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Abstract

We focus on utilizing offloading to reduce the energy constimnpof
the mobile devices or the execution time of event analygeraghms, and
improve the system performance of crowdsensing systemsntEanalysis
algorithms analyze the sensory data that are collected Hjienasers to de-
termine whether events happen or not. The overhead of emahtsis algo-
rithms can be offloaded to cloud servers to achieve energyezflly or better
performance. Since offloading benefits depend on many fadach as net-
work latency and computation capability, we propose an afdfilog decision
algorithm, which considers the context information to decivhether to of-
fload the computation to cloud servers. To show that offlaadan be used in
existing applications, we develop an APK analysis tool talgre the third-
party applications. Without.the source code, the tool defteaes which part
of an application can be offfoaded and modify the applicatiobe offload
version. To evaluate the impact of crowdsensing system offtbading, we
implement a crowdsensing. prototype -system and integrdi@adfng tech-
nigue into the system. The prototype-system involves (iokéd, (ii) offload
servers, and (iii) clients. We. implement.2 'event analysgoadhms in the
system.

Our experiments show that our-offloading decision algorithrproves
the system performance through intelligently making offing decisions,
and the accuracy is up to 80%. The high accuracy significaatlyces the
penalty of suboptimal offloading decision. Moreover, byliziig the APK
analysis tool, we analyze and modify third-party appl@as. The results
of offloading the third-party applications show that offloagpcan be used
in existing third-party applications. Last, we conduct esments with the
crowdsensing prototype system with offloading and showdfiltading im-
proves the performance of the crowdsensing system.
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Chapter 1

Introduction

1.1 Efficient Crowdsensing System With Offloading

Infrastructure sensors can be used to build a system prgviabundant information,
which is useful to citizens and governments. -For examplenitoong the traffic con-
dition and the air pollution level. These ir_lforfna_tion makiees smarter and improve the
quality of citizens’ daily life. HoWever_, deploying the nafstructure sensors everywhere
and maintaining the infrastructure sénsdré iS-costly toviddals, and is a heavy burden
even to enterprises and governments. Aith'ough infrastrecsensors are cheaper and
more powerful than before, deploying infrastructure semsgerywhere is expensive and
takes a long time to achieve it. Not only the sensors, thedhiieeless connection and
the plug-in power for sensors are also heavy expenditures.

Crowdsensing seems to be an alternative solution for imtreistre sensing. Nowa-
days, mobile devices are equipped with multiple sensogs 8PS, accelerometer, etc.)
and connectivities (e.g. Wifi interface, 3G/4G interfade,)e This makes the mobile de-
vices can be considered as mobile sensors. The populadtyahility of mobile devices
make the topic attracting to governments and people sirecexpenditure of deploying
infrastructure sensors can be reduced if leverage the endbilices properly.

The difference between crowdsensing and infrastructursiisg is that crowdsensing
can be used in providing information that cannot be easignaned by computer. These
information can be answered in crowdsensing system sinoghs are introduced to
become part of the system. In this thesis, we use event totoefiee information that can
be provided by the crowdsensing system. Events can befi@eritirough event analysis
algorithms, which analyze the collected sensory data terogehe whether events happen
or not.

Although crowdsensing is interesting and powerful, it hagesal issues that should
be addressed in order to deploy it in real world. In this thesie address on improving
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the performance of event analysis algorithms through affftia The event analysis algo-
rithms may lead to heavy computation, and take a long tima&eowde on mobile devices.
It is not energy efficient to execute on mobile devices. Téisimilar to offloading, and

we try to improve crowdsensing systems through offloadireyyze€omputation to cloud

servers to reduce the energy consumption of mobile devicéiseoprocessing time of
event analysis algorithms.

1.2 Offloading Applications To Cloud

Cloud computing is getting increasingly popular for seveeakons, such as lower main-
tenance cost, more elastic resource allocation, and eastess. Mobile devices, such
as smartphones and tablets, are becoming ubiquitous leegadern mobile devices are
more and more powerful and 3G/4G cellular networks prova mobile Internet ac-
cess. Nonetheless, mobile devices still have stringeoures constraints on, e.g., CPU
power, memory size, storage space, and battery lifetimmapeaoed to laptops and desk-
tops. Among these constraints, the battery 'Iife_atime is abbpthe most critical one for
mobile users [1], and the response time élsd IMpOses negatpact on the user experi-
ence. i

Mobile applications may cope, with the' constraints dacrificing user experience,
e.g., rendering videos at lower guality and returning thercde results after longer re-
sponse time. A better solution is to offload computationaitgnsive processing over the
wireless networks to the cloud servers in order to reducetizegy consumption or the
response time. This is referred to m®bile cloud offloading9, 11, 17]. Mobile cloud
offloading allows the mobile applications to achieve baisar-experience, and offers the
cloud service providers more business opportunities.

In this thesis, we study th#ecision enginén mobile cloud offloading systems, which
decides whether to offload a given method to the cloud senfersive approach is to
alwaysoffload, which may lead to higher energy consumption anddomngsponse time
if the method is not computationally-intensive and the datiae transferred is large. We
propose a better, context-aware decision engine, whigrdges on user context and his-
torical measurements to make offloading decision for mining energy consumption,
response time, or other optimization criteria. To our bestvdedge, context-aware mo-
bile cloud offloading has not been rigorously studied. Whilefmroposed solution can be
integrated in various cloud offloading systems, we have Ayifoof-of-concept prototype
on top of ThinkAir [17]. Our preliminary experimental results from severall véndroid
phone users show that the proposed decision engine: (@\ahmore than 80% predic-

We thank ThinkAir's authors for sharing their source code.
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tion accuracy, (ii) improves the overall performance inrggeconsumption or response
time, and (iii) incurs very low overhead.

1.3 Contributions

The contributions in this thesis are

1. Implement a real crowdsensing prototype system. Theaafiitg technique is inte-
grated in the system and can be deployed in real machine [20].

2. Propose a context-aware decision algorithm. This algordetermines whether to
offload the computations to cloud servers with high accufaty.

3. Analyze and modify existing applications to show thataaftling can be used in
existing applications.

4. We deploy the crowdsensing system, and show the perfagnarprovement through
offloading and the importance:of having a good offloading slenialgorithm.



Chapter 2

Related Work

2.1 Offloading

Mobile cloud offloading has been considered in the litemf@r11,17]. MAUI [11] is an
offloading system designed for Windows-phones. It uses MaftoNET to identify the
methods that can be offloaded and:the states that neededrembtetred during offload-
ing. MAUI continuously collects essential déta'; e.g., ggezonsumption, CPU utiliza-
tion, and network conditions, at runtime. (1t uses-the codidaata to make the decision
on whether to offload for saving enérgy of mohile devices. drtipular, MAUI builds a
call graph and solves it as a 0-1 integer linear programminglpm. ThinkAir [17] en-
ables method-level offloading system on Android phones.il&ito MAUI, developers
should add notations to the methods they want to offload. KFirmogs the energy con-
sumption, execution time, and network conditions, whiah @sed to decide whether to
offload. ThinkAir makes offloading decisions based on usefgoences and the logs.
Clonecloud [9] is an offloading system for Android. Differdndbm MAUI [11] and
ThinkAir [17], it directly works with application binariesThe code partitioning is com-
pleted by a static analyzer which builds a control-flow grapld identifies the possible
partition choices. The dynamic analyzer uses random ingiatsgts to generate multiple
execution logs, which are used to solve an integer lineagraraming problem. Kwon
and Tilevich [18] use checkpoint to support offloading andimize the states to be trans-
fered. They implement a code enhancer to identify all methathotated with a special
tag and insert checkpoints in them to build the client- andeseside classes. Mobile
applications are always offloaded as long as network isabail Since it doesn’t check
whether offloading can save energy, under some circum&aheesnergy consumption
may be higher.

Several energy (or power) consumption models have beerogpedpfor mobile de-
vices [7, 13,22, 24, 26, 30]. Roughly speaking, the energg@mption can be classified
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into three components: (i) computation, (ii)) communicasioand (iii) display and others.
In this paper, we focus more on communication energy consampecause it is directly
affected by different contexts, while other componentsratker static. Several energy
models are base on the observation that different statesnefveork interface impose
diverse power consumption levels [7, 24, 30]. Compared tp3@}} Balasubramanian et
al. [7] consider two extra network-relevant states: ramg & energy. Ramp energy
is the energy consumed when the interface switches to thegager level before data
transfer and tail energy is the energy consumed when théantekeeps in a high power
level after data transfer for a system specified duratiomdzmnd Zhong [13] show the de-
pendencies between energy models and mobile hardwaregaalbgd a self-constructive
and adaptive power modeling method. This model does notdiffieeent network condi-
tions into consideration. The work in [22,26] takes netwaokditions into consideration.
In [26], network conditions affect the transfer successdditib. It is assumed that a failed
transfer will be retransmitted under the same network d¢mmdi In [22], the commu-
nication energy is a function of the signal strength. Neifl26] nor [22] consider the
implications of network congestion-level.

2.2 Crowdsensing

Due to the advance of technology; smartphones are equipjtednere and more sen-
sors, such as GPS, accelerometer, and gyroscope. Thisatestiesearchers to leverage
the capability of smartphones to provide sensory dataadsté deploying infrastructure
sensors everywhere. Such a paradigm cathedbile crowdsensinfl4]. To solve spe-
cific problems, several crowdsensing applications areqeegin [8,10,16,28,31]. Chon
et al. [8] aim to automatically identify places by crowdsegs Through combining the
radio finger print of WiFi access point and image procesdingiy framework classifies
the places into gym, restaurant, etc. To improve imageeblsation reliability, Talasila
et al. [28] introduce human validation and sensory data dhatattached to the photos
to determine the locations. Hasenfratz et al. [16] propgs¢esn that uses sensor and
GPS to provide air quality map to users. Zhou et al. [31] psep® system to predict the
bus arrival time. Through processing the sensory data tieat@lected by users, such
as microphone and cell tower ID, the system identifies whatlkers are on buses and
bus routes, and predicts the time for the bus to arrive at baststop. Some works use
pre-install specific sensors, monitors in buildings, omg\data recorders in cars to help
sensing like Coric and Gruteser [10] and Lan et al. [19]. Conid &ruteser [10] aim to
provide on-street legal parking slot map to users. Theyrasdine parking map is ac-
cessible in advance, and use the sensors and GPS instalted oars to determine the
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Figure 2.1: Process the sensory data on broker/server.

parking slots are occupied or not. The system shows theadaiparking slots on the
map to avoid users wasting time on finding parking slots.

Besides the applications, other issues in crowdsensingragsare studied in [6, 19,
25,27]. Since incentive is also an important issue in cr@mdsg systems, Lan et al. [19]
propose a framework which has incentive mechanism to ntetivgers to provide sensory
data. Users who provide sensory data or share their cowitiestican earn virtual credits.
To achieve efficient data transfer‘in-erowdsensing syst&hsychan et al. [27] propose
a framework that reduces energy and bandwidth consumpirossehsory data collection
and data transfer. Medusa [25]/'and Agarwal etal, [6] progeleeral crowdsensing sys-
tems to support various applications.' Medusa [25] is a ceanding framework which
aim to relieve the burden of developing new applicationsvddepers only have to ex-
press the sensing tasks through their.own scripting laregjand Medusa automatically
deploys the tasks to mobile clients toinstruct-users tagperthe tasks. Agarwal et al. [6]
provide a framework to ease the development of new appicatiTo avoid duplicate and
in-efficient sensing, they also provide sensor scheduleakenusers perform the tasks
efficiently.

2.3 Challenge in Large-scale Crowdsensing Systems

Although the proposed crowdsensing systems are integeatid useful, to be deployed
in real world, there are several challenges. These chatesigould be addressed in order
to make the proposed crowdsensing architecture deplogaloldetter. In this thesis, we
address on thevent analysis offloading problemvhich is one of the major challenges in
crowdsensing systems. Since the events are detected byamadysis algorithms, there
should be a host to take on the computations. As shown in Flg.tRe most intuitive
approach of performing event analysis algorithms is sendihthe collected sensory
data to a specific server and perform the event analysisitlgm on it. In fact, most
of the crowdsensing systems follow this approach. Howetes, may lead to heavy
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network overhead on mobile devices and severs in large sgatems. Therefore, this
will consume larger amount of energy of transferring thesseyndata on mobile devices.
An alternative solution is to pre-process the sensory defiaré transferring to servers or
even performing the event analysis algorithms on mobilecgsv With this approach, we
can significantly relieve the communication overhead of ieadevices and servers.

This becomes a trade-off between transmission and connut&thich is similar to
offloading. Therefore, we believe offloading can improvepgbegormance of crowdsens-
ing systems. By carefully determine whether execute evealysis algorithms on servers,
energy consumption and processing time can be reducedwudsemsing systems. For
mobile users, they can also reduce energy and time througgidaring the trade-off of
computation and transmission.

The biggest difference between our work and other existiog/dsensing systems is
that they do not consider the execution place of event aisadygorithms. We consider
the trade-off of transmission and computation to maximieedanergy and time efficiency
of the system. In this thesis, we aim to integrate offloadimtg crowdsensing systems
and leverage offloading to improve-the performance of crendmg systems.



Chapter 3

Offloading Applications To Cloud

3.1 Architecture

3.1.1 Overview

Fig. 3.1 shows the common mobile cloud offloading architextlihe resource-constrained
mobile device is connect to the resourceful cloud servethednternet. The mobile de-
vice and cloud server run a cloud offloading s;}stem, whiclesponsible to offloading
a method execution from the mobile de\)ice.to the cloud searet then retrieve the re-
turn value from the cloud server back-to t'he_mobile deviceariods cloud offloading
systems [9,11, 17] proposed in the-literature may be usesl Ia@ur work concentrate on
the development of the decision engine. Before the mobileedexecutes a method, the
cloud offloading system checks with the decision engine &veleether to offload that
method. The decision engine should only instruct the cldtidamling system to offload
the method if offloading the method results in better pertoroe. Possible performance
metric include energy consumption and response time, aftbisen by each mobile user.
In this thesis, we design and evaluate a context-awareide@sgine, which consists of
four components: context-aware decision algorithm, cdrgeofiler, energy model, and
context database. We detail each of them in following sasti@Ve notice that exist mo-
bile cloud offload systems [9, 11, 17] may also implement sdewsion heuristics, but
to the best of our knowledge, they are not context-awareetn $.4.1, We will show the
importance of context-aware decision engines.

3.1.2 Context-aware Decision Algorithm

The decision algorithm is responsible for determining wketo offload. It considers the
contexts that consists of: (i) time-of-day and (ii) locati decide local or cloud execu-
tion. We will discuss the context-aware decision algorithrmore details in Sec. 3.3.
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Figure 3.1: Mobile cloud offloading architecture.

3.1.3 Energy Model

The energy model estimates the execution energy consumiptiche mobile device. It

takes signal strength and transmission time to be input atglbthe energy consump-
tion. Energy model is necessary in offloading system. Witlemergy model, we cannot
understand the energy consumption of local execution diwhding, and we cannot de-
termine whether offload or not. We discuss more details oboergy model in Sec. 3.2.

3.1.4 Profiler
The context profiler is a background service that collectsoua contexts required for

making the offloading decisions. We consider the followiogrfcontexts:

e Signal strength: the profiler periodically collects theskitsignal strength of WiFi
and 3G networks.

e Transmission time: the profiler periodically transmits sodummy data to/from
the cloud server to measure the end-to-end network thraugm hence get the

transmission time for energy estimation.
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e Time-of-day: the profiler partitions each day into 48 haiftgour time slots. The
time slots of the offloading opportunities are recorded.

e Location: the profiler logs the geographical location usB®S once every half an
hour.

These contexts are saved in a database, and then used byplosgn context-aware
decision algorithm and energy model.

3.1.5 Database

Once a method is executed, the costs including the progessie, energy consumption,
and starting time slot are recorded in the database. Thgynensumption is estimated
using an energy model, which is based on the network sigrehgth and throughput.
The derivation of our energy model is detailed in the nextisac Since we only use the
current signal strength and throughput, these-contextsarstored in the database. The
CADA algorithm uses the location.and time-of-day as the inalect the database returns
the average performance on the cloud and on the! mobile defideere is no previous
record at the combination of location and time-of-day, theatase returns null to the
CADA algorithm. :

3.2 Problem Statement

In this section, we discuss two significant problems thatikhbe addressed in order to
make applications benefit from offloading. The problems energy measurement and
(ii) application modification without source code.

3.2.1 Energy Measurement

Energy measurement is necessary in order to understandshefdocal execution and
offloading. We aim to leverage offloading to reduce the eneaggumption or execution
time of mobile devices. Therefore, we need an energy modetdasure the energy
consumption and use the result to determine whether to dffldde more accurate of
the energy measurement, the more accurate decision thamwaake. Also, the penalty
of wrong decision can be high, hence, the accuracy of theggmaodel should be in a
tolerant rate. In this section, we summarize a power prgfitool in the literature, and
enhance it by incorporating user contexts for higher aayura

10



Table 3.1: Fitting Error of Different Mapping Functions

MSE Linear Quadratic Cubic
Cellular | 5.08 x 107* | 2.20 x 10~* | 1.77 x 10~*
WiFi 6.52 x 107° | 4.35 x 107° | 4.25 x 107

Limitations of Existing Energy Models

PowerTutor [5] is an open-source power profiling tool for ni@devices. Its underlying
power model is written as:

Ptotal - Pcpu + Pcomm + Pdisplay + Pother~ (31)

In EQ. (3.1), the total power is the sum of the component-weer consumption. There
are four components?.,.,, P.omm, FPaispiay @Nd Py, fOr computation, communications,
display, and othersP.,,,,. is further divided into the power consumption of WiFi and
cellular networks: : i

P =-Byire FECel: (3.2)

The Wifi and 3G power consumption is written as:
PWiFi/Cell = P X Bid.le ar, }Dtr.ans X 5tran37 (33)

whereP,y. and P;,..,,s are the power consumption when the network interface isadte
transferring, ands, 4. and ;,..., denote the fraction of time the network interface is in
different states. More details of the energy model can badon [30].

The communication power consumption depends on the sigresgth and network
congestion level. However, the communication power moddtq. (3.3) does not take
such network dynamics into considerations, and may leaglstodccurate power estima-
tion. Therefore, we develop a context-aware power moddlemext section.

A Context-Aware Communication Energy Model

We propose a context-aware energy model, which is a funofitime transmission power
and congestion level. The communication energy consumpliépends on: (i) the trans-
mission power as it determines the instantaneous poweuogteon and (ii) the conges-
tion level as it determines the data transfer time. Howaweist mobile OS'’s, including
Android, do not provide APIs for polling the transmissionyss and congestion level.
Therefore, we employ the two contexts in our energy modelRéeceived Signal Strength
Indication (RSSI) and the throughput, because the trangmigswer is a function of the
RSSI value, and the congestion level is a function of the nétwooughput. The RSSI
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Figure 3.2: Transmission currentunder different RSSI vafae (a) WiFi and (b) cellular
networks.

value and network throughput are collected by the contexdilpr, which incurs small
energy overhead as we will show in Sec. 3.4.

We first derive the mapping between the RSSI and drawn curiangxperiments
using an Android phone. More specifically, we use an Agile888.D power meter to
measure and record the current of an HTC Sensation XE phore al¥d implement
an Android application to record the average signal stietigbughout each experiment.
Via placing mobile phone at different locations, we measieecurrent consumed by each
data transfer of a 50 MB file over 3G and WiFi networks unddedént RSSI values. We
repeat the experiment three times at each location andtréq@oresults in Fig. 3.2. This
figure clearly shows that the drawn current is a decreasingtion on the RSSI value,
which make sense as better signal strength means that théerdebice can reduce the
transmission power without increasing the bit-error-rate

We fit the measurements to a polynomial function with thetlegaare method. Ta-
ble. 3.1 shows the Mean Square Error (MSE) of several polyaldomctions. This table
shows that the error of a cubic polynomial function is faldw, and thus we use the cubic
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Table 3.2: The Empirically-derived Cubic Model Parameters

Para. Y3 72 71 0
Cellular | —1.35 x107° | —2.9x 1073 -0.21 -4.89
WiFi —4.37x 1077 | —=5.62x107°% | —2.7x 1072 | 0.19

polynomial function in our energy model:
Ptrans(s) =73 X S3 +’72 X SQ +71 X S+707 (34)

where~s, v, 11, and~, are the parameters of the cubic function, ahds the RSSI
value in dBm. The model parameter derived on the HTC SensaAfiophone is given in
Table 3.2.

With the RSSI and throughput collected by the context-awaoéler, we can write
the communication energy consumption as:

D
Etrans(Sa RaD) = Ptrans(5> X E X ‘/7 (35)

whereR denotes the throughput adeldenote the transferred data amount if the subject
method is offloaded to the cloud. The energy rﬁodel given in(&§) is combined with
the computation, display, and, other poWer ‘models definecowelPTutor for a device-
level energy model. This context-aware ehergy model is eyed by the CADA algo-
rithm to estimate energy consumption.

3.2.2 Application Modification without Source Code

How to offload the existing applications is also a signifiaaatie. We want not only self-
developed applications, but also existing applicatiomsuse offloading to reduce energy
consumption. However, most of the time we do not have thecgotwde of the applica-
tions. Without source code, we cannot easily determine wigthods can be offloaded
to cloud and modify the code to offload the methods. To helpasiiyeanalyze what
methods can be offloaded and modify the applications witsoutce code, we develop
an APK analysis tool to achieve it. The tool analyzes APK fiijch is the application
installation file that used in Android OS, and modify it to ugtoading library.

Fig. 3.3 shows the workflow of the tool. The first step is to depie the APK file
by apktool [2]. The decompiled files are Smali code, whichhis tegister language of
Dalvik Virtual Machine. Fig. 3.4 is an example of Smali codeis not as readable as
Java code but contains the information of super class, fieldd methods that can be
used to analyze the application. We analyze the Smali fildgiker out the methods that
cannot be offloaded to cloud. Since local resources, suchrasra and GPS, can only

13



Decompile APK
to Smali Code

\ 4

Find Candidate
Methods

\ 4

Modify Target
Method

\ 4

Re-compile the
Modified Smali
code to APK

Y

Sign the
Generated APK

Figure 3.3: The workflow of the APK analysis tool.

accessed locally, we remove the methods and classes tleatabe local resources. Once
the analysis done, we get a list of.candidate-meth_ods thateaffloaded to cloud.

By assigning a target method, the tool aiutorhatically trams$éathe method to offload
version. The tool creates a new Android project and an empthod, which has the same
input, output, and name as the target method. Since we us&Ainhio be our offloading
library, we use ThinkAir code generator to make the creategept use ThinkAir library.
The Smali code of the target method then overwritten withSh®ali code that decom-
piled from the created project. After modifying the smaldeoit is recompiled to APK
file through apktool. After signing the generated APK filegadin be installed in normal
Android devices and offloading the target method to cloud.

3.3 Proposed Algorithm

While offloading computation to the cloud may save energy, fitat always true. For
instance, if we offload a method to the cloud, when the wigetggnal strength is low,
the additional communication energy may be higher than dkedscomputation energy.
Hence, a context-aware decision engine is critical to tis¢éesy performance.

CloneCloud [9] and MAUI [11] solve integer linear programmipgpblems in their
decision engine, while ThinkAir [17] averages the histaliexecution costs on the cloud
server and on the mobile device, and chooses the better @amebdodiri and Ghose [23]
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.clas=s public Lchesspresso/game/ Game;
Jdmplements Ljavasio/Serializable;
4 .zuper Liava/lang/Object:
.source MGame. Java
# interfaces

.implements Lohesspresso/position/PositionChangelistensr:

# stacic fields
.field private static DEBUG:Z

# instance fields
i8 .field private m alwvaysiddLine:Z
.field private m changeListeners:Lisva/util/List:
.field private m cur:I
.field private nLheader:LchesspressofgamefGameHeaderMDdel:
.field private m ignoreNotifications:Z
.field private m model:Lohesspresso/ game/ Gamelodels
.field private m_moves:Lchesspresso!gamefGameHDveHDdel:
.field private anDsition:Lchesspresso!positionKPDsitiDn;
# direct methods
method static constructor <clinits ()W

.locals 1

.prologue

«dine B8

const/4 w0, Ox0

41 sput-hoolean w0, Lchesspresso/gsame/Game;->DEBUG:Z

4% return-void
.end method

Figure 3.4: Example of Smali code.

also propose an algorithm to determine whether running alicapion in the cloud is
more energy-efficient. Wolski et al. [29] implement sevdsahdwidth measurement
methodology and compares their performance in grid comgudifloading. None of
the works [9, 11,17, 23, 29] make the offloading decisiongtas rich contexts. In con-
trast, we design a Context-Aware Decision Algorithm (CADAJtthakes four contexts
into considerations, while making the offloading decisions

In the CADA algorithm, we avoid the optimization problem sais, used in, e.g., [9,
11], as solving complex integer linear programming proldétself may consume exces-
sive energy. Instead, we use the time-of-day and locatidetermine whether offloading
can save energy. We choose these two contexts because nedrideusually have a reg-
ular behavior [15]. This means that for a given time-of-dayser is likely to visit the
same place, have the same wireless network condition, arntie.same applications. For
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Algorithm 1 Context-Aware Decision Algorithm (CADA)
Query from database with and L

if ecouq 1S NUllthen
Query with L for the closest record
if there is no recorthen
Return offload to the cloud server
end if
Settoua aNdeqouq 10 the value of closest record
end if
if €10cqr 1S NUllthen
Query with L for the closest record
if there is no recorthen
Return execute on the mobile device
end if
Sett;ocqr @aNdey,.q; to the value of closest record
end if

Choose the smaller one @f,,q andejoear (OF-teizug aNdtoeqr)

instance, for a user who go to-the library, from 3 p.m. to 5 p.rerg Tuesday and go
to the park from 6 p.m. to 8 p.m. every Wednesday. The wiralessork condition in
library is usually good enough for offloading, but the wisdenetwork condition in park
is usually not. Thus, the CADA algorithm learns from the pasoaition records and
offloads the workload if the time is between 3 p.m. and 5 p.m\Wainesdays and the
location is the library.

Before invoking a method which can be offloaded, the CADA atbari uses the
current location and time-of-day to query the past exeoutiosts at the same location
and time-of-day on the cloud server and on the mobile devitéere is no previous
result in database, the CADA algorithm chooses the closest-tif-day at that location
if it exists. Otherwise, the CADA algorithm tries to offloadetimethod once and run
the same method on the mobile device once to get some recortigdre, educational
decisions. Algorithm 1 summarizes the CADA algorithifhand L represent time-of-day
and location, respectively.ande are the execution time and energy consumption of the
subject method,...; is the execution time on the mobile device apg,, is the execution
time on the cloud server. For energy consumption, we defipg ande.,.q for that on
the mobile device and the cloud server.
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Table 3.3: Four Classes of Mobile Applications Used in thedExpents

Class High Computation | Low Computation
Big State HCBS LCBS
Small State HCSS LCSS

3.4 EXxperiments

3.4.1 Offloading Simulation

We conduct real experiments to evaluate the proposed CADgitigh and mobile cloud
offloading system.

Setup

We have implemented our context-aware-decision engine amoh 4.0, and integrated
it with ThinkAir [17] for experiments. -We dép_loy the clienhanultiple HTC phones
and install the server on Android-X86 runnin'g on'a commotfitgl i7 desktop. We ask
4 users, who are graduate students, to éarry the smartphadesxecute the offloading
experiments whenever they geta chance. .V\-/e only get enogghimental samples from
four users, and thus exclude the two-outliets. in-the restisfdbction. We configure the
profiler to cluster the GPS locations by rounding the lagtatd longitude values to the
fourth digits after the decimal point. The profiler collette GPS locations once every
30 mins and other contexts once every 5 mins.

We consider four different classes of mobile applicatiomsich demand for diverse
computation and communication resources. The four kinds @y Low Computation
with Small State (LCSS), (ii) Low Computation with Big State (LOBGii) High Com-
putation with Small State (HCSS), and (iv) High ComputatiothvBig State (HCBS).
Table. 3.3 summarizes the classification. We believe thedettiour application classes
represent most of the existing mobile applications. We @nm@nt a sample mobile appli-
cation in each class, and upload the mobile applicationsgdHT C phones.

For LCSS, we implement a simple for-loop performing additmultiplication oper-
ations. The amount of computations is light for modern spianhes and the state to be
transferred is small. For HCSS, we implement nested fordasiph huge numbers of
iterations performing addition/multiplication operaig® The amount of computations is
large and takes the HTC phones about 30 secs to finish. For LGB&pplication reads
an image and performs a simple color space conversion freniRBB to YUV space.
This application transfers a high-resolution image to toeid and the computation de-
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Figure 3.5: Accuracy among users, each user is annotatedginlger of offloading exper-
iments.

mand is low. Last, for HCBS, we pérform the éame as LCBS but addadeadetection
algorithm, which leads to large comriu_ta';-i'oh demand.

The subjects take the HTC pH’one's with ther_n. for 3 days, andandom mobile
applications whenever they get.a ch‘an'ce: '_Wé consider tredermance metrics: (i)
prediction accuracy, (ii) performance gain in the energysconption and response time,
and (iii) energy and computation overhead.

Results

Importance of context-aware offload decisionDifferent applications have diverse fea-
tures and thus their behaviors are not identical. We builidhple experiment to demon-
strate the negative impacts of making offloading decisiomisout considering user con-
texts. In particular, we execute the HCBS application with \W#&, and local respec-
tively, and give the results in Table 3.4. In this table, Idlehe energy consumption
without our offload-able application. The result we repsrthie additional energy con-
sumption compare with idle energy. This table shows thavadfing the application over
3G leads to higher overall energy consumption on the moleNge, compared to running
the same application on the mobile device. This revealsctbatl offloading could result
in worse performance when the network condition is bad. heotvords, the network
condition imposes a direct implication on offloading penfance. Given that offload-
ing this application with 3G at this location is worse thamfpening that on the mobile
device, our CADA algorithm will make a smart decision to ruatthpplication on the

18



50X

| 1 I
7 L 1CADA
40X Bl Cloud
30X
20X1
10X
OJL—HL—T

1 2 3 4  Avg.
User

Figure 3.6: Performance improvement on response time.

Table 3.4: Energy Consumption wheh Offloading over Diffeifreless Networks

Network Type |-WiFi 1 = 3G Local Idle
Current (MA) | 9.26194{ 285:3662 | 24.0448 | 398.74
Execution Time. | 224.99-{" 3559:85 | 299.34 -

mobile device.

Accuracy of the CADA algorithm. We present the decision accuracy of the CADA
algorithm in Fig. 3.5. The accuracy is defined as the pergemémaking the right deci-
sions for lower energy consumption or shorter response twhereas the right decisions
are determined by comparing against the ground truth deliiday the context-aware pro-
filer. Since CADA enforces each method to execute on the mdbilee and on the cloud
server once to learn which one is the better, we refer to thvasexecutions as the train-
ing round and exclude them when we compute the accuracy3Bglepicts that among
the four users, the accuracy is between 79% to 100%. The udseaehieves 100% ac-
curacy tends to stay in very few locations, and thus the CAR@@ihm can make better
prediction using the larger number of samples. Another ntapd observation is that the
CADA algorithm can optimize toward lower energy consumptéam shorter response
time, and achieve roughly the same accuracy. This demdesttiae flexibility of our
CADA algorithm and mobile cloud offloading system. Fig. 3.8 &9 show the energy
consumption and execution time of each scenario. The fiqanesssent that time and en-
ergy are proportional and most of the scenarios have bigdiffistence, which is at least
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Figure 3.7: Performance improvement on energy consumption

40%, between executing on local-and'cloud.- Since the pattetime and energy are
similar, the accuracy of time-and energy are very. similar ak. w

Performance gain achievedtby the CADA algorithm. Figs. 3.6 and 3.7 plot the
performance improvements on'response time_and energy romtisin achieved by the
CADA algorithm, respectively.-The results are normalizethtoresults achieved by run-
ning the mobile applications on the mobile devices. Thesedgshow that the proposed
CADA algorithm outperforms the baseline approach in mosésa3he only exception
Is the energy consumption of user 1 in Fig. 3.7, which consustightly more energy
compared to always running the mobile applications on tbedckerver: a mere 4% gap
is observed. In summary, the CADA algorithm improves the reobioud offloading
performance in response time or energy consumption foe81nigers.

Overhead. CADA consumes very few CPU cycles, and terminates in less than 1
ms for all users. The number of entries in the context-awatalzhse is no more than
M x L x 336, whereM is the number of methods to be offload dnds the number of
locations where the users execute those methods. 336veddry 48 time slots each day
and 7 days a week. This number is fairly manageable on modebilerdevices.

We design a simple experiment to measure the overhead ofafilep We use an Ag-
ilent 66321D power meter to measure the average currentldif&hsensation XE phone
with and without our profiler for 1 hour. In fact, our profilesltects many more contexts
although we only need network RSSI, throughput, and GPSitatat our experiments.
To be conservative, we enable the profiler to collect all ef¢bntexts. Table. 3.5 gives
the measurement results. This table shows that the aveagpge 8.94 mW, only 6% more
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Table 3.5: Profiler Energy Overhead

Power (mW) | Average | Min | Max
Without profiler 489 | 47.1| 505
With profiler 51.84 | 46.9| 56.3

than the current with profiler.

3.4.2 Offloading Real Third-party Applications

In this experiment, we aim to show that offloading can be useexisting third-party
applications and improves performance or reduces energuooption of mobile devices.
Since the third-party applications usually don’t have seucode but only APK files,
which can be used to install the application on mobile deyjiee2 use our APK analysis
tool to analyze the applications and modify the APK files.

We use HTC one X to be our mobile-device, and download four egfitins from
Internet. The offloading server is a virtual:-machine withraiax86 running on a desktop
PC. By utilizing the APK analysis tool;:we anali/ze the applmag to find the methods
that can be offloaded to cloud. After-the methods are foundcavefully choose target
methods from the candidate methods.and use the tool to mtbdiffarget methods. We
install the modified APK files on the mobilé 'device and trigther modified methods ten
times.

The execution time of local and offloading are shown in Tabe $ince we cannot
find any candidate method in the third application, we use Kdacate that it does not
have any candidate method. We observe that the first apgphc@ocket Chess) reduces
34% execution time with offloading. This observation shows thffilbading can be used
in existing applications and improves the application periance. However, as men-
tioned before, offloading is not always true. There are twadiegtions that do not have
improvement with offloading. The execution time of offloaglare10 times longer than
local. Therefore, offloading decision is necessary andlghzarefully determine whether
to offload.
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Table 3.6: Energy Consumption-when Offioadihg over Diffeidfreless Networks

Application Name | ‘Local (ms) |.Offloading (ms)
Packet Chess. [~ 26415 1742.5
Chess Road e 89.4

Alien Invasion ¢ X
Pin Ball 12.7 180.3
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Chapter 4

Offloading Event Analysis Algorithms:
Using IsCrowded and IsNoisy Events As
Case Studies

In this chapter, we discuss how we integrate offloading intooavdsensing system and
show the offloading benefit with case studies.

4.1 Implementation

4.1.1 System Overview

Worker Selection Algorithm BN TR
Offload Decision Algorithm

mobile
N —
Send Event Query Offload computation/
Receive Result Server

L >

G —
Accept analysis Task Broker

5

D

] Server
mobile

Figure 4.1: Overview of the crowdsensing system.
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Fig. 4.1 presents the overview of the crowdsensing systenobil®l users submit
queries to the broker or accept query tasks from broker. Aygimesists of (i) event,
(ii) required location, (iii) time period, and (iv) locamoof the mobile device. Event is
the desired event that the mobile user wants to know, for pi@nwhether the required
location is crowded or not. The events are detected by evelysis algorithms, which
analyze the collected sensory data to determine whethexvélr@ happen or not. Since
event analysis algorithms may lead to heavy computationesredgy consumption, we
use offloading to reduce the overhead of mobile devices. lntobile users who ac-
cept the queries, they move to the required locations andatdhe sensory data within
the time period. Broker is a logically controller managing tonnection of the mobile
users. It maintains all the queries that are not satisfiedraoommend the queries to
mobile users to perform. The decision algorithm is impletednn broker since broker
is logically controller and has the context of the serverd arobile devices. When of-
floading happens, broker becomes the bridge of the mobileekeand servers, which are
responsible for executing the offloaded event analysisighgos.

Figs. 4.2—-4.4 show the screenshots of the client side usaface. Through binding
the required location in the red reétangle as, shown. in F@. dsers can easily choose
the required location. Once the event, required locatind,tame are selected, users can
submit their queries by click on the. submit button. The eethat are not satisfied are
shown on the map (see Fig. 4.3). Usersclick onthe markeestthe details of the queries
and decide whether to accept the task-of the clicked queryligkimg the sense button in
Fig. 4.4, mobile devices start to collect the sensory dajaired for analyzing the events.
Once the sensory data are collected, broker gives ingtngto instruct whether execute
the event analysis algorithms on mobile devices or offloaddod.

4.1.2 Prototype Architecture

We present the architecture of the prototype in Fig. 4.5.

Android Client. The front-end user interface provides easy and straigh#iat inter-
face for users choosing the event, required location, and &s shown in Figs. 4.2—-4.4.
GPS listener monitors the location of mobile devices andigeothe location information
when submit/answer the queries. Broker connector resperfsiball the communica-
tions between broker and client. Once offloading be triggjettee data are sent through
broker connector and wait for the results. Event analygjerahms are implemented in
client side. Through the offloading library, the event asealgorithms can be executed
both on mobile devices and cloud servers.

Broker. Since there are many clients connect to broker, there iseatahanager
to manage the clients. The decision algorithm is implenemteclient manager to de-
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Figure 4.5: Prototype architecture.

termine whether clients offload their event analysis atpars to cloud. Each client is
handled by a client handler, and it communicates with thé&daraonnector that is on
client side. Client handler handles all the requests froemtdi, except for offloading. Of-
floading requests are given to server-connector. to proceedfflioading process. We use
MySQL [3] to be our database -and broker. communicates wittd#ttabase through the
database controller. The database maintains all the guernswers, and user contexts.

Server. Servers are responsible for-executing the event analygsigdms. It has
connection handler to handle multiple offlbading requesis] executes the offloading
request through the offloading library. The answers aretszrit to clients through broker
once the event analysis algorithms are finished.

4.2 Case Study

In this section, we use two event analysis algorithms to becase studies. The events
are (i) IsCrowded and (ii) IsNoisy.

IsCrowded. IsCrowded is the event that users want to know whether thereztju
location is crowded with people. In order to understand Wwéets crowded or not, we
use image processing with human detection to achieve it. nide popular techniques
for human detection are face detection and histograms efht&d gradients (HOG) [12].
Face detection computes the human face features appeatieel images to determine
how many people are in the images. However, face detectoprires that all the people
in the images should face to the camera otherwise cannottbeted. Therefore, we use
another technique called histograms of oriented grad{@t®5) [12] instead.

Fig. 4.6 presents the work-flow of HOG human detection. Thetimages are scaled
to proper size to be processed by the HOG algorithm, and cimavtd gray-scale images
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and perform color space normalization to reduce the impashadow and noise. The
detection window is shifting on the images and computes thdignts of the covered
area at each run. The result of gradients are given to a suppcior machine (SVM)

classifier to detect whether human appeared. In our impl&atien, we set the window
size to8 x 8, and use the SVM and parameters trained by openCV [4] to imgakeiruman

detection algorithm.

“‘/Input\\‘
Image |

1

Scale Image

A4
Shift
Detection
Window

A

i

Mark the
Detected

Area

P -
‘/ Process\

\ End /"‘

Figure 4.6: HOG human detection workflow.

To show the detected humans in the images, we use rectangiesrk the detected
humans. Fig. 4.7 is an example of using HOG to detect humam iimage, and the
detected humans are marked with rectangles. We can see@tatidtects humans in the
image and its accuracy is high. However, the complexity ofijgoting the gradients is a
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heavy overhead even using native code to implement it. Tdnde&ad to long execution
time and high energy consumption-on mobile devices. Theutxactime and energy are
shown in next section.

IsNoisy. For IsNoisy event, we are determining whether the requedtlon is noisy
or not. We record the noise through microphone, and probesstording file to get the
average decibel (db) to determine whether the environnsemtisy or not.

4.3 Evaluations

4.3.1 Setup

To understand the performance improvement of the protosygéem with offloading,
we conduct experiments to observe the results. We use HTCXdonebe our mobile
device. The broker and server are running on VMs, which astifp on a desktop PC.
In order to deal with android classes, the VMs are Androi@-wtachines. We setup a PC
located between the broker and mobile client with dummyfileé network condition can
be easily controlled by the dummynet, and we vary networkyjglacket loss rate, and
bandwidth to observe how network condition affects the affing results. Network delay
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Table 4.1: Ideal Case Performance of IsCrowded Event

IsCrowded Min Max | Avg.

Local execution Time (ms)| 31322 | 33389 | 31957
Offload execution Time (ms) 15536 | 19924 | 18062
Local energy (mJ) 10474 | 10887 | 10618
Offload energy (mJ) 2396 | 2992 | 2759.2

is varied in[10, 50, 100, 200, 400] ms, packet loss rate is varied i, 2,4, 8, 10]%, and
bandwidth is varied ifi256, 512, 1024, 2048, 4096] kbit/s. If not specified, we let network
dealy = 10 ms, packet loss rate = 0%, and bandwidth = 4096skbkbr each event,
we execute the event analysis algorithm 5 times at cloudceSaetwork condition does
not affect the performance of local execution, we executestlent analysis algorithms 5
times at local and use it as baseline.

4.3.2 Results

Ideal case.We present the ideal’ case of offloading the event analyssitiigns to un-
derstand whether the event analysié algorifh-ms have peafuce gain through offloading.
We set network delay = 10 ms, packet loss rate = 0%, and battdwidinlimited. The
ideal case results are shown in Table 4.1 and 4.2. We obdeav®ffloading improves
the performance of the crowdsensing prototype system degd¢cage the powerful cloud
server to execute the heavy computation of HOG human detec@®ffloading reduces
the processing time and energy consumption of HOG to 56.542&M% compared to
processing on mobile device. However, offloading the eviealysis algorithm of ISNoisy
to cloud lead to worse processing time and energy. It taldetines processing time and
1.84 times energy consumption compare to local executiba.ideal case results present
that offloading improves the crowdsensing system for IsCeahalent, but IsNoisy event
does not have performance gain through offloading. Thezefee only show the perfor-
mance impact of IsCrowded event while varying network coadiand ignore IsNoisy
event.

Impact of network delay. Fig. 4.8 shows that longer network delay leads to longer
execution time. Longer network delay leads to longer trassion time, therefore, it
takes longer transmission time for mobile devices to temtfe data. We observe that
it has performance gain when the network delay is less tham&0However, it takes
2.57 times execution time when the network delay is 400 ms.élfergy consumption is
shown in Fig. 4.9. Longer network delay leads to larger gneansumption. When the
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Table 4.2: Ideal Case Performance of IsNoisy Event

IsNoisy Min | Max | Avg.

Local execution Time (ms)| 123 | 196 | 162.2

Offload execution Time (ms)) 332 | 474 | 381.2
Local energy (mJ) 23 46 37
Offload energy (mJ) 54 75 | 68.3

network delay is less than 200 ms, offloading is better. One@étwork delay is 400 ms,
offloading results in 1.28 times energy consumption comfialecal execution.

Impact of packet loss rate. The execution time is reduced when packet loss rate is
less than 4%, as shown in Fig. 4.10. Higher packet loss ratksl® more retransmission
of the packets, therefore, the execution time is longer. &tgeution time is 2.52 times
higher than execute on mobile when packet loss rate is 10804Fi1 shows the energy
consumption while varying the packet loss rate. It benefamfoffloading when packet
loss rate is less than 10%. If the packetloss rate is not entatn 10%, we do not have
performance gain through offloading. : :

Impact of bandwidth. Bandwidth éﬁecté the transmission time. It takes longerdra
mission time to send data when-bandwidth is low. Fig. 4.18emes the execution time
under different bandwidth. We observe that,IsCrowded ewvetires bandwidth higher
than 1024 kbit/s for shorter execution time. If- bandwidtlomy 256 kbit/s, offloading
takes 3.13 times execution time compare to local execukmn.4.13 presents the energy
consumption under different bandwidth. It shows that 51i/%ls sufficient for energy
gain.

The results present that offloading improves the execuima and energy consump-
tion if we carefully determine whether to offload. Differamtwork conditions lead to
different performance gains. In order to improve the penfance of crowdsensing sys-
tems through offloading, offloading decision is necessary.
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Figure 4.8: Execution time while varying network delay.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We proposed a context-aware decision algorithm, called CAlMich uses the location
and time-of-day to make the mobile offloading decisions diiildual methods. We de-
veloped a tool to analyze and modify the existing applicatioithout source code. In
order to study the performance’gain in real crowdsensingesysve implemented event
analysis algorithms and integrated offloading library ifite crowdsensing prototype sys-
tem. T

The CADA algorithm is flexible .and subpo_rts different optiation criteria, includ-
ing minimizing response time and mi'nimizing energy constiomp The CADA algo-
rithm can work with the mobile cloud offloading systems pragmin the literature. We
have implemented the CADA algorithm, integrated it with Tk#ir, and conducted ex-
periments using several HTC phones. Our experimentalteeshbw that the CADA
algorithm achieves more than 80% prediction accuracy, eadd to better performance
in terms of response time and energy consumption. The cowplef the CADA algo-
rithm is no more than 0.011 ms. We also proposed a contexteagr@ergy model for
mobile devices to accurately measure the energy consumplioe result of modifying
existing applications shows that offloading can be usedistiag applications to reduce
the energy consumption or execution time for mobile deviGrg experiments also show
that offloading improves the performance of crowdsensirsgesy through offloading the
overhead of event analysis algorithms to cloud servers.

5.2 Future Work

There are several directions that we plan to address in thesfu

e We plan to introduce additional user contexts that may &irricrease the decision
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accuracy of our CADA algorithm. For example, we may introdingeusage history
of applications of users to further understand the usenbeha

A hierarchical decision engine to reduce the overhead chydvgetting decisions
from broker. That is, mobile devices execute light weigltalodecision or cache
the decision. If the accuracy of local decision is unsatisfieobile devices ask
broker for more accurate decision.

Our algorithm can be used for offloading computations to iplelservers in crowd-
sensing systems. Optimally determining where to offloatt @a&thod is among our
future tasks.

We plan to collect a more realistic dataset for evaluatingadgorithms. The dataset
we have is not collected from real applications. We will depereal applications

and our users can use it in their daily life. Therefore, thiégected dataset is more
realistic and represents user’s daily usage behavior.

To improve the performance of our CADA algorithm, we will @it more contexts
and fine-grained data log in the future.

Current mobile cloud ofﬂoadi_ng' S)'./s_te__ms only support GUtlemrkloads. We
are looking into the possibili-ty of offloading general meépplications with local
resources (e.g. camera and GPS). This will relieve the buofi@sing offloading
for developers.
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Symbol Table

Symbol Description
Piotal Total energy consumption
P.,. The energy.consumption of CPU
P.omm The energy consumption-of wireless communicat
Pispiay The energy conéumption of screen
Piner The energy éohsumption of other components
Pwirijcen The energy.consumption of WiFi/Cellular
P The energy conéumption while idling
Pirans The energy consumption of transmitting data
Bidie The fraction of time while idling
Birans The fraction of time while transmitting data
v The parameter of energy model
S Signal strength
R Throughput
D Data size
Vv \oltage
T Time-of-day
L Location
tiocal Execution time on mobile device
teloud Execution time on cloud
Clocal Energy consumption on mobile device
Celoud Energy consumption on cloud
M The number of methods to be offload
L The number of locations

ion
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