=

S E R B E R E N TR R T
fiE T3

Department of Computer Science
College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

ik P RSB BB 1 2 S D AR S
Optimizing Live Game Streaming Platforms Using
Segment-of-Interests

uZEM
Tao-Ya Fan Chiang

E25E : 103062586
Student 1D:103062586

TREZIY © fRIENT Bt
Advisor: Cheng-Hsin Hsu, Ph.D.

FEE R 1054 07 H
July, 2016

R H 2y
BTl < =

BE T
3£ YU

ik

105
07

Acknowledgments

| would like to express my gratitube toward all the people Wistped
me in the past two years. | wouldn’t be able to finish my thesesenit not
for your help along the way. | want to thank my parents spelicfor it is
they who provided me with the firm support and stand behind egysibns. |
would also like to thank my labmates in Networking and Mukiiia Systems
Laboratory, especially Hua-Jun Hong, who helped me a great i the
course of my research. Lastly, | would like to express myigra¢ toward
my adviser: Prof Cheng-Hsin Hsu. Without the guidance andtiggestion
| received from him, I would not be able to accomplish whatiéndone and
learn so much in the past two years.

P E R E M ET I ARERLIAN » R A R
BB — A BHANER 58 AT AR ST » TR I TR ER B RGEH Fery AL
PSR R B E A SRy » R R AT R B —(EIRE -
Hoth ERGH B B 2 EBG R AR H BR = ORI 22 - R pl Rt AR X
MERHRFEPFAEFENL - &z > RERHLVIEEHR - fRIE
W% - REA RIS TRAOTEE D EZ - R EMENT—
RER L SE RN 2 HFAF DUN SR ANt 2 B SR P -

D&

I EHGHEEE LB T 6 K AmAT » AT IEE R R F B RIE—
BoSE & FEM A KEN AR E - HESEECN 5875 04 &S -
TEE— R TR T A TS B 2SO E S
WG o LR EE T 8T EN o M FEFEARENELL
MEBIRBETIERNRE > SAENRES ZESEERRAH)
L EEl BRIENE R R BRI BRNER - ERET
HERENE R FBEEEN 2% > Rl LAUEREE & DL—FE
A TERRAEM G BT HEM A RSB RSB R H
srE R I B E S AR A R AR A B R - B AR
MBEERNESS - WEEBREEERENE AR T8 ERF
I A B BB IE UL o ERFE A R B A U S R B AT
AR SEE BER o 76 (8 FI LOVR 28 BRas 5 14 > 3 AM B SolE Rl B 1k
FEF AR TRELE R B D AU 25 1£0.96 0 7E 1 FEEER T
B 77 B R R E0.87 0 A A B VR BEAU BB B B A B IR 5
BV BEVE T DLZE] « () ER T i E m#E 5 dB > (i) &= il LAEi % 50
Ghbpsl B T F & - DL (i) 3% 18 L% AT LUE S0R I 58 BUE TR 2 B ik
o A DURZERMERE o RMERRRCHFNENTEEE—
EFVET & » A AR R 2055 3 DL TREATF A 2R G B A RO 9B &
PLERRE & o

Abstract

Live game streaming is tremendously popular, and recemrtendi-
cate that such platforms impose high traffic volume, leatirdegraded user
experience. In this thesis, we propose a Segment-of-Bit¢8nl) driven
platform, so as to optimize live game streaming. Our platfoises various
features collected from streamers and viewers combinddsapphisticate al-
gorithms empowered by stat-of-the-art machine learningetsato determine
if the current segments of gameplays attract viewers. Umberchining the
importance of individual segments, the limited bandwidtlaliocated to the
interested viewers in a Rate-Distortion (R-D) optimized manwhere the
levels of segment importance are used as weights of ganaarstrg quality.
The underlaying intuition:is: viewer experience is degchdaly when the
game streaming degradation-is noticed-by viewers. Evalnasults using
real world traces shows that our Sol detecting algorithmsccarectly detect
Sol with up to 0.96 F-measure in classifier variant, and up&@ ®-squared
score in regressor variant using 10-fold,evaluation. Satioh results show
the benefits of our proposed resource allocation solutipitihproves view-
ing quality by up to 5 dB;j (ii) it saves bandwidth by up to 50 Ghgusd (iii)
it efficiently performs resource allocation and scales tmyndaewers. Our
presented testbed is opensource and can be leveraged hychess and en-
gineers to further improve live game streaming platforms.

Contents

Acknowledgments i
EE) i
MO 2L ii
Abstract iv
1 Introduction 1
2 Proposed Architecture 5
3 Research Problems 7
3.1 Notations i . 9
3.2 SolDetection . . i ol L s s e e e e e 10
3.3 Resource Allocation ., i Gl T e e 10
4 Sol Detector 11
4.1 Solution Approach . . i 11
4.2 Dataset e e e 12
4.3 Features s, 13
4.4 Optimal Hyperparameter 41
4.5 Sol Detecting Algorithm oo 32
5 Resource Allocator 26
5.1 Formulation 26
5.2 Proposed Algorithm 27
53 Analysis e 28
5.4 Leveraging Features From Viewer 29
6 An Opensource Testbed 32
7 Evaluations 40
7.1 Sol Detector Evaluation 40
7.1.1 EvaluationSetup 40
7.1.2 ResultsFrom. gk ANdD.c o o 40
7.1.3 Results From Sol Simulator 41
7.2 Resource Allocator Evaluation 42
7.21 SimulationSetup 42
7.2.2 Results 43

8 Related Work
8.1 General Live Gaming Streaming Related Research -
8.2 LargeScaleTranscoding
8.3 Video Summarization, Highlight Detectionand ROl

9 Conclusion and Future Work

Bibliography

Vi

45
45

46

47

49

List of Figures

1.1 Atypical live game streaming platform, using Twitch fitwstrations. . . 1
1.2 Life cycle of a live game streaming session. 3
1.3 The architecture of our proposed live game streamingppfa. 4
3.1 Interactions among the core components of the server... 7

4.1 Results with different number of tree in GBTC: (a) accuréz)precision

rate, (c) recall rate, (d) F-measure; and(e) training time. 16
4.2 Results with different shrinkage in GBTC: (a) accuracyp(erision rate,

(c) recall rate, (d) F-measure; and (e) training time. 17
4.3 Results with different maximum tree depthin GBTC: (a) aacwyr (b)

precision rate, (c) recall rate, (d) F-measure, and (e)itrgitime. 18
4.4 Results with different subsample in-GBTC: (a) accuracy,pferision

rate, (c) recall rate, (d) F-measure; and (e) training time. 19
4.5 Results with different number of tree in RFC: (a) accurdzyp(ecision

rate, (c) recall rate, (d) F-measure, and (e) training time. 20
4.6 Results with different maximum number of feature in siplifin RFC: (a)

accuracy, (b) precision rate, (c) recall rate, (d) F-measamd (e) training

time. e 21
4.7 Results with different maximum depth in RFC: (a) accurdmyp(ecision

rate, (c) recall rate, (d) F-measure, and (e) training time. 22
4.8 Results with different number of tree in GBTR: (a) R-squafigdtraining

time. e 23

4.9 Results with different shrinkage in GBTR: (a) R-squaredtrébhing time. 23

4.10 Results with different maximum depth in GBTR: (a) R-squafiextrain-
INgtime. e 24

4.11 Results with different subsample in GBTR: (a) R-squaredrdiming time. 24
4.12 Results with different number of tree in RFR: (a) R-squalt@draining

4.13 Results with different maximum number of feature intsply in RFR:

5.1
5.2
5.3

(a) R-squared, (b) trainingtime. 52
4.14 Results with different maximum depth in RFR: (a) R-squdi®draining

time. e 25

Modified SMPIlayer is used to mark Sol as ground truth. 29

The Web interface of the serverinourtestbed. 30

Screenshot of the modified SMPlayer. 30

Screenshot of the modified OBS. 1 3

5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

7.1

Results evaluation on, (a) SolR, (b) SolC, and (c) training tof all
algorithms. e 33
Evaluation result of SolC problem using RFC-based algworia) accu-

racy rate, (b) precison rate, (c) recall rate, (d) F-meaancke(e) training

time. . . 34
Evaluation result of SolC problem-using GBTC-based allgar; (a) ac-

curacy rate, (b) precison rate, (c) recallrate, (d) F-mesand (e) training

Evaluation result of SolR problem-using RFR-based algwrit(a) R-

squared score, (b) trainingtime. & . 0. Lo oo 35
Training time in SolR problem using GBTR-based algorittahR-squared

score, (b) training time. . el L o 36
Total consumed bandwidth with diverse: (a) arrival réte total band-

width, and (c) number of streams. 37
Average viewing quality with diverse: (a) arrival rafe) total bandwidth,

and (c) numberofstreams. 38
Sample consumed bandwidth over time fromround. 39

Algorithm runtime with diverse: (a) arrival rate and (lnmber of streams. 39

Implications of algorithm interval on: (a) consumed thardth, (b) av-
erage viewing quality, and (c) network overhead; (d) neknmrerhead
under different number of streams. L. 44

viii

List of Tables

3.1 Symbols Used Throughout ThisPaper

Chapter 1
Introduction

In the recent years, there is a rapid growth in live game stiegbusiness. Corporations
such as Twitch.tv, UStreaming thrives in this trend. Amohgni Twitch is reported
to be the most successful one. In 2014, Twitch is4ftelargest traffic on the Internet
during peak hour in United States [31], trailing behind NetiGoogle and Apple, 43%
of the live video streaming traffic volume is produced by Bhiservice [2]. According
to Twitch official blog, in 2013 and 2014 the monthly uniqguewer number doubled
in each year, which reach ever 100 'million in 2014 [33, 34].2015, Twitch have over
550,000 concurrent viewer-on average; with-over 2 millioakpeoncurrent viewers and
over 30000 concurrent broadcasters runningive ‘on theesy$§85]. Twitch is also the
de-facto standard broadcast platform for numerous E-$ponmament and charity event.
Seeing the potential and rapid growth of live game streajmmgazon acquired Twitch
for 970 million in 2014 [2], Youtube also launched it's owrmdigame streaming service
in August, 2015 [38].

Content Delivery Content Delivery
Twitch Viewers Networks Networks Twitch Streamers

N
RTMP/HLS RTMP/HLS RTMP/HLS RTMP/HLS
Streams y \ Streams Streams \ 4 ‘ Streams _‘/
. iy |~ _— - . =4]

Figure 1.1: A typical live game streaming platform, usingif€ for illustrations.

This section gives a general idea on how live game streamorgswy Fig. 1.1 illus-
trates the overall architecture of typical live game striegnplatforms, such as Twitch.
Twitch streamers use broadcasting software, such as Oped&ast Software (OBS) [22],
to capture the game screens, and send the videos to senlesrideos are sent using
off-the-shelf protocols, like Real Time Messaging Protd@IMP) [25] and HTTP Live

1

Streaming (HLS) [11] protocol. Videos from webcams of stnees can also be sent using
picture-in-picture effects, so that viewers can bettesratt with streamers. Video servers
may transcode the videos before streaming them to the vdewéewers use streaming
clients, native or web-based, to render live game streamvenGhe time sensitive nature
of live game streaming, Twitch employ several Content Dejivdetworks (CDNs) for
lower latency and higher bandwidth.

While live game streaming services have seen a steady grdvete are still prob-
lems lying in the current state-of-the-art approach thatilsé¢o be addressed. Live game
streaming itself consumes a considerable amount of resplinatch uses over 1.5 Tbps
at peak hours with over 1 Tbps average bandwidth usage,teepby Pires et al [24].
According a work by Zhang et al [39], the viewers may percgileency up to 12 sec-
onds, which hampers the sense of interactivity betweerstee and viewers. In order
to maintain a reasonable user experience, Twitch doubkeddge capacity in CDN in
Europe region [34], Twitch also opened up new transcodingtels to provide video
with different quality to viewers [32]./ These expansion \bhburt the profit margin for
the company, which is bad for'the-business. " These sign glehdws that the current
implementation of live game-streaming system hayve roomsrfprovements.

Based on a critical observation: ' differesggment®of each live game stream have
different importance to viewers; We proposedthe concdfg@adegment of Interest (Sol)
By asegmentwe refer to a continuous time periodin alive game streamiithgo. Fig. 1.2
depict the life cycle of a live game streamigsgssionwhich refer to the continuous time
between the start and end of a stream from'a streamer. Eaemsis consist of one or
multiple gameplayswhich refers to the continuous time of a match or a round aigja
At the beginning of each gameplay, the streamer sets up,geaits to join a server,
and stuck at the loading screen when the level is still lopdMiewers probably would
not be upset if the game stream quality is degraded at this. tim other wordsyiewer
experience is degraded only when the game streaming qualifsadation is noticed by
viewers If we lower the video quality when viewers are not payingation, we save
resources and may support more viewers at better videatguaherefore, we casave
bandwidth without degrading viewer experience

In this work we aim to solve the following problems:

e How to efficiently detect Sol in a live game streaming envinemt?
e How to dynamically allocate resources between ongoin@sts®

using the concept of Sol-driven streaming,
In this work we developed efficient Sol detecting algorithenspowered by stat-of-
the-art machine learning models Random Forest and Gradiargtidg Tree. The algo-

2

Gameplay Gameplay Gameplay
A, A, A,
L1))

‘ Not Sol (loading screen) ‘ Not Sol (collecting items) Sol (battles) E-j Time

Figure 1.2: Life cycle of a live game streaming session.

rithms leverage features that can be collected, processsattin prediction in a real-time
fashion, which is crucial for a live game streaming platfoivide also developed an Sol
driven resource allocator, which allocate resources anddfferent streams currently on
the system in a Rate-Distortion optimized manner, with thieeSdhe weights of stream-
ing quality. We then speed up the resource allocator by dpugj a real-time version
of the resource allocating algorithm with a controllableogrwhich would be useful in a
practical scenario.

In the evaluation of our system, we achieved up.fi in terms of F-measure using
classifier variant of our Sol detector and up0t87_in terms of R-squared score in the
regressor variant. In a simulation using real world Soldsacollected on our platform,
the result shows that our resource allocating algorithmeriorms the state-of-the-art by
up to 5 dB in PSNR metric in terms of view-quality,'and up to 5¢p&keduction in terms
of bandwidth usage. While in the same time ‘complete the resallocating unde2 ms
when there aré56 streams with over 100+ thousands viewers in the system.

The rest of this thesis is organized as follows. Sec. 2 ptesba system architecture
we propose in this work. Sec. 3 describe the research preblessolved in our work.
Sec. 4 and Sec. 5 describe the design of the core componamt®fsiem in detail. Sec. 6
presents the implementation of our live game streamingé¢elsind the methodology used
in collecting the data. This is followed by the experimeriupeand discussion of results
in Sec. 7. We survey the related work in the literature in 8ecSec. 9 concludes this
paper and discussed the future work.

Streaming Software Server Viewer

Game Audiovisual Player

Audiovisual

Receiver

Video Flow

‘ >
Interne \b' o Feature Flow

Figure 1.3: The architecture of our proposed live game stireg platform.

Chapter 2
Proposed Architecture

In this chapter we give an overview of the architecture offmaposed system and intro-
duce the component in the system. Live game streaming piasfcontain three major
software components: streaming software, server, andevjemhich are summarized in
Fig. 1.3 and detailed below.

e Streaming software runs on-the streamer’s computer alotiy tve game itself.
The streaming software captures game screens, and sendsctliee server. The
streaming software consists of audiovisual-capturer, @ac@and sender.

e Server relays the game streams to viewers; and performsctrdimg if necessary.
The server consists of audiovisual sender, receiver, andt¢pder.

e Viewer receives the live game stream from the server, angbpleks audio/video.
The viewer consists of audiovisual receiver, decoder, dagkp

As emphasized in Fig. 1.3, there are five unique componen&dbdriven live game
streaming: feature collector, feature sender/recei@rd&tector, , resource allocator and
Adaptive transcoder. We present them below.

e Feature collector collects features, such as CPU utilimati&PU utilization, key-
board/mouse inputs, and webcam images from both streardete@mers’ comput-
ers.

e Feature sender/receiver transfers captured featuresdn@amers and viewers to
the server.

e Sol detector leverages the collected features to deterwlather the stream is in
the middle of an Sol or not.

e Resource allocator uses the output of Sol detector to aa@sources, so as to
optimize the overall performance under resource conggain

5

e Adaptive transcoder perform transcoding on the streamovadeording to the de-
cisions given by resource allocator.

We next use several usage scenarios to illustrate how tipeped live game streaming
platform works. When a streamer starts streaming, the reddscreens are captured
by audiovisual capturer, sent to audiovisual encoder, hed streamed to the server by
audiovisual sender. The feature collectors collect sé¥eatures, and send the collected
feature to the server using the feature sender.

When the audiovisual receiver in the server receives garaaras, the server passes
the video to transcoder and waits for requests from viewditse feature received by
feature receiver is sent to Sol detector to determine whetigestream is in the middle
of an Sol. The result is sent to the resource allocator foinagdly allocating resources
among all viewers. In particular, the resource allocataidks the coding parameter of
each viewer depending on whether the stream is in an Sol antbthe current status of
the whole system. Last, the resource allocator instruetatigliovisual sender to send the
transcoded stream.

When the audiovisual receiverin the viewer gets the gamarstré passes the game
stream to audiovisual decoder and then audiovisual playeli$play. The feature collec-
tor collects the features, and sends themto the server tesiigre sender. In the server,
the features are passed to the resource allocator.

Chapter 3
Research Problems

In the chapter we describe and formulate the research pnshlee solve in this thesis,
namely Sol detecting problem and resource allocating probl

Fs’ Fs,v

Ws I
: Allocator > Transcoder s
Detector
r R

Figure 3.1: Interactions among the care components of tiverse

Table 3.1: Symbols Used Throughout This Paper

Symbol Description

S Number of stream

s Index of stream

ls Length video recorded from stream

t Current timestamp

Vi Number of viewer in stream

v Index of viewer

R Outbound bandwidth of the server

F, Set of feature collected from streamer
bs Streaming bitrate feature for streamer
kg Mouse/key event feature for streamer
Ds Face presence feature for streamer
u¢ CPU usage feature for streamer

u¢ GPU usage feature for streamer

Foreground window name feature for streamer

Boolean indicator of whether the game is in foreground window
streamer

Tag suggesting that the current segment is in Sol given legsters
Set of features collected from vieweof streamer

Foreground window name feature for vieweof streamer

Face presence feature for vieweof streamesr

Tag suggesting that the current segment is in Sol given hyerie of
streamer

Sol weight result from SolR algorithms for stream

Sol weight result from SolC algorithms for stream

Sol weight used in resource allocator for stream

Index of stream videos used in evaluation

Index of timestamp in stream video

Tag suggesting second’im, video is in Sol

Number of viewers that have marked video

Aggregated array of all, s for video« ground truth

Ground truth for videar in SOIR problem

Ground truth’for videav at/s second in SolR problem

Ground truth'for. videay in SolC problem

Ground truth for videax-at 5 second in SOIC problem

Dataset for SolR problem

Dataset for SolC problem

Evaluation dataset for SolR problem

Evaluation dataset for SOIC problem

Training dataset for SolR problem

Training dataset for SolC problem

Actual training dataset for SolR problem used in 10-foldssrealida-
tion

Actual training dataset for SolC problem used in 10-foldssrealida-
tion

Validation dataset for SolR problem used in 10-fold crodsladion
Validation dataset for SolC problem used in 10-fold crodsladion
Hyperparameter: number of trees

Hyperparameter: maximum depth for trees

Hyperparameter: maximum number of features for splitting
Hyperparameter: shrinkage

M Hyperparameter: subsample rate

I Video segment from stream

05 Output video segment for stream

qs Video quality for streans

Ts Available bandwidth for each viewer of stream
Dy s, Ro s, 005 R-D model parameters for stream

ds Distortion for video segment of stream

A Lagrangian multiplier

A The optimal Lagrangian multiplier

r The optimal bandwidth for each viewer of stream
€ The error between and *

3.1 Notations

Fig. 3.1 shows the interactions among the core componermsrcferver. We considet
streamers with viewers in our system: The total outbound bandwidth of onresas R.
From each streamessat timet, we:collect a feature sd@, with the following features:
streaming bitrateé,, keystroke per seconkl, CPU utilizationu®, GPU utilizationu?,
face presence in webcam € {0,1}, in-game sound amplitude’, microphone sound
amplitude >, foreground window namey;'and a tagt, € {0,1}. The tagt, is an
indicator coming from streamer suggesting of whether the current segment is an Sol.
In the implementation it can be manually marked by streamesing predefined hotkey,
automatically detected by an extra component in streanofigvare, or even generated
by game engine. From each vieweof streamers, we collect feature sdf,, ;, with the
following features: foreground window name ,, face presence in webcapy, and a
tagt,s € {0,1}. ¢, is given by viewerv of streams using either the manual way or
automatically detected using extra component in the vidagep, indicating if he/she is
interested in.

In the streaming server there are multiple Sol detectorstem$coders, each is in
charge of a streamer. At ¢t second, the Sol detector periodically recei¥esandF, ,
from the streamer and viewer. It uses the features to ddrev&ol weighto, € Rt U {0}
for the current segment from streamewhere(indicates completely uninteresting. The
derivedw, for each streams on the system is then sent to the resource allocator, which
will be detailed in Sec. 3.3 after necessary post-procgségifier resource allocator make
the allocation decision for the system, each transcodeives the encoding bitrate
for stream s from the resource allocator. The transcoderukes-, to encode the video
segments, for streamer, and generates the transcoded video segmemthich is sent

9

by the audiovisual sender. Notice that, for brevity, thestdared resource allocator only
produces encoding bitrate, while more comprehensive encoding parameters, including
frame rate, resolution, and quantization parameter, canksd intelligently chosen by the
resource allocator for better user experience.

3.2 Sol Detection

Leveraging features; andF;, , periodically collected from streamessand his/her audi-
ence at time, the Sol detection problem is to determiig € R™ U {0} with 0 indicate
the current segment holds not importance to viewers at dlllandicate current video
segment is crucial to the viewing experienag, serves as the decision variable in this
problem. This problem is solved independently for eachastreon currently residing in
the system. Them, for all streams are sent to the resource allocator afterastessing
into w, to help it make decisions on how to allocate resource amaarg streams.

3.3 Resource Allocation

Attimet with w, for all s = 1,2, ...,.S, and-available bandwidtR, the resource allocation
problem is to distributd? among altlive game streamsn-order to maximize the viewing
quality. For concreteness, we use Peak Signal-to-Noise® RRBNR) to quantify the
viewing quality ¢, of streams. Nonetheless, our proposed algorithm is general, and can
utilize other quality metrics with monotonically increagi(or decreasing) property. We
take bitrater, of streams as the decision variables.

10

Chapter 4
Sol Detector

In this chapter we describe the design of our Sol detectorgclwbetect Segment-of-
Interest from the collected features. We also lay out ouigagshilosophy and the way we
determine the hyperparameter in the machine learningitiigts we use in our solution.

4.1 Solution Approach

The main goal of Sol detector is to answer the following goestis the segment at
time ¢ from streames interesting to-his/her viewer? The most intuitive approfatSol
detector is to gather the information'from viewers. Howewdther through manually
or automatically means, this approach is hard in a practicahario. Few viewer would
be willing to shift their attention from the content of theestm to constantly mark Sol
information with high precision. As for automatically detien, it would require massive
deployment on heterogeneous devices, and privacy issueésealwe gather information
on viewer devices such as webcam.

In this work we focus detecting Sol from information gatttefieom streamers. There
are already existing research that perform highlight deteaising content-based fea-
ture [6]. While content-based features have the potentipt@fiding further insight into
the context of the game, extracting content-based featusesften computationally ex-
pensive, which is not suitable for systems that requirerattitvity such as live game
streaming platforms. Therefore we aim to leverage featthrascan be extracted and
process in real time in our solution to detect Sol.

We formulate the Sol detecting problem as a regression @noblvith historical data
set of Sol information on past video segments, we also dpeela classification variant
of the module to adapt to different kinds of application. e trest of this thesis, we
will refer the regression variant of the Sol detecting peoblas SolR problem, and refer
to the classification variant as SolC problem. Then we sdieeproblem using state of

11

the art machine learning models to design our Sol detectgayithm. The two learning
models we choose are Gradient Boosting Tree (GBT) and RandoestH®F). These
two learning models are both popular and have been appliedrious fields with good
performance [10]. The two selected learning models haverdifit approach on learning
from the given data. GBT uses multiple decision tree as a wealning model, each
aims to perform predict from the residuals of the precedreg.t These trees are then
combined using sophisticated weighting scheme to form glesioonsensus. Random
forest also leverage decision trees, but these trees weweigdependent of each other
using randomly sampled data, the results of these tree emectimbined together through
means such as majority vote.

We develop our algorithms with the two selected learning ef®dsing open source
packages [26, 37], these packages provide classifier amdsseg version of both the
selected learning model. In the rest of this thesis, we tefdre algorithm based on Gra-
dient Boosting Tree regressor as GBTR-based algorithm, anahiadased on classifier
version as GBTC-based algorithm. Similarly,we refer to theoalgm based on Ran-
dom Forest regressor as RFR-based algorithm, and the one dras&bssifier version as
RFC-based algorithm.

4.2 Dataset

We collected traces from a tournament of famous MOBA game@ueaf Legends in a
local event. The reason we choose to capture League of Ledestis that, it has been
the most popular games on Twitch since 2013 [7,33,35], antsélf alone, take the 29%
of the viewer in Twitch platform [7].

In the tournament the game is run on PC equipped with Intel5l50 CPU, Intel
HD4600 Graphic and 8 GB RAM. The game is captured with OBS 0.G6&8tg X264
encoder. Both the game resolution and capture resolutioseate 1920X1080, with 30
frame per second capture and no resolution downscale. Tdoelenis set to use variable
bitrate (VBR) with 8 as quality balance factor. The maximunméié is set to 10 Mbps,
note that this limit is much higher than the actual bitratestonption.

The tournament is consist of 10 match, with each match therel@ players. We
collected 100 traces from all 10 players in each match. Afeefiltered out the corrupted
files, there are 81 valid files with 162841 samples.

We selected one video from each match in the tournament,eandited 16 viewers
to watch the collected videos, and manually mark Segmemttefést tag, . for us using
a modified video player, we then collect these Sol trace fitemthem. In each Sol trace
file, each second of the video is marked with equals tol or 0, with 1 means the re-

12

cruited viewer thinks the current second is in an $aheans otherwise. We collected 64
of such trace files, which covers 27010 samples in the ovéasdl traces, these traces are
used as ground truth in the hyperparameter tuning and theativa of our Sol detector
module.

4.3 Features

For each samples in the collected data trace, we record theuSBRge, context switch
numbers, GPU usage, mouse/keyboard input event, micreplmuome, system volume,
streaming bitrate, number of faces detected in webcam imadeforeground window
name. We also modeled the device capability using Novabgif@h which perform
benchmarking on the system and give different score in CPW,&AM and harddrive
category. In our collected data GPU usage was not availaldeaAPI issue, and face
number detected by webcam suffer from low high noise due thiemn lighting in the
tournament ground. Therefore GPU usage .and number of fatestdd were not used in
our hyperparameter tuning in-Sec. 4.4 and evaluation in Géc.

Besides the raw feature numbers we collected exagpfor each sample we also
calculated the minimum, maximum, mean, variance, dynaamge (maximum minus
minimum) based on the historic data of this:ongoing streamgsdide the moving average
with window size of 5 seconds. We also.compare the foregraundow namen, with the
name of the current game being played, then we generates0, 1, with n/, = 1 if the
game window is the foreground window, and = 0 if otherwise. Then all the features
including the numbers reported from the Novabench bendkisra concatenated into a
single sample witl60 in length.

For the Sol trace we collected from the recruited viewerspreeessed them in two
different ways according to the variant of the Sol detedtoeach stream videa with a
duration ofl,, seconds, assume there &eviewers who marked the video. Each viewer
v € V,, will mark the video withl,, tag tv;xwg = 1, if viewer v thinks the video segment
of 3 second is in an Sol, otherwise, s = 0. For each video, all the, , 5 are then
aggregated together by summing up all thg s, Vv € V,, for each second to form an
arrayG, consists of,, integers.

In the SoIR problem, we take the meantgf, 5 collected froml/,, viewer to generate

Dvevy tras
Va
as the Sol ground truth, with, s g € RT U {0}. As for the SolC problem, we perform

majority vote among th&,, viewers to form consensus on whether each segbimthe
video is in Sol or not, i.e., for each, s.c € Go.c: gopc = 1, if Zve‘;a tv;m > %

the ground truth,, i for video o, i.e., seconds in video o haveg, g r =

The resultG,, p andG,, « are then concatenated with the 60-column samples to form

13

the dataD, from videoa. We then concatenate all the, together to form the data set
Dgr andD¢, with G, r andG|, ¢ serve as the ground truth.

4.4 Optimal Hyperparameter

Hyperparameters refer to the parameters that can not beekkduring the training phase
by the machine learning model. Therefore they need to beechmsnually beforehand.
To find the optimal hyperparameters, we conduct 10-fold ssk@didation to find out
the optimal hyperparameter using grid search techniqu&BFR-based, GBTC-based,
RFR-based and RFC-based algorithm.

We first partition 10% of the data in dataget, D into evaluation datasé®, z, D. ¢
and the rest 90% of the data into training dataSefr and D, . The data inD. z and
D. o will be used in the evaluation of the performance of the atbor in Sec. 7.1. The
rest of the data in training dataset are then used in 10-falsiscvalidation to derive the
optimal hyperparameter set. In 10-fold-cross validatibe, data in the training dataset
D, r are further divided into 10 equal share, and each shareuaks o be the validation
setD,, r with the rest 9 share being the actual training Bef,. The D, » are then used
to train model, with the data i®, ; to validation the.result. After the0 rounds of
validation, the performance metrics are then-averagedrq@rted as output. The same
procedure is also conducted on the hyperparameter tramii8glC problem usind, ¢,
with the validation set bein@, ~ and actual training set b@;C. In our dataset, the size
of D, r = D, = 2076 and the size oD, r = D, ¢ = 18677.

For RFR- and RFC-based algorithm there are three hyperparantetee chosen:
(i) N, the number of trees, (i, maximum number of considered feature in splitting,
and (iii) H, maximum depth of the tree. We perform grid search on spacrew =
{30, 60,120, 240,480}, X = {5,10,20,40}, H = {10, 20, 40,80, 160} to find out the
optimal parameter for RFR- and RFC-based algorithm.

For GBTR- and GBTC-based algorithm there are four hyperparastde chosen:
(i) N, the number of tree, (iiJy,the shrinkage, which is the learning rate, (i) the maxi-
mum depth of each tree, and (iiily, the subsample rate. We perform grid search on space
whereN = {5,10,20,40,80}, £ = {0.01,0.05,0.1,0.2,0.4}, H = {5, 10, 20,40, 80},
M = {0.5,0.6,0.7,0.8,0.9} to find out the optimal hyperparameter for GBTR- and
GBTC-based algorithm.

To quantify the performance of Sol detection algorithms take R-square score and
F-measure as the performance metrics in SolR and SolC pnaklepectively. We choose
our hyperparameter with these metrics as the optimizatipactive. In SolC variant we
also calculate precision and recall rate alongside acgurde also record the training

14

time ~ in both problems.

We plot the result from 10-fold cross-validation in Figsl tb 4.14. We pickV = 120,

X =10, H =40andN =20, £ = 0.1, H = 20, M = 0.7 as the default hyperparameter
setting for Random Forest based and Gradient Boosting Tresl lzdgorithms, and plot
figures altering one hyperparameter at a time.

Here we make a few observation on the more notable results tine figures, and
give basic guidelines on how to choose some of the hyperpaeas

Pick the highest N with acceptable~ for both RF-based and GBT-based algo-
rithms. From Fig. 4.1, Fig. 4.5, Fig. 4.8 and Fig. 4.12 shows that &igk generally
achieve better performance at the cost of significantlyéongFrom Fig. 4.8 and Fig. 4.5
we can see the marginal gain of highér may drop rapidly oncéV exceeds a threshold.
Therefore we should pick the higheStwith acceptable.

High £ may leads to overfitting in the model for GBT-based algorithms From
Fig. 4.2 we can see that highér help the algorithm to adapt to the trait of the dataset
more rapidly, which would yield better result.. However, Hg9 shows that if theé’ is
too high, it may lead to overfitting in-the model .and hurt thef@enance in the end.

Pick a reasonableH using cross validation to avoid overfitting for both RF-basel
and GBT-based algorithm. The maximum depth of the trees dictate how complex each
tree can be, if théd is too low, the trees may /be too simple to capture the behadior
the dataset. However, if thH is't00 high, the model may overfit the,, as shown in
Fig. 4.10, wherd = 80 the performance decreases comparing/te- 40. Fig. 4.14 also
shows overfitting whet = 160.

High X in RF-based algorithms may not help the performance.Fig. 4.13 and
Fig. 4.6 shows that high may hurt the overall performance, while significantly irase
the training time for the algorithms.

15

0.96;
0.96;
-.0.95 ~0.92]
g 2
20.94 £ 0.9
< 2
< [|
0.93 0.88
0.86;
0.92 ‘ : i i . . . ‘
0 20 40 60 80 10C 0 20 40 60 80 100
Number of Trees Number of Trees
(@) (b)
0.96;
0.85;
© g
24 gl
; § 0.94
o]
$ 0.8 g
= ~0.92]
0.75 ‘ i i i 0.9
0 20 40 60 80 100 0 20 40 60 80 100
Number of Trees Number of Trees
(© (d)
3
=
£7
H
20
i=!
21
&
H
0

0 20 40 60 80 100
Number of Trees

(e)

Figure 4.1: Results with different number of tree in GBTC: (ajuaeacy, (b) precision
rate, (c) recall rate, (d) F-measure, and (e) training time.

16

0.95|
0.96| B/e/e/"——_‘
g g 0.9
209 = 0.85
g Z
§O.94 § 0.8
< &
0.93 r 0.75|
0.92 0.7 ‘ ‘ : :
0 01 02 03 04 05 0 01 02 03 04 05
Shinkage Shinkage
(@) (b)
0.85] 0.96]
S 2
— =] |
TS08 §0.94
E :
0.75 = 0.92)
0.7 ; ; ; ; 0.9
0 01 02 03 04 05 0 01 02 03 04 05
Shinkage Shinkage
(© (d)
1
@O 8'9/9—9—9\0
&)
£ 0.6
=
204
=
<
& 0.2
0 ‘ ‘ ‘ ‘
0 01 02 03 04 05
Shinkage
(e)

Figure 4.2: Results with different shrinkage in GBTC: (a) aecyr (b) precision rate, (c)
recall rate, (d) F-measure, and (e) training time.

17

0.96; 0.95;
§O.94* g
>.0.92 g 0.9
Q o
< .z
5 09 3
Q =
< 0.88 ~.0.85;
0.864
‘ ‘ ‘ ‘ 0.8 ‘ ‘ ‘ ‘
0 20 40 60 80 10C 00 20 40 60 80 100
Max Depth Max Depth
(@) (b)
0.85; 0.95!
.08 — e °
[
e 0.7 o
0-65 0.85
0.6 ‘ ; ‘ ‘ w w ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Max Depth Max Depth
(© (d)
1
Zosg
[}
e
= 0.6
i
8
® 0.4
=
0.2 ‘ ‘ ‘ ‘
0 20 40 60 80 10C
Max Depth

Figure 4.3: Results with different maximum tree depth in GBT&}:gccuracy, (b) preci-

(e)

sion rate, (c) recall rate, (d) F-measure, and (e) trainmg.t

18

0.96y

0.96]

50'95 £0.94
< o
£0.94 3

< £0.92

o

o

N
o
©

0.4 06 08 1 0.4 06 08 1
Subsample Rate Subsample Rate
(@) (b)
0.96]

0.85]
S &
= 2 0.94
<
£0.8 g
= ~0.92

0.75 0.9

0.4 0.6 0.8 1 0.6 0.8 1
Subsample Rate Subsample Rate

o
~

(© (d)

o
©

o
oS %
©® o

Training Time (s)
o
N
a

o
~

o
o)

0.6 0.8 1
Subsample Rate

(e)

_CD(.FI
N

Figure 4.4: Results with different subsample in GBTC: (a) aacyr(b) precision rate,
(c) recall rate, (d) F-measure, and (e) training time.

19

X0.95 © 0.95 —
-
3 0.94 € 0.941
< ~
0.93 0.93
0 100 200 300 400 500 0 100 200 300 400 500
Number of Trees Number of Trees
€Y (b)
0.9
0.88
—) L
&:086 5%4095 9_9/0/0?——9
3
=
£0.84 G
~ = 0.94{
0.82f ,—°
0.8 0.93
0 100 200 300 400 500 0 100 200 300 400 500
Number of Trees Number of Trees
(© (d)
6
=
N
B
)
g
g 2]
=
=
0 : : : :
0 100 200 300 400 500

Number of Trees
(e)

Figure 4.5: Results with different number of tree in RFC: (auaacy, (b) precision rate,
(c) recall rate, (d) F-measure, and (e) training time.

20

~0.97 —_
= 0.95
= =
% 0.96 2
=] \ K7
- O
3 £0.94
<0 0.95 &
0.94 0.93 : ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
Max Feature in Splitting Max Feature in Splitting
(@) (b)
0.9
0.88;
—~~ [}
X 0.86| e 0-9
= 3
<
g 0.84 =
~ \\/ﬁ = 0.94
0.82
0.8 0.93
0 10 20 30 40 50 0 10 20 30 40 50
Max Feature in Splitting Max Feature in Splitting
(© (d)
3.5 ®
z 3
[}
225
E
§ 21
=z
& 1.51
1 ‘ ‘ ‘ ‘
0 10 20 30 40 50

Max Feature in Splitting
(e)

Figure 4.6: Results with different maximum number of featuraplitting in RFC: (a)
accuracy, (b) precision rate, (c) recall rate, (d) F-measamd (e) training time.

21

0.98 0.96
~ __0.94
X 0.96| IS
- -
2 30.92
=1 z
0094 <
< A 0.9
0.92 0.88 ‘ ; ;
0 50 100 150 200 0 50 100 150 200
Max Depth Max Depth
(a) (b)
0.96
0.85;
g ?5-’ 0.941
= £ 0.92,
0.75
0.7 ‘ ; ; 0.9 ‘ ; ;
0 50 100 150 200 0 50 100 150 200
Max Depth Max Depth
(©) (d)
1.9
Z18
(]
|
1.7
B0
i=!
i=
E 1.6
15 ‘ ; ;
0 50 100 150 20C
Max Depth
(e)

Figure 4.7: Results with different maximum depth in RFC: (a)uaacy, (b) precision
rate, (c) recall rate, (d) F-measure, and (e) training time.

22

5 @
0.8
z4
To° Rl
:
£ 0.4 g2
o £
E
0.2 =
0 : : : :
0 20 40 60 80 100 0 20 40 60 80 100
Number of Trees Number of Trees
(@) (b)

Figure 4.8: Results with different number of tree in GBTR: (a)drayed, (b) training
time.

=
w
aQ

0.8

0.6
T 0.4
g
0.2

w0

= ol

=
@

Training Time (s)
!—\
X
a

=
N

-0.21

-0.4 , ,
0 0.1 0.2 03 04 05 01 02 03 04 05
Shinkage Shinkage

B
[N
a

o

(a) (b)

Figure 4.9: Results with different shrinkage in"GBTR: (a) R-sgda(b) training time.

4.5 Sol Detecting Algorithm

From the result of the 10-fold cross validation, we obtaie dptimal hyperparameter
set. For RFR-based algorithm in SolR problem, the reporteidhaphyperparameter set
is when N = 240, X = 5, H = 40. The average training time using this setting is
18.09 seconds, with).822 average R-squared score. For GBTR-based algorithm in SolR
problem, the reported hyperparameter set is wNes 80, £ = 0.2, H = 10, M = 0.9.
The average training time is86 seconds, witl).833 average R-squared score. For RFC-
based algorithm in SolC problem, the reported hyperparamnsst is whenV = 480,

X =5, H = 80. The average training time for this hyperparameter sét.i&2 seconds,
with 0.959 in F-measure scor®,960 in accuracy rate).958 in precision rate, anl.844

in recall rate. For GBTC-based algorithm, the reported ogdtimyperparameter set is
whenN = 80, F = 0.2, H = 80, M = 0.7. The average training time 45 seconds,
with 0.957 in F-measure scoré).964 in accuracy rate().95 in precision rate().874 in
recall rate.

23

15

0.8;
0.7 g 14
g &
=
20.6 &
~ ‘£ 0.5

0.5 &

0.4 ‘ ; ‘ ‘ 0 ‘ ; ‘ ‘

0 20 40 60 80 100 0 20 40 60 80 100
Max Depth Max Depth

(@) (b)

Figure 4.10: Results with different maximum depth in GBTR: (agd®-ared, (b) training
time.

0.85 1.4
] —
% 2 1.3
[}
%O 8 g
! = |
o] » 12
=
0.75{ g
5 1.1
0.7 : : 1 : :
0.4 0.6 0.8 1 0.4 0.6 0.8 1
Subsample Rate Subsample Rate

(@) (b)

Figure 4.11: Results with different subsamplein-GBTR: (a) Rased, (b) training time.

From the result above we make the observation that, for SobBlgm the GBTR-
based algorithm have slightly better performance, whildhexsame time finish the train-
ing more efficiently then RFR-based algorithm. This makes GB&aBed algorithm a
more viable pick in the two of the algorithms. In the SolC peob, the GBTC-based
algorithm still finished earlier than RFC-based algorithmyéeer, the comes with the
cost of slightly decrease in performance. The evaluatidhede algorithms using dataset

which have not be exposed to the trained model in the prodesess-validation is con-
ducted in Sec. 7.1.

24

0.9 5

Z4
E &
2 o0

s = 21
~a 0.8 e :%

=

0.75 ‘ ; ‘ ; 0 ; ; ‘ ;
0 100 200 300 400 500 0 100 200 300 400 500
Number of Trees Number of Trees
(@) (b)

Figure 4.12: Results with different number of tree in RFR: (a)gRased, (b) training
time.

0.9 : : : : 35
= 3
0.85)
) E£25
% =
= éo 21
708 \\,/e g
o~ =
& 1.5
0.75 1

0 10 20 30 40 50 0 10 20 30 40 50
Max Feature in Splitting Max Feature in Splitting

(@) (b)

Figure 4.13: Results with different maximum number of featur splitting in RFR: (a)
R-squared, (b) training time.

2
0.8 218
<)
2 5 1.6
£0.75|
g‘ téol_4, fs-_q
o |
<
0.7 £1.2
0.65 1 ‘ ; :
50 100 150 200 0 50 100 150 200
Max Depth Max Depth
(@) (b)

Figure 4.14: Results with different maximum depth in RFR: (a)gBased, (b) training
time.

25

Chapter 5
Resource Allocator

In this chapter we present the design of our resource atlocatletail. Resource allocator
Is responsible for allocating the limited resources amaffgrént streams in the system
given the Sol information. We leverage. Lagrangian mukiplto solve the formulated
problem and proposed a real time approximation solution.

5.1 Formulation

We concentrate on the design of ‘a resource allocation #hgoriand adopt a basic Sol
detector that sets; as the number of viewers who repert, = 1. That is,w; keeps
track of the number of viewers who think the current segmdrgt@ams is an Sol.

We acknowledge that, ; may not always be provided, and a more comprehensive Sol
detector is proposed in Sec. 4. With for all s = 1,2, ...,.S, and available bandwidth

R, the resource allocation problem is to distribiteamong all live game streamsin
order to maximize the viewing quality. For concretenessuae Peak Signal-to-Noise
Ratio (PSNR) to quantify the viewing quality of streams. Nonetheless, our proposed
algorithm is general, and can utilize other quality metvigcdh monotonically increasing

(or decreasing) property. We take bitrateof streams as the decision variables.

To relater, with ¢,, we adopt a rate-distortion model [42]:

0

—_— 5.1
— (5.1)

ds - DO,S +

whered; is the distortion in Mean Squared Error (MSH), ,, 0,, and R, ; are model
parameters derived by non-linear regression. We write tblel@m formulation as:

26

5 2552
maximize _ g.w, = ZlOloglO Fo (5.2a)

s=1 78 Ts —Ro

S
s.t.z rsws < R; (5.2b)
re € R"\Ws=1,2,..., 8. (5.2¢)

The objective function in Eq. (5.2a) maximizes the weightelving quality, where
the weights are number of interested viewers of individued aming streams. The
constraint in Eq. (5.2b) ensures that we do not incur exeesesffic (> R) which may
lead to playout glitches.

5.2 Proposed Algorithm

We leverage Lagrangian Multiplier method [30] to derivesad-form formulas as fol-
lows. We first introduce a Lagrangian-Multiplier into the formulation in Eq. (5.2),
which leads to the Lagrangian functidh:

S

2(1010 L S A((er — (5.3)
glOD A0 sWs : :

s=1 0;s R() s

To get the extreme value, we take the partial derivativeg’ofvith respect to\ andr,,
wheres = 1,2, ...,.S. This leads to:

0L &
N (; rsws) — R (5.4a)
0L 106s
=\t 5.4b
ors IOg 10(7'5 - RO,S)Q(DO,S + “fﬁ) ()
Letting % = 0, and after some simplifications, we get:
— _ 2 _ 2
ro = Ront (Mog 1065) — /(Alog 1005)% — 40\ log 1098' (5.5)

2(Alog 10Dy s)

Last we Iet% = 0 and solve the system of Egs. (5.4a) and (5.5) for the optirhal
The resulting bitrate for all s are sent to the transcoder to encode the upcoming video
frames. One practical concern is the overhead of bitratptatian and negative impacts
of fast viewing quality fluctuations. We leave the frequentynvoking our proposed
algorithm, sayl’, as a system parameter.

Solving the equation system fof may take a long time, and we next develop a real-
time algorithm that offers a controllable error@fAlgorithm 1 summarizes our efficient
algorithm that is based on binary search on the optiNiabalue, wherel/ and L are
the upper and lower bounds of the current For practical reasons, we set the upper

27

bound Ry = 8 Mbps and the lower boun®&; = 128 kbps. In line7, we make sure
thatr, remains in[R,, Ry] and derive valid,. Line 9 ensures that the shared link is not
overloaded. Lind4 returns the answer after the target erds met in line3.

5.3 Analysis

Lemma 1 (Optimality). Algorithm 1 always finda within a gape to the optimal* under
the given bandwidth constrairt.

Proof. From Eg. (5.1), we see that as the bitratiencreasesy, of the video segment
decreases monotonically. Combine this with the definitioR8NR, we see that, also
increases monotonically. From Eq. (5.4b) we observe tisathe|\| decreases;, also
increases monotonically under the constraint- R, ;. From the above two observation
we prove that, a$\| decreasesy, of every streams increases monotonically, and the
objective function Eq. (5.2a) also increases monotonjicallherefore, the\ returned
value approximates the optimallambataof the equation system with a worst-case error
of e under the constraint that the'searched domain does not(ross O

Algorithm 1 Efficient Sol RDO Algorithm
1: U « 0, L + —1// Upper/lower bounds

2: € + 1077 // Default error
3: while L +e < U do
4: A=U+1L)/2

5: for Vs € S do
6: Derive all thers using and Eg. (5.5)
7 if Irg, such thay, € Corry < Ry orrs > Ry then
8: AdjustU or L accordingly
9: elseif) . qrsws > Rthen
10: U=\
11: else
12: obj= >, g qsws
13: L=\

14: if objis undefined, return no answer, o.w. returandr.

Lemma 2 (Complexity) Algorithm 1 runs inO(S loge™1).

Proof. In the worst-case scenario, it is executeg(1/¢) rounds. In each round, there
are S streams, each needs to derive its awyy, and check ifr is valid. Each of these
operations take®(1) time. Therefore in each round the calculation and the exatioin

28

of all r, and ¢, take O(S) time. We also calculate the consumed bandwidth and the
objective value, both operations take¢.S) time. So the total time complexity (£)(5) +
O(S) +0(5))O(loge™) = O(Sloge™t). O

5.4 Leveraging Features From Viewer

While not in the current solution, here we discuss the paiéofi leveragingF, ; col-
lected in the system. The ; andn, , can be leveraged to determine whether viewesr
not paying attention to the stream or even not present atcinees After we obtain the
information, resource allocator can then decrease thetgwaleo image sent to viewer

v. The allocator could even decide to send only the audio kignaif the video is not
being played in the foreground. This way we can further ojzinthe resource allocation
in the system with a finer granularity

Figure 5.1: Modified SMPlayer is used to mark Sol as grounithtru

29

cd »

1

kiwi_52249

~
=ch
L)

UAV Recon expired

(\#Z50
w040 (18:47

[.

© Eifi:tka21

kiwi_52249 | Send

Figure 5.2: The Web-interface of the server in our testbed.

Open Play Video Audio Subtitles Browse Options Help

Z@ \ OO [awe -flswi -]

Figure 5.3: Screenshot of the modified SMPlayer.

30

: Untitled - Scenes: scenes - Open Broadcaster Software v0.653b

(67-1437°1) SFPS
(7-45) 9703 cgim's faam'e

y S
P S

' 170
B
7] CODA P | | pg—— || L)
Drun,d]r mlli 1 1 1 meererr e e 1 | -
COD4 MP [BIE... I BB |
[7] BF4
[REEE [Basm |+
| SRR]| mEER |
(1l][&]
0:00:09 (LIVE) ELFAE ¢+ 0(000%) FPS: 30 .8672kb.‘s

Figure 5.4: Screenshot of the modified OBS.

31

Chapter 6
An Opensource Testbed

We have implemented a complete live game streaming platformisting of the streamer,
server, and viewers. We enhance OBS [22] to collect featums Ktreamers as in
Fig. 5.4. In particular, the modified OBS collects the CPU us&d8J usage, keystrokes,
mouse events, and sound amplitudes (microphone and injgatreaming bitrate, and
webcam face detection results (to determine.if the stredmasideft). In particular, we
save the streaming bitrate reported-by OBS. We. use‘-WindowsrRemce Counter [36]
API to measure CPU utilization every second. We adopt NVAR] f2ovided by NVidia
to measure the GPU utilization -on. its-GeForce graphic camdsalso adopted AMD
Display Library (ADL) [3] provided by. AMD! to -measure the GPUilization on its
Radeon graphic cards. We uSet'AsyncKeySt at e provided by Windows to capture
the keystrokes and mouse events. Note GettAsyncKeySt at e does not correctly
capture mouse clicks in some games, such as League of Leg&di®ssing this limita-
tion is one of our future tasks. We use Direct Show (DS) frapr&vto capture the sound
amplitudes. We adopt thé deol Omodule in OpenCYV to replace the webcam module
of OBS, and perform face detection using Haar object deteetigorithms on webcam
images. All the collected features are sent to the servdrsamed as log files.

We enhance SMPlayer [28] as in Fig. 5.3 to collect features friewers. The mod-
ified SMPlayer captures current foreground window name étermnine if the viewer is
watching), and webcam face detection results (to determithe viewer is gone). For
foreground window detection, we u€et Act i veW ndowTi t | e function provided by
Windows. For face detection, we also adoptWneleol Omodule in OpenCV as in OBS.
Fig. 5.1 is a screenshot of the modified SMPIlayer, in whichcihge button on the left
allow viewers to mark if the stream is in Sol; the viewer tagghis/her choice by hitting
the TAB key. The collected features, including the Sol (usgthe ground truth in Sec. 7)
are sent to the server, and saved as log files.

We integrate NGINX [19], JWPlayer, and IRC into our server. N&lis a web

32

service that provides RTMP plug-in to relay the streams fetr@amers to viewers. For-
tunately, NGINX provides interface for transcoders, suckEmpeg [8], which are lever-
aged in our testbed. To encourage more streamers and vieavese our platform, we
create a unified web interface with flash player (JWPlayer) @rat room (KiwilRC).
Viewers may preview game streaming before installing SM&laFig. 5.2 is a screen-
shot of the web interface.

The presented testbed can be used by researchers and esiganeleve solve the Sol
detection problem and resource allocation problem usiisgéistbed in Sec. 4 and Sec. 5
as case studies. Given that our platform is composed of opetes projects, we will
release our patches and documents to the communities.

1 : : 1
0.95 0.95
)
&
% 0.9 0.91
ot Il Accuracy
0.85; 0.85; [Precision
[_JRecall
08 0. F—esure |
RFR GBTR RFC GBTC

Algorithm Algorithm

@) (b)

[] |

RFC GBTC RFR GBTR
Algorithm Algorithm

(0]
[é)]

@
w

N

Training Time (s)
N N

Training Time (s)

[Eny

<
o

(© (d)

Figure 6.1: Results evaluation on, (a) SolR, (b) SolC, and &iitrg time of all algo-
rithms.

33

Recall (%)

1 2 3 45 6 7 8 910

F-measure
o
o

o
~

0.2

1 1
go.s— gO-S
> =
2 0.6 206
- =]
= O
3 &
< 0.4 0.4
0.2 . 0.2 I
123 456 7 8 910 123 456 7 8 910
Test File Test File
(@) (b)
1 1
0.8

1 2 3 45 6 7 8 910

Test File Test File
(© (d)
2.5

= 2]

g

£ 15

20

g 14

g

<

& 0.5

1 2 3 456 7 8 910
Test File

(e)

Figure 6.2: Evaluation result of SolC problem using RFC-badgdrithm, (a) accuracy
rate, (b) precison rate, (c) recall rate, (d) F-measure antigining time.

34

Accuracy (%)
o o
o @

o
~

Precision (%)

0.2 L 2l
1 2 3 456 7 8 910 1 2 3 45 6 7 8 910
Test File Test File
(@) (b)
1 — 1

o
o)

F-measure
o
o

0.4
- 0.2 s
12 3 45 6 7 8 910 12 3 456 7 8 910
Test File Test File
(© (d)
3
£2
&
o0
|
21
s
E

1 2 3 45 6 7 8 910
Test File

(e)

Figure 6.3: Evaluation result of SolC problem using GBTC-dadgorithm, (a) accuracy
rate, (b) precison rate, (c) recall rate, (d) F-measure enptigining time.

0.6 3
0.4 =
o g 2
3 g
= o0
2 0f k|
= E 14
oo}
-0.2 =
T S S ——— 0!
1 23 456 7 8 910 123 456 7 8 910
Test File Test File
(@) (b)

Figure 6.4: Evaluation result of SoIR problem using RFR-badgdrithm, (a) R-squared
score, (b) training time.

35

10y

\ R-squared

Training Time (s)

1 2 3 456 7 8 910 1 2 3 45 6 7 8 910
Test File Test File
(@) (b)

Figure 6.5: Training time in SoIR problem using GBTR-base@algm, (a) R-squared
score, (b) training time.

36

N
o

30
&
20 K ---Sol RDO |
-o-:Sol RDO
—ES
¢ —RDO

Consumed Bandwidth (Gbps)
IR
o

2 4 6 8 10
Arrival Rate

(@)

=
a1
o

---Sol RDO
=o-Sol RDO
i —RDO

=
o
o

a1
Q

Consumed Bandwidth (Gbps)

o
o

50 100 150
Bandwidth Capacity (Gbps)
(b)

240 N — .
< -7 P P T Lt o
= 357 R I
.= g
30 §
g .
2 25]
g5 ; ---Sol RDO
520 =o=Sol RDO |
3 ; —e—ES
g é T RDO
o T
@)

=
()]

0 50 100 150 200 250

Number of Streams
(c)

Figure 6.6: Total consumed bandwidth with diverse: (a)afmate, (b) total bandwidth,
and (c) number of streams.

37

46
2 B\
<
— 441 S XN-O-.._ ~aa
=00 N T -
% ~’~e~’~,~ -
5) 421 ~e
a0 —
g ---Sol RDO
g 40| .—--Sol RDO
=

38 ‘ ‘ ‘ ‘ ‘

2 4 6 8 10
Arrival Rate
(@)

50
=)
~— 45,

2

E

& 401

E ---Sol RDO

% 351 =o=Sol RDO ||

i ——ES
—RDO

30 ‘ ‘ ‘

0 50 100 150
Bandwidth Capacity (Gbps)
(b)

50 : —_—
— ---Sol RDO
% =o-:Sol RDO
~ 1=~ ——F
- 45 3 S
.Tg
O) 407
o0
g

z 35;
L
>
30 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250

Figure 6.7: Average viewing quality with diverse: (a) aativate, (b) total bandwidth, and

(c) number of streams.

Number of Streams

(©

38

IN
o

)
Q

Used Bitrate (Gbps)
N
o

——Sol RDO
10! | —Sol RDO
0 -o- RDO
0 10 20 30

Time (min)

Figure 6.8: Sample consumed bandwidth over time from rdund

1 ‘ ‘
---Sol RDO
0.8
g
— 0.6]
()
g
§04’ I._____I _____ I______I _____ I
o
0.2
0 T
2 4 6 8 10
Arrival Rate
(@)
LS —s;rrDO
- et
& -k
= -
= 0.5 g
~ '_r'
0

0 50 100 150 200 250
Number of Streams

(b)

Figure 6.9: Algorithm runtime with diverse: (a) arrivaleand (b) number of streams.

39

Chapter 7
Evaluations

In this chapter we present the rult of evaluation on Sol deteand resource allocator
proposed in this thesis. We conduct two kinds of evaluatiothe proposed Sol detecting
algorithms, and we implemented a simulator to evaluateesgurce allocating algorithm.

7.1 Sol Detector Evaluation

7.1.1 Evaluation Setup

We conduct out evaluation with; z‘andD. « on.SolR problem and SolC problem using
a AMD 64-core server with 377 GB of RAM-We repeat each of thewatadn 10 times
and report 95% confident interval whenever possible in osulte There are two set of
evaluations we conducted, (i) results fram p and D, using the optimal hyperparam-
eter set from Sec. 4.4, (i) results from our Sol detectimgudator.

7.1.2 Results FromD, z And D, ¢

In Fig. 6.1 we report the evaluation result using the evadnatataset from Sec. 4.4. From
the figures we make the following observation.

GBTR-based algorithm outperforms RFR-based algorithm in SoR problem.
From Fig. 6.1(a) we can observe that GBTR-based algorithmlgleatperform RFR-
based algorithm.

GBTC-based algorithm provide slightly better performance atthe cost of train-
ing time in SolC problem. From Fig. 6.1(b) we can observe that GBTC-based algo-
rithm slightly outperform RFC-based algorithm. Howeverpfrthe numbers reported in
Fig. 6.1(c) this comes at the cost of slightly higher tragnirme.

Overall RF-based algorithms provide better training time comparing to GBT-
based algorithms.In Fig. 6.1(c) and Fig. 6.1(d) we report the training of a# fhroposed

40

algorithms, the figures shows that overall RF-based alguanittovide slightly better train-
ing time comparing to GBT-based algorithms. We notice thah boe Random Forest
training module provided in Scikit-learn package [26] ahd Gradient Boosting Tree
module provided in XGBoost package [37] are capable of lgmregamultiple CPUs in
the server. Both of these modules use up to 64 cores in our I4&BU server when
training with certain parameter set. In concept the trggmhRandom Forest is an embar-
rassingly parallel problem, which may be the decision falbb&iween the training time of
the algorithms.

7.1.3 Results From Sol Simulator

We implemented a simulator to evaluate the Sol detectingrittgns we proposed for
SolC and SolR problem. The simulator uses the historical dattraining data and use
the trained model in our proposed algorithms.to detect Sel tAKe the datasdd, and
D¢ from Sec. 4 and take nine videos as training.set,’with the irgngaone video as the
evaluation set. We conductgrid search-with 10-fold crosislaaon on the hyperparam-
eter space mentioned in Sec, 4.4, and select optimal hyeneterset, then we evaluate
result using the remaining video. The procedure is repdate times with each video
in the 10 videos take turn to be the evaluating one.

We report the result in Fig. 6.2, Fig. 6.3, Fig. 6.4 and Fi&. 6-rom the figure we
make the following observations:

We achieve good results in SolC problemFig. 6.2 and Fig. 6.3 show that in SolC
problem both of the algorithms can achieve clos#.®in terms of F-measure except
when file numbef or 7 is used as the evaluating file.

There is still room for improvements in SolR problem. Figure. 6.4 and Fig. 6.5
show that both RFR-based and GBTR-based algorithm can onlyvachreund0.4 in
terms of R-squared score, and when the evaluating fileas7, the performance drop
even more. These results indicate that there is still roonu$oto improve our SolR
algorithms.

RF-based algorithms outperform GBT-based algorithms Consistent with the eval-
uation results from Sec. 7.1.2, RF-based algorithms owiped GBT-based algorithms
in terms of both training time and prediction performancae®bvious difference can be
observe from Fig. 6.4(a) and Fig. 6.5(a), when the evalgdiia is file 5. Consider that
Random Forest is known its’ noise resistance, this is a reddeutcome.

41

7.2 Resource Allocator Evaluation

7.2.1 Simulation Setup

We have captured live gaming sessions on our testbed. Two are from Age of Easpir
I, three are from Spellweaver, one is from Hearthstone:odgwof Warcraft, one is from
Minecraft, and one is from Starcraft II. The sessions aréuag in resolutions varying
between 720p and 1080p. The minimal, mean, and maximaliergjtthese live game
sessions are 17 minutes, 82.65 minutes, and 3.69 hoursaiéetde each captured video
into {128,256, 512, 1024, 2048, 4096, 8192} kbps using x264 video codec with ultrafast
preset. We use the bitrate and PSNR reported by x264 to perfon-linear regression
for the model parameters in Eq. (5.1). The resulting modeddairly accurate with an
average (maximal) MSE of 0.43 (1.14). We recruit severaleis to watch the live game
session, and mark Sol segments as the ground truth. We gdaewéniogs in total,
with an average (maximal) Sol number of 5.64 (19) in each gsession. The model
parameters and viewer logs are used to.drive our simulat@ui simulations, live game
sessions and viewer logs are randomly-chosen from the datasgn the scenarios with
many game sessions (or viewers), some model parameterggniogs) may be used
several times to test the scalability of our solution.

Our simulator is implemented using Python. ‘The proposedRE20 algorithm is
implemented in C. We compare our. solution; called Sol-basBdPptimized (Sol RDO),
with two baseline solutions: (i) Equal Share (ES), whichalyudivides the outbound
bandwidth among all viewers, (ii) R-D Optimized (RDO), whichdptimized in the R-
D sense, but does not consider Sol. The ES algorithm mimestdte-of-the-art live
game streaming platforms, while RDO allows us to quantifytibeefit of the Sol driven
resource allocation. In Sol RDO, we transcode streams toergewho are not in Sol
at R, for basic quality. In extreme cases, where RDO or Sol RDO fafird feasible
solutions, they fall back to ES. Last, we implemented annogtialgorithm in Matlab
usingsol ve function to solve the equation system as the benchmark.

We consider the following performance metrics, , and uselioeeto indicate the
expected values in the figures.

e Expected quality. the objective function value reported by the resourcecation
algorithm.

e Actual quality : the achieved objective function value reported by the taton
e Running time: the run-time of solving a resource allocation problem.
e Expected consumed bandwidthreported by the resource allocation algorithm.

42

e Actual consumed bandwidth reported by the simulator.
e Network overhead the network traffic volume generated by feature senders.

Each round of simulations &shours long, with several parameters: (i) Poisson arrival
rate of viewers, which is i{2,4,6,8,10} per minute for each stream, (ii) number of
streams in the system, which is{ih6, 32, 64, 128, 256}, (iii) total outbound bandwidth of
the server, which is i 10, 20, 40, 80, 160} Gbps, and (iv) interval of calling the proposed
algorithm, which is in{1,2,5,10,60} seconds. If not otherwise specified, we set the
arrival rate as 6, the number of streams as 32, the bandwsdtb &bps, and the interval
of calling our algorithm as 60 seconds. We assume the viesesys finish the videos
they watch. We repeat each simulation 5 times. We report ¥eeage performance
results, and give5% confidence intervals whenever applicable.

7.2.2 Results

Our algorithm outperforms RDO 'and-ES interms/of viewing quality and consumed
bandwidth. Figs. 6.6 and 6.7 show total consumed bandwidth and averag@éng qual-
ity of viewers. We observe that as: the load of the: system asa®, e.g., when the arrival
rate reaches 10 in Fig. 6.7(a) or the number of streams re2&8t&n Fig. 6.7(c), Sol RDO
significantly outperforms RDO ‘and ES, ‘achieving better wenguality for the viewers
by up to 5 dB, while consuming less total bandwidth in the systeee Figs. 6.6(a) and
6.6(C)).

From Figs. 6.6(b) and 6.7(b), we observe that when the coedirandwidth is close,
Sol RDO gives better viewing quality, e.g., when the bandwidtset to 10 Gbps. We
also note that when the load of the system is light, e.g., vihemrrival rate is set to 2 or
when the system has 160 Gbps bandwidth, RDO and ES slighiyedatm the proposed
Sol RDO. However, this is achieved with significantly more dhaidth consumption: 20
Gbps and 70 Gbps more, respectively.

Fig. 6.6 also shows that the expected bandwidth consumpioorted by simulator
is lower than that of actual consumed bandwidth, which isteuintuitive. We plot the
bandwidth usage over time with default parameters in Fi. B/e see that the expected
consumed bandwidth is slightly higher than actual consubzaiwidth. We note that
the instantaneous expected consumed bandwidth may osadgibecome smaller than
actual consumed bandwidth, due to the dynamic nature ofyters.

Our algorithm runs efficiently and scales well. Figs. 6.9(a) and 6.9(b) report the
runtime of finding the\ using Sol RDO algorithm. In all of the experiments the average
runtime stays< 1 ms, except when the number of streams is 256, which lead3# 1
thousand viewers. In contrast, the optimal algorithm im@ated in Matlab may take

43

> 6 minutes to terminate, with merebg% chance for feasible (real number) solutions.
The above results show that our algorithm scales well withpelasystems.

;%\ 40 : e e —

I s # a | Tl

N © le. 0 TTmeeall -
£ ---So RDO Soaal T

+ 35/ 0 i £44 T TTmeelll

2 -o-:Sol RDO 2 -
5 —ES =] —
C%I ——RDO C ---Sol RDO
M gp@e gz oIS 2 421 =='Sol RDO |1
'-8 ------------- -° E ——ES

g g —RDO

: > :
Z 25 ‘ ‘ ‘ 40 ‘ ‘ ‘
o 0 20 40 60 0 20 40 60

Algorithm Interval (sec) Algorithm Interval (sec)
(@) (b)

— 400 ‘ ‘ —~50 ‘ ‘
= we = -o- Viewer e
< 3007 : =40 -7
7 300% 3
£ 2 30/ e

£ 200/ :
o Q O 20 -
4 v ~d e

5 1007 © o -

2 N z10 .
2 0"- Ne-‘-‘-“-‘-‘-v-‘-‘-‘-‘_‘ """"""""" L] é) 0 e’\e ——— = = m e m e === === =

0 20 40 60 0 50 100 150 200 250
Algorithm Interval (sec) Number of Streams

(c) (d)

Figure 7.1: Implications of algorithm interval on: (a) consed bandwidth, (b) average
viewing quality, and (c) network overhead; (d) network dvead under different number
of streams.

Implication of calling frequency Fig. 7.1 reports the implication df, the interval
of calling our proposed algorithm. In Figs. 7.1(a) and 7)Hifiow that, ag” decreases,
viewing quality slightly increases by 1 dB. This is becausening our algorithm more
frequently, the system has a better chance at adjustingetoetv viewers that just arrive
in the system.

Feature senders generate negligible network overheaérig. 7.1(c) reports the over-
head generated by different interval parameters. FigdY r&ports the overhead gener-
ated by different number of streams. We observe that, theanktoverhead generated by
feature senders is negligible, even when the feature isneduon a per second basis, at
just around 300 kbps with 12000+ viewers in the system.

44

Chapter 8

Related Work

8.1 General Live Gaming Streaming Related Research

Live game streaming service have not appeared in the lileraintil recent years. Kay-
toue et al. [13] and Nascimeto et al. [18]-have published welkted to the modeling of
the characteristics of live game streaming communitie® rBsearch by Kaytoue is the
first one with topic highly related.to live game streamingtie titerature.

Zhang and Liu also published several works focusing on tlegver perceived la-
tency [27] and region-based job’placement-algorithms [4@jed to shorten the per-
ceived latency by viewers. Pires‘and.Simon conducted exjeits to measure the be-
haviors of both Youtube and Twitch servers. [24], and providfermation such as the
bandwidth consumption and number of channels of both servidhey also made the
dataset available to the research community. Pires andrSatso discussed integrat-
ing DASH into live game streaming system [29], and propossegies on how to pick
channels to transcode considering the tradeoff of transgam/erhead and the burden of
delivering high quality raw video segments. In 2015 Dend.epablished a work which
explore the popularity of games and channels on Twitch semvi detail [7]. They dis-
cussed the trend during the period of their collected datch amalyzed the distribution of
both popular games and channels in Twitch service in detail.

Hamilton et al. published a work related to Twitch which fecon the human-
computer interaction (HCI) aspect [9]. They discussed hanstinse of the community
Is formed between the audience and the streamer, and amdienes themselves. They
also discussed how different kinds of media, e.g., the vitteochat message and facecam
interact with each other to form the experience of live gatreasning. Margel published
a work focusing on social dynamics behind the phenomendedc@vitchPlaysPoke-
mon[16], which swept the Twitch community in 2014. At one timédlds up to 23% of
the viewers in Twitch service.

45

In contrast to the work mentioned above, we proposed theeginaf Sol to re-
duce cost without sacrificing viewer experience. Some ofdbi@tions proposed in
these works, e.g., region-based job placement, are corepleto our system, and can
be adopted to further enhance our proposed system.

8.2 Large Scale Transcoding

Our resource allocator is closely related to some of theelaale transcoding that aim
to improve viewing quality for viewer in the video streamiegrvice. Aparicio-Pardo
et al. proposed a solution to automatically decide transgpdarameters and machine
designation in cloud servers [4]. Zheng et al. also propasgnhilar system with adaptive
transcoding parameter decision and machine designatign [4

Our system are different from the above systems in the waytbhaake the Sol in-
formation into consideration, which offers another layepassibility to further optimize
the viewing quality perceived by viewers in our systems. \&eehalso published our
resource allocator in 2015 [5].- Combining-our,Sol, concephwiite some of the more
sophisticated solutions is aninteresting future work far £ystem.

8.3 Video Summarization, Highlight Detection and ROI

The concept of Segment-of-Interest is remotely related tpdReof Interest (ROI), which
have been extensively explored in video communicationdd distance educations [17].
However, Sol operates on the temporal domain, while ROlieppb the spatial domain.

The other fields that are related to Sol are video summaoizatnd highlight de-
tection. There are existing work that aim to reduce bandwigtage in cloud gaming
systems using technique such as attention model deriveddatiency map [1]. Hossain
et al. also proposed a system aimed to alter the video franesil to players in a
cloud gaming scenario according to the emotions detected layers’ image frame and
audio. [12] In 2015 Chu et al. proposed automatically hidftligetection solution for
live game streaming videos [6] that is highly related to tloé &tection problem in this
thesis. The Sol detector proposed in this thesis is difterem the existing works, we
explore the possibility of detecting Sol information usotger lightweight features in the
system instead of content based analysis [6, 12], usertiattemodel [1, 15], or model
using eyeball analysis [23].

46

Chapter 9
Conclusion and Future Work

From the observation thatser experience only degrades when the users are paying at-
tention we proposed to differentiate the importance of segmentiveagame streaming,
which opens up a wide spectrum of possibilities for furthgtiraizing lie game stream-
ing platforms. We refer to those important segmentSegment-of-Interest (Solh this
thesis we proposed a system called Sol-driven live gamarstng platform.

We enhanced and integrated several open source projettas@BS and SMPlayer
to build a testbed. We use the testbed to collect real wortd tlace and use these traces
to develop our proposed algorithms:

At the core of the proposed system are Sol detector and @s@lilocator. The
Sol detector leverage machine learning algorithm, namehdBia Forest and Gradient
Boosting Tree to detect Sol from the lightweight features wiéect from streamers and
viewers. The resource allocator uses the Sol informatieergby the Sol detector to al-
locate resource among streams in the system. We leveragddamétiel and Lagrangian
Multiplier to formulate the viewing quality optimizatiorrgblem. We also developed an
efficient approximation algorithm with a controllable arto cope with real world usage
scenario, which is a highly dynamic one for a live game stiagraystem.

We recruited viewers to mark Sol ground truth for us and ussdfinformation in our
supervised training for Sol detector and simulation footese allocator. We conducted
grid search with 10-fold cross validation to find the optirhgberparameter set for Ran-
dom Forest and Gradient Boosting Trees in Sol detector ungrgised learning. We
then use the optimal hyperparameter set to train and eeatusitSol detector in two dif-
ferent way, (i) result from randomized selected data the¢hdbeen used in the training
shows that we can obtain up 6 in terms of F-measure and up@®7 in terms of R-
squared score, (ii) result using a simulator that take®hdstl data as training set shows
that it can achieve cloges8 in terms F-measure in SolC problem.

We developed a simulator which uses real world data traceaedlistortion infor-

a7

mation from non-linear regression to simulate a large $ealjame streaming system in
action. The results from our six hour long simulation sholagt bur proposed approxi-
mation resource allocation algorithm Sol RDO algorithm eutprms the state-of-the-art
implementation by up to 5 dB in viewing quality and up to 50 Glap bandwidth con-
sumption.

This work can be extended in several directions.

Larger scale datasetWe are currently collecting features from more real gamepla
in order to further expand the size of our dataset and devedopoptimization algorithms.

Transcoder integration. Multi-viewer transcoders can be developed and evaluated
using our testbed to alleviate the heavy workload incurnethle transcoding process in
current live game streaming platforms.

Resource allocator with finer transcoder control. More sophisticated resource al-
locator which provide more quality options, e.g. frame paEronds and resolution, can be
developed to provide more fine-grained user experiencenggation.

Deep integration with game engines.To further optimize the performance of the
platform, we can provide API for game engines to provide theasning platform with
Sol informations. With the deep ‘insight of.game logic andternof the game from
game engine, Segment of<Interest 'detection could be evea awmurate, and can be
easily applied to a wide variety of games.

By differentiating the segments’ importance to viewers, weroup new opportunities
for researchers and engineers to further optimizing live@atreaming platforms in terms
of user experience.

48

Bibliography

[1]

H. Ahmadi, S. Khoshnood, M. Hashemi, and S. ShirmohanmimBfficient bitrate
reduction using a game attention model in cloud gamingPruc. of IEEE Inter-
national Symposium on Haptic Audio Visual Environments @ades (HAVE’'13)
Istanbul, Turkey, 2013.

[2] Amazon buys twitch for 970 million in cash. htt p:// ww.

busi nessi nsi der. conf anmazon- buys-tw t ch- 2014- 8/ .

[3] Amd API homepageht t p:/ [tinyurl..com AVD- ADL.

[4]

R. Aparico-Pardo, K. Pires,; A..Blanc, and ‘G. Simon. Tramkeg live adaptive
video streams at a massive scale in the cloud®rbc. of ACM Multimedia Systems
Conference (MMSys’15Portland, Oregon,2015:

[5] T. F. Chiang, H. Hong, and C. Hsu. " Segment-of-Interestairiwe game streaming:

Saving bandwidth without degrading experience. Phoc. of IEEE International
Workshop on Network and Systems Support for Games (NetGames&adseb,
Croatia, 2015.

[6] W. Chu and Y. Chou. Event detection and highlight detectibbroadcasted game

[7]

[8]

videos. InProc. of ACM Workshop on Computational Models of Social Irdeoas:
Human-Computer-Media Communication (HCMC’1Bjisbane, Australia, 2015.

J. Deng, F. Cuadrado, G. Tyson, and S. Uhlig. Behind the gaaxploring the
twitch streaming platform. IdProc. of IEEE International Workshop on Network
and Systems Support for Games (NetGamesZa&greb, Croatia, 2015.

FFmpeg homepagéat t ps: // f f npeg. org.

[9] W. Hamilton, O. Garretson, and A. Kerne. Streaming ontdtvi fostering par-

ticipatory communities of play within live mixed media. Rroc. of the SIGCHI
Conference on Human Factors in Computing Systems (CHI'T@grpnto, Canada,
2014.

49

[10] T. Hastie, R. Tibshirani, and J. Friedmaithe Elements of Statistical Learning:
Data Mining, Inference, and Predictiorspringer, 2th edition, 2001.

[11] HTTP live streaminghttp: //ti nyurl.com HLS-draft.

[12] M. Hossain, M. Muhammad, B. Song, M. Hassan, A. Alelaiavid A. Alamri. Au-
dio—visual emotion-aware cloud gaming framewolikEE Transaction on Circuits
and Systems for Video Technolpg$(12):2105-2118, 2015.

[13] M. Kaytoue, A. Silva, L. Cerf, W. Meira, and C. &si. Watch me playing, | am a
professional: a first study on video game live streamind?risc. of ACM Workshop
on Mining Social Network Dynamics (MSND’12yon, France, 2012.

[14] Y. Liu, Z. Li, and Y. Soh. Region-of-Interest based resmuallocation for conver-
sational video communication of H.264/AVGQEEE Transactions on Circuits and
Systems for Video Technolodys(1):134-139, 2008.

[15] Y. Ma, L. Lu, H. Zhang, and M. Li.-A user attention modet fadeo summarization.
In Proc. of ACM International Conference on Multimedia (MM’02yuan Les Pins,
France, 2002.

[16] M. Margel. Twitch plays pokemon: An-analysis of socighdmics in crowdsourced
games. Technical report, University of Teronto, 2014.

[17] A. Mavlankar, P. Agrawal, D..Pang, S. Halawa, N. Cheungl 8. Girod. An
interactive region-of-interest video streaming systenwoifdine lecture viewing. In
Proc. of Packet Video Workshop (PV’1®)ong Kong, China, 2010.

[18] G. Nascimento, M. Riberio, L. Cerf, N. Caso, M. Kaytoue, C. R&si, T. Vas-
concelos, and W. Meira. Modeling and analyzing the video géwe-streaming
community. InProc. of Latin American Web Congress (LA-WEB’1@uro Preto,
Brazil, 2014.

[19] NGINX homepageht t p: // ngi nx. or g.

[20] Novabenchhtt ps:// novabench. con .

[21] Nvidia APl homepageht t ps:// devel oper. nvi di a. com nvapi .
[22] Open Broadcast Softwarét t ps: // obsproj ect. com .

[23] W. Peng, W. Chu, C. Chang, C. Chou, W. Huang, W. Chang, and Y. Hadijing
by viewing: Automatic home video summarization by viewinghbvior analysis.
IEEE Transactions on Multimedid 3(3):539-550, 2011.

50

[24] K. Pires and G. Simon. Youtube Live and Twitch: A tour cfer-generated live
streaming systems. IAaroc. of ACM Multimedia Systems Conference (MMSys’15)
Portland, Oregon, 2015.

[25] Adobe’s Real Time Messaging Protocbt.t p: //ti nyurl . com rt np- spec.
[26] Scikit-learn.http://sci kit-1earn. org.

[27] R. Shea, D. Fu, and J. Liu. Towards bridging online garagipg and live broadcast-
ing: design and optimization. IRroc. of ACM Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video (NOSSDAVRS6itland, Oregon,
2015.

[28] SMPlayer homepagét t p: / / snpl ayer. sour cef or ge. net/.

[29] |. Sodagar. The MPEG-DASH standard for multimediaatngng over the internet.
IEEE Multimedia 18(4):62-67, 2011.

[30] G. Sullivan and T. Wiegand: - Rate-distortion optimipatifor video compression.
IEEE Signal Processin@0(6):74-90, 1998.

[31] Science: Surfing the 4th largest stream of
data. htt p://bllog. tw tch. tv/ 2015/ 05/
sci ence-surfing-the-4th-largest-stream of -data/.

[32] BOOM. More transcode servers.http://blog.twi tch.tv/2015/07/
boom nore-transcode- servers/.

[33] Twitch retrospective 201t tp: // www. twi t ch. t v/ year/ 2013.
[34] Twitch retrospective 201t tp: //ww. twi t ch. t v/ year/ 2014.
[35] Twitch retrospective 201t t ps://ww. tw tch. tv/year/ 2015.

[36] Windows performance counter website. http://tinyurl.com
W ndow PDH.

[37] Xgboost.http://github. com dm ¢/ xgboost .
[38] YouTube gaming websitét t ps: // gam ng. yout ube. com .

[39] C. Zhang and J. Liu. On crowdsourced interactive liveatning: a twitch.tv-based
measurement study. Proc. of ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’1PBprtland, Oregon, 2015.

51

[40] C. Zhang, J. Liu, and H. Wang. Towards hybrid cloud-dssisrowdsourced live
streaming: measurement and analysisPioc. of ACM Workshop on Networks and
Operating Systems Support for Digital Audio and Video (NOSBI®6), Klagenfurt
am Worthersee, Austria, 2016.

[41] Y. Zheng, D. Wu, Y. Ke, C. Yang, M. Chen, and G. Zhang. Ontiaid transcoding
and distribution for crowdsourced live game video stregmiEEE Transaction on
Circuits and Systems for Video TechnolpB#(99):1-1, 2016.

[42] X.Zhu, E. Setton, and B. Girod. Congestion-distortiotimfzed video transmission
over ad hoc networksSignal Processing: Image Communicati@9(8):773-783,
2005.

52

