in Fig. [Sdte that, ports between
0 and 1,023 are calledell-knownports, which are associated with the default protocols.
Fig. 3.2, however, reveals that some higher porti)24 also achieve high goodput gain.
The actual protocols used on these high ports are unknows,tand thus we cannot
predict the goodput gain of many high port numbers. While DBapket Inspection
(DPI) may help us to infer the protocols used by the data stse®PI incurs non-trivial
overhead [2, 26] and thus we do not consider it in this article

Features other than port number are continuous, and thusoup the feature values
into 10 bins and calculate the mean of e_ach bin.for better emagltical tractability. We
perform linear and quadratic regressions on the:mappingdset the feature values and
mean goodput gains. Table 3.1 shows tvevalues of single-variable regression with
cache size of 16 MB. This table shows that é'ntropy, the ASGD rahd the mean packet
length significantly outperform the standard deviation atket length; therefore, we no
longer consider the latter feature. We. then perform twaoade regressions with a cache
size of 16 MB, and report th&? values in Table 3.2. This table indicates that all ftte
values of two variable regression are much lower than thdieo$ingle-variable quadratic
regression of entropy. Thus, we use quadratic regressientadpy to build the prediction
model.

Fig. 3.4 shows the distribution of uplink goodput gain wiiffetent entropy. In par-
ticular, we propose an empirical model to predict the uplpolodput gain of each data
stream based on entropy and cache siz&. We mathematically write the model as:

v (B,H) = dp2H* + 01 H + 65y, (3.1)

whereH € {0,2.66,5.31,7.07,10.62, 13.28,15.93, 18.59, 21.24,23.90}, B = B, = B €
{2,4,8,16,32,64}, anddg ., 051 H, anddp, are model parameters derived from the
quadratic regression. For cache sizes and entropy fromathpled values, we use linear
interpolation or extrapolation to approximate the goodyaih. Table 3.3 gives the model
parameters. The averadg® across all cache size is 0.864, which is fairly accurate. For
visual validation, we plot sample actual and predicted gobgains in Fig. 3.6, and the
interpolated surface of the predication model in Fig. 3i@. 8.6 shows that our prediction
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Table 3.1:R?* value of single-variable regression with a 16MB cache

Feature Linear | Quadratic
Entropy H 0.74 0.85
ASClI ratiof 0.08 0.67
Standard diviation of packet length 0.04 0.16
Mean packet length 0.28 0.29

Table 3.2:R? value of two-variable regression with a 16MB cache

Feature Linear | Quadratic
Entropy H and ASCII ratiod 0.39 0.59
Entropy H and Mean packet length| 0.45 0.61
ASCII ratio# and Mean packet length 0.39 0.48

model closely follows the actual results, while both figuresfirm that: (i) lower entropy
leads to higher goodput gain and (ii) larger cache size t®guhigher goodput gain.

3.2.2 Adaptation Formulation and-Algorithm

The simulation results presented za_bo'\/e"re\/__eal that for engilata stream, larger cache
size results in higher goodput gaiin. However,-real systdmaya have limited mem-
ory size, and how to optimally allocate the'memory to mudtipbncurrent data streams
become a challenging issue. We letbe the total number of data streams asd be
the total cache size. We ugé, to denote the sampled entropy of data streamwhere

s =1,2,---,5. Our problem is to find the best way to distribuBg among allS data
streams in order to maximize the overall goodput gain. Wé,lewheres = 1,2,--- .S

be the allocated cache size of data streamhich are the decision variables of our prob-
lem. We usezf:1 v (bs, Hy), the overall goodput gain, as our maximization goal.

To formulate the optimization problem, we need to matheradlyi write the esti-
mated goodput gain of data strearas a functiony (-) of the decision variablg, under a
given sampled entrop¥/,. The prediction model in Eq. (3.1), can be written as a piece-
wise linear function. We leZ be the total number of endpoints of this piecewise linear
function, and write the endpoints &%, ¢1) , (d2, g2) , - - , (d., g.), Wwhere the cache size
dy,ds, -+ ,d, come from the choseR in the simulations and the predicted goodput gain
G, =7 (ds, Hy) V2 =1,2,...,Z.

We plot two sample piecewise linear functions wil) = 5.31 and10.62 in Fig. 3.5
for illustrations. We make an important observation: thepsek of individual segments
are strictly decreasing. That igfls—9:=LHs ~ el Hs"920Hs for gl z = 2,3,--- , Z — 1,

1
B2 He—ds1,Hs doy1,Hs—dz 1y

and anyH,. Table 3.4 shows the parameters of the piecewise lineatiunsc We discard
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Table 3.3: Prediction Model Parameters
§ | B=2| B=4|B=8|B=16|B=32|B=64

dpo | 0.089 | 0.086 | 0.080 | 0.077 | 0.076 | 0.075
dpa | -3.351| -3.342| -3.256| -3.210 | -3.165 | -3.130
dpo | 30.465| 31.618| 32.427| 32.753 | 32.763 | 32.680
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Figure 3.4: Distribution. of uplink gobdput gain for all dagreams, with
16MB cache size. :
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_ _ closely follows the actual goodput
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gain.
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Figure 3.7: The interpolated surface of our proposed ptiedienodel.

entropy > 15.933 because of its low goodput gain (less than 3 %). Theshave 6
entropy bins. To validate this property that the slopes dividual segments are strictly
decreasing, we check allx 6 inequalities<(since we havé = 6 and 6 entropy bins), and
found only 1 out of the 24 inequalities do not .hold (Table 2Brause the large cache
size is enough to hold the redundanéy-daté. Next, we divide decision variablé, into

7 — 1 intermediate variables, composed of '1321&_ 1'segments. In particular, we define
0< BS% <d,41 —d,, wherez = 1.;2,"~: ., Z - 1T'asthe intermediate variables, and

by =Y bs.. (3.2)

Last, since the uplink goodput gain increases dramatiedtgn the per data stream
cache size is small, we reserveiaitial cache size-, for data streans. We let the total
initial cache sizeR = ZL rs. Via extensive simulations, we empirically found that
rs = 128 KB leads to high uplink goodput gain. Hence, we set= 128 KB if not
otherwise specified.

With the notations defined above, we write the optimizatiovbfem as:

S Z-1
b, = argmax Y Y b.lo; (3.3)
s=1 z=1
S ZflA
s.t. Z Z bs,z S BT - R7 (34)
s=1 z=1
0 S i)s,z S dz+1 - dza (35)

wherel, g, = #1921 s the segment slope computed from Eq. (3.1). The formu-

doy1,Hs—d2 1y

lation is Egs. (3.3)—(3.5) is a Linear Programming (LP) peab and can be solved by
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Table 3.4: Piecewise Linear Function Parameters

Entropy H | B, =2MB | 4MB | 8MB | 16MB | 32MB | 64MB
0 30.465 | 31.618| 32.427| 32.753| 32.763| 32.680
2.656 22.192 | 23.348| 24.345| 24.774| 24.893| 24.893
5.311 15.172 | 16.287| 17.392| 17.886| 18.087| 18.158
7.067 9.403 10.438| 11.568| 12.088| 12.348| 12.475
10.622 4.888 5.798 | 6.873 | 7.382 | 7.674 | 7.843
13.278 1.624 2.368 | 3.307 | 3.766 | 4.067 | 4.264
15.933 -0.387 0.149 | 0.870 | 1.241 | 1.524 | 1.736
18.589 -1.145 -0.860 | -0.438 | -0.194 | 0.048 | 0.260
21.244 -0.651 -0.659 | -0.617 | -0.538 | -0.363 | -0.164
23.900 1.096 0.753 | 0.334 | 0.210 | 0.292 | 0.464

Table 3.5: Slopes of the Piecewise Linear Functions

Entropy H | lon.a | lagisr - lsvs,m | lisvsa | ls2mBa
0 0.576 - 0:202-.0.04% | 0.001 | -0.003
2.656 0.578 0,249 0.054'| 0.007 0.000
5.311 0.558 _0.276 10.062 || 0.013 0.002
7.067 0.517. 4 0,283 /|- 0.065| 0.016 0.004
10.622 0.455 *.:0.269, (+10.064 | 0.018 0.005
13.278 0.372 | 0.235 | 0.057 | 0.019 0.006

various LP solvers, such as CPLEX [11]. Once the optimal Emitblgz is computed, the
optimal allocationb; can be derived using Eq. (3.2). We refer to this optimal aligor
as OPT throughout this thesis. We emphasize that we canssiattg allocate resources
because the segment slopes are decreasing, and thus aald@®isolution always sat-
isfiesé;z+1 >0 = [;:,z =d,41 —d,, foranyz = 1,2,--- ,Z — 1. In other words, an
LP solver would not invest any memory on segmest1 unless no more memory can be
allocated on segment

3.3 Large-Scale Simulations and Evaluations

We use large-scale simulations to evaluate the performahttee adaptation algorithm
presented above.
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3.3.1 Evaluations on Adaptation Algorithm

Since solving LP problems may be time consuming, we propossfecient algorithm,
EFF, which runs in real time. At each iteration, the EFF atban invests the remaining
cache size on the data stream that is estimated to achievegtihest goodput gain. The
algorithm runs until the remaining cache size reaches Zev@valuate its performance,
which we have also implemented two_oth.er adaptation alyostior comparisons. AVG:
equally divides the total cache size to eAch datd streamQ&Td which is the CPLEX-
based optimal algorithm. : X

The adaptation algorithms-are. triggered periodically gvérpackets. We set the
adaptation period/ = 1,000,000 in.the simulations. We only consider the hosts with
8+ data streams, because the adaptation is less meanimghasts with very few data
streams.

Goodput gain. We first report the expected uplink goodput gain achievedtfgrdnt
algorithms. The average goodput gain achieved by OPT isdm#tvl.57% and 5.98%,
and Fig. 3.8(a) gives the goodput gain normalized to that BT.OThis figure reveals
that EFF achieves very similar goodput than that of OPT, andesforms AVG by up to
45%. Fig. 3.8(b) reports that actual goodput gain computethé simulator. We make
two observations on Fig. 3.8(a) and 3.8(b): (i) the trendgawidput gain are consistent
and (ii) our prediction model is conservative and overreates the goodput gain of the
AVG algorithm (Fig. 3.8(a)); in reality the AVG algorithmsalts in much lower goodput
gain (Fig. 3.8(b)).

Overhead. We next present the overhead of different algorithms. FigsBows the
computational overhead, which is the average running tiorenalized to that of AVG.
This figure reveals that our EFF algorithm runs as fast as Av@le OPT may take a
much longer time to terminate. The OPT algorithm also coresumuch more memory as
indicated in Fig. 3.10. More specifically, OPT may consumeertban 20 MB memory,
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streams.

which is nontrivial to some platforms, such as applicationters. Given the high time
and space overhead of the OPT algorithm, we no longer cangidethe rest of this
article. : ' _

Comparisons against symmétric r_edun_da'ncy elimination algrithm The strengths
of RCARE compared to the current reduhdancy elimination algorare (i) it can adjust
the arrangement of cache sizes for data sfréams on the)fiy,c@n leverage storage and
computation overhead from a sender.to areceiver, andl{gicache on a receiver can
support inter-sender redundancy elimination which is ature work. In order to achieve
these three goals, we sacrifice little goodput gain. We takegpe data streams on number
of data streams from 2 to 7 since 93% data streams fallingsiréimge. We le3, = 4,

B, =16, and varyf € {5, 50, 100, 500, 1000, 2000}. Fig. 3.12 presents the goodput gains
on different update frequencf. Although we sacrifice little goodput gain on switching
from EndRE to RCARE, the results reveal that the accuracy of @hepolicy is high.
We only have little degrade on goodput gain with the growfind he maximum goodput
gain in EndRE is 95.06% and 80.59% in RCARE.

3.3.2 Performance Gain of RCARE

We quantify the benefits of RCARE using extensive traces underdifferent deploy-
ment configurations: (&)ost basedin which each host maintains a cache for each data
stream, and (bproxy basedin which proxy maintains a cache for each data stream.
For proxy based deployment, we regard each individual sopart as different data
streams. Fig. 3.13 illustrates these configurations. Wgheseonfiguration recommended
in Sec. 3.1.3, and leB, = 16, « = 1,000,000, andU = 1,000,000. We have imple-
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Table 3.6: Proxy Based Goodput Gain
Algorithm | B=025GB |05GB | 1GB | 4GB | 16GB
AVG 0.13% | 0.12% | 0.12%| 0.12%| 0.13%
EFF 0.60% _-1:12% | 1.78%| 2.66% | 2.87%

mented the RCARE with the EFF algorithm, and compare it agaestVG algorithm.

Host based. We vary By € {4,8;16,32,64}. We use the 10-hour traces. Since
we want to compare the performance between: the two adaptalgorithms, we only
consider the the number of data streams 'on each host. There are 876 GB trace
data and 1,280 hosts in total. We calculate the average go@dins of data streams
on each host. Fig. 3.14 shows the average goodput gain obsté lvith different cache
sizes. It shows that EFF always outperforms AVG. For exampeEFF algorithm with
4 MB cache size achieves almost the same goodput gain of tigealyorithm with 32
MB cache size. Fig. 3.11 presents the relation between thdeuof data streams and
goodput gains. Each piecewise line represents by the [nuofo@ata streams in the
host(amount)]. There are 93% data streams falling in thged®,7]. They have at least
3.47% goodput gain in average. We zoom in to the first 10% faadteeving the highest
goodput gain, and plot it in Fig. 3.15. This figure shows thatEFF algorithm achieves
over 40% goodput gain on average.

Proxy based.We let f = 10,000 and varyB; € {0.25,0.5, 1,4, 16} GB. We consider
21.6 GB sample traces, which contain 8,354 data streamsavédrage goodput gain is
given in Table 3.6. This table shows that the uplink goodamg of EFF are at least 10
times and at most 22 times higher than that of AVG.

In summary, via extensive trace-driven simulations, we aestrate that RCARE
achieves much higher uplink goodput gain with the EFF adiaptalgorithm, which
runs in real-time. Hence, we recommend using the EFF alguorit
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we proposed a practical asymmetric comnatinic algorithm, called RCARE,
for bandwidth and capability asymmetric-communications. REAs among the first
practical network algorithms to maximize the uplink gootigain of resource-constrained
senders by leveraging the already deploy_ed'do'wnlink badttiveind receiver capability.
Our extensive simulation results feveal the merits-of RCAREmared to existing asym-
metric communication algorithms [3, 10, 1.3-, 14,22, 32], RCARBi@aves much higher
uplink goodput gain: up to 50 times<improvement is possialed much lower rela-
tive overhead on downlink traffic: up to 384 times reductisrobserved. This shows
that RCARE successfully improves the uplink goodput gain dveeisting asymmetric
communication algorithms, such as ListQuery [13, 14], wiicurring small downlink
traffic overhead.

RCARE is also different from the state-of-the-art redundatiayieation algorithms [4,
6, 16,18, 24, 29, 33, 35] in several aspects. First, RCARE lgesréhe idling downlink
bandwidth and receiver capability for higher uplink gootgain. Second, RCARE shifts
computational and storage complexity from the sender teiveg, e.g., per-packet encod-
ing time at the sender is only 0.5 msec, while the decoding atrthe receiver is about
5 msec. This shows that RCARE is suitable to the considered ssagerios illustrated
in Fig. 1.1, while protocol-independent redundancy eleion algorithms [4, 5, 27, 35]
dictate the same cache size on the server and receiver, asdahnot utilize additional
resources at powerful receivers to help resource-constlasenders. Third, RCARE is
flexible on cache size adaptation. In real life, we sometimasa heavy applications on
resource-constrained senders. We may temporarily shiies@served resources from
RCARE to other applications; and shift the resources back drecether applications are
finished.
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Moreover, RCARE is adaptive. We analyze features with sampke steeams and
use it to derive prediction models. The analysis helps uptonally allocate cache size
among the data streams for higher uplink goodput gain. Capqgeed adaptation algo-
rithm further enhances the performance of RCARE: (i) it impso8&% uplink goodput
gain compared to a baseline of equal division and (ii) top Ha#a streams achieve up to
40% uplink goodput gain on average.

4.2 Future Work

There are several future research directions, for example:

e RCARE has potential to support inter-sender redundancy editioim, which is cru-
cial as most Internet services concurrently or sequentgalpport many clients.
For such services, maintaining a shared cache at the reaedimes us to further in-
crease the uplink goodput gain and save the computatioeahead. Determining
the relevance among multiple data'streams is one of ourdftiasks.

e User have different behavioral patterns: We may createipieilersions of cache,
calledbehavior cachesand use them.in different contexts, e.g., two separateesach
may be used for weekdays and weekends, respectively. lm@inpg behavior
caches to RCARE is another future task.

e We believe the RCARE can run-in real time after some code opttoim We
plan to implement RCARE in a real network stack and conduct aetgeeriments
to demonstrate this.

e Cellular ISPs are switching away from unlimited data plamsl #hus the total net-
work traffic amount (in both directions) becomes a key comcehdjusting the
update frequency in order to minimize the total traffic amount is one of our fgtu
tasks.

e Some of the RCARE senders may be battery-powered, which haitedienergy
budget. We will measure the energy overhead of RCARE on theslersen
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Symbol Table

Symbol Description
B, Receiver cache size
B, Sender cache size
f Update frequency
6] Selection-palicy parameter
P Selection policy
w Representative window size
P Representafivé window sampling frequency
m Markerlist size
T Marker list refresh threshold
T Marker list update frequency
0 ASCII ratio
H Entropy
a Number of sampling blocks for data stream features
S Total number of data streams
S Data stream
Br Total cache size
b Allocated cache size
Z Total number of endpoints of piecewise linear function
z Endpoint of piecewise linear function
d Cache size on endpoint of piecewise linear functign
g Goodput gain on endpoint of piecewise linear function
R Total initial cache size
r Initial cache size
[ Segment slope
U Adaptation period
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