
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University

Master Thesis

行動裝置感測器中介軟體之最佳化研究

Optimizing Mobile Middleware for Coordinated Sensor

Activations

侯婷方

Ting-Fang Hou

共同指導教授：徐正炘博士,金仲達博士

Advisors: Cheng-Hsin Hsu, Ph.D., Chung-Ta King, Ph.D.

中華民國 103年 06月

June, 2014

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

行
動
裝
置
感
測
器
中
介
軟
體
之
最
佳
化
研
究

侯
婷
方

撰

103
06

中中中文文文摘摘摘要要要

隨著手機技術的發展，手機上配備有更多的感測器。這些感測

器的資訊被廣泛的使用和開發在情境感知的應用程式(Context-Aware

applications)。利用感測器資訊推論外在環境狀況或使用者的活動情

形。目前的手機系統未提供整合性的感測器排程，這些情境感知的應

用程式會各自獨立操作感測器的開關及資料的讀取，導致不必要的電

量消耗。在本篇論文中，我們強調有效的整合應用程式並找出最佳的

感測器使用方法。對於單一手機，我們提出一個middleware介於應用

程式和手機硬體之間，用以溝通應用程式並規劃和控制感測器的開

關。目前手機被廣泛的使用於日常生活中，我們更進一步的讓感測

器排程整合更多手機上或是基礎設備中的感測器，並將此想法應用

到crowdsensing系統中。 首先，我們對單一手機設計、實作和分析一

個middleware，此middleware權衡感測器的電量消耗和情境感知的精準

度，找出最佳的感測器使用方法。我們將問題分成兩種並用數學式子

表示: (1) 滿足應用程式的要求，最小化電量消耗和 (2)在有限的電量

下，最大化情境感知的精準度。我們分別提出兩個最佳化演算法和快

速的演算法並用Java開發模擬器。從實驗結果表示，快速的演算法可

以即時的解決問題、節省電量消耗和最佳化演算法平均只有∼ 3%的

差距。我們將演算實做到Android系統上並成功節省電量的消耗。 在

論文的第二部分，我們推廣感測器排程的概念到多隻手機上並將其應

用到crowdsensing系統中。我們設計一個crowdsensing系統，系統依照

手機使用者的位址和能力(ex: 剩餘電量)，找出最佳的工作分配方式

以降低碳排放的量。我們用數學式子表示問題並提出兩個最佳化/快

速的演算法。利用Java開發的模擬器所得到的結果表示，快速的演算

法可以減少364倍的碳排放量、加速工作完成(8倍)和最佳化演算法只

有∼ 2%的差距。

i

Abstract

Existing context-aware mobile applications directly control sensors in the

mobile devices in an uncoordinated and non-optimized manner, which leads

to redundant sensor activations and energy waste. Optimal and coordinated

sensor usage dictates a comprehensive mobile middleware solution with sen-

sor scheduling on single device to bring together the information from all

applications/sensors and intelligently select the best set of sensors to activate.

While the widespread use of smartphones, we cooperate the sensors on mul-

tiple smartphones and infrastructure sensors to build a novel crowdsensing

system.

In Chap. 3, we design, implement, and evaluate a novel green sensor man-

agement middleware for single device that rigorously makes tradeoffs be-

tween energy consumption of sensors and accuracy of inferred contexts. The

problem is formulated rigorously as mathematical optimization problems that

(i) minimize the total energy consumption while achieving the required accu-

racy and (ii) maximize the overall accuracy under a given energy budget. Two

optimal algorithms for these two optimization problems are proposed, which

provide the performance bounds. As they may lead to prohibitively long run-

ning time, two efficient heuristic algorithms are then presented, which run in

real-time. Extensive trace-driven simulations are conducted using traces from

real Android users to evaluate the performance of the proposed middleware

and algorithms. The simulation results indicate that the heuristic algorithms:

(i) always terminate in real-time, (ii) result in small optimization gap of up

to ∼ 2%, and (iii) lead to better performance for larger problems. We also

implement and evaluate the proposed middleware and algorithms on real An-

droid smartphones, showing their practicality and efficiency.

For the extension, we consider the sensor scheduling on multiple smart-

phones and infrastructure sensors in Chap. 4. We apply the extensive con-

sideration to crowdsensing system. We present a Smartphone Augmented

Infrastructure Sensing (SAIS) system that offers better situation awareness to

officials and civilians for minimizing the amount of generated carbon diox-

ide. The SAIS system minimizes the carbon footprint by solving the task

assignment problem. We mathematically formulate the problems and opti-

mally solve it using optimization problem solvers, and we also proposed an

efficient task assignment algorithm (ETA) for lower running time. Our trace-

driven simulations show the results of our efficient algorithm: (i) saves up to

364 times in carbon footprint, (ii) outperforms by up to 8 times in responding

time, and (iii) achieves a small optimization gap of ∼ 2%.

ii

Contents

中中中文文文摘摘摘要要要 i

Abstract ii

1 Introduction 1

1.1 Sensor Scheduling for Single Device . 2

1.2 Sensor Scheduling for Multiple Devices 3

1.3 Contributions of Thesis . 4

2 Related Work 6

2.1 Sensor Scheduling . 6

2.2 Crowdsensing . 7

3 Sensor Scheduling for Single Mobile Device 9

3.1 Framework :OSM . 9

3.1.1 System Overview . 9

3.1.2 System Architecture . 10

3.2 Sensor Scheduling Problem Formulations 12

3.2.1 Notations . 12

3.2.2 Problem Formulations . 15

3.3 Sensor Scheduling Algorithms . 15

3.3.1 Optimal Sensor Scheduling Algorithms (EMA/AMA) 16

3.3.2 Efficient Energy Minimization Algorithm (EEMA) 17

3.3.3 Efficient Accuracy Maximization Algorithm (EAMA) 18

3.3.4 Heterogeneous Frequency and Sampling Rate 19

3.4 Trace-Driven Simulations for Single Device 21

3.4.1 Setup . 21

3.4.2 Simulation Results . 23

3.5 Experiments . 27

3.5.1 Implementation . 27

3.5.2 Setup . 28

3.5.3 Results . 28

4 Sensor Scheduling for Multiple Devices: CrowdSensing 33

4.1 Framework . 33

4.2 Task Scheduling Problem . 33

4.2.1 System Models . 33

4.2.2 Problem Formulations . 35

4.2.3 Optimal Task Scheduling Algorithm (OPT) 35

iii

4.2.4 Efficient Task Scheduling Algorithm (ETA) 36

4.3 Trace-Driven Simulations for Multiple Devices 37

4.3.1 Simulation Setup . 37

4.3.2 Simulation Results . 38

5 Conclusion and Future Work 42

Bibliography 44

iv

List of Figures

1.1 Context-aware mobile apps (http://nike.com). 2

1.2 Opportunity for saving energy by selectively activating sensors. 2

1.3 SAIS supports sensing modes with diverse human intervention levels. . . 4

3.1 The proposed OSM middleware. 9

3.2 Relation among contexts, combinations, and sensors. 12

3.3 Input/output of the scheduling algorithm. 15

3.4 Efficient Energy Minimization Algorithm (EEMA). 16

3.5 Efficient Accuracy Maximization Algorithm (EAMA). 18

3.6 The dynamics of accuracy degradation. 19

3.7 Setup for energy consumption measurements: (a) the smartphone and (b)

the battery emulator. 21

3.8 Average energy consumption of the EM problem: (a) with α = 25% and

(b) diverse α. 22

3.9 Average precision of the EM problem: (a) with α = 25% and (b) diverse α. 23

3.10 Energy consumption of individual users in a sample EM problem. 23

3.11 Average precision of the AM problem: (a) with E = 52.5 J and (b) diverse

E. 24

3.12 Average energy consumption of the AM problem: (a) with E = 52.5 J

and (b) diverse E. 24

3.13 Scalability of the EEMA algorithm: (a) diverse contexts and (b) diverse

combinations. 25

3.14 Scalability of the EAMA algorithm: (a) diverse contexts and (b) diverse

combinations. 26

3.15 Average energy consumption with heterogeneous frequency and sampling

rate: (a) with α = 25% and (b) diverse α values. 27

3.16 User interface of OSM. 29

3.17 Sample inferred contexts: (a) locations of student 1 and (b) actions of

student 2. 30

v

3.18 Sample correct/wrong contexts: (a) actions of student 1 and (b) locations

of student 3. 30

3.19 Implication of scheduling window sizes on: (a) battery consumption and

(b) achieved precision. 31

3.20 Running time of our proposed algorithms: (a) different number of con-

texts and (b) different number of combinations. 32

4.1 The SAIS system overview. Our focus in on the task assignment algorithms. 34

4.2 Efficient task assignment algorithm. 36

4.3 Completed task ratio of IS, ISOS, and ETA. 38

4.4 Carbon footprint of ETA and OPT while varying number of smartphone

users. 38

4.5 Carbon footprint of ETA and OPT while varying number of queries. . . . 38

4.6 Running time of ETA and OPT while varying number of smartphone users. 38

4.7 Running time of ETA and OPT while varying number of queries. 39

4.8 Completed task ratio while varying number of smartphone users. 39

4.9 Completed task ratio when number of smartphone users is small. 40

4.10 Average carbon footprint while varying number of smartphone users. . . 40

4.11 Average responding time while varying number of smartphone users. . . . 40

4.12 Completed task ratio while varying number of queries. 40

4.13 Average responding time while varying number of queries. 41

vi

List of Tables

3.1 Symbol Table . 14

3.2 The Combinations, Contexts, and Sensors Used in Our Simulations 20

3.3 Sensor Power Consumption of a Samsung Smartphone 22

3.4 Running Time of Various Algorithms (in ms) 25

3.5 Fraction of Correct Inference . 31

3.6 Consumed Battery Level . 31

3.7 Energy Consumption of Sensors and Algorithms (J) 31

vii

viii

Chapter 1

Introduction

Increasingly more mobile applications (apps) leverage the rich set of sensors on the smart-

phones to infer their contexts for enhancing user experiences [9]. A market research

predicts that context-aware apps will affect 96 billion USD of consumer spending in

2015 [14], and several companies, such as Google and Qualcomm, have already provided

libraries [10, 15] for context-aware apps. As an example, Nike+ Running [34], shown in

Fig. 1.1, is a context-aware app using GPS, accelerometer, and other sensors to record the

jogging routes. In the future, multiple apps running at the same time on a smartphone may

request a multitude of overlapping contexts, e.g., location and time. While a context may

be answered by different sets of sensors depending on the requested accuracy and avail-

ability of sensors, uncoordinated and non-optimized use of the sensors by the multiple

apps may turn on redundant sensors, leading to waste of energy. For example, in Fig. 1.2,

while the context required by My ACT [32] app can be inferred by accelerometers, if a

navigation app (such as GoogleMap [16]) is already running on the smartphone with GPS

turned on, the same context should be inferred simply by GPS without the overhead of

activating accelerometers and processing the readings. This illustrative example demon-

strates the opportunity of being green by using a centralized sensor scheduling to selec-

tively activate energy-efficient sensors. While the smartphones become more popular, the

smartphones are equipped by all people in daily life and come with many sensors. This

change allows us to consider the centralized sensor scheduling for reducing the energy

consumption to control the sensors on multiple smartphones. Moreover, we cooperate

and share the sensory data from multiple smartphones and infrastructure sensors, such as

surveillances and thermometers as a crowdsensing system.

1

Figure 1.1: Context-aware mobile apps

(http://nike.com).

AccGPS

?

My Act Google Map

OSMMiddleware

WiFi

?

Figure 1.2: Opportunity for saving energy

by selectively activating sensors.

1.1 Sensor Scheduling for Single Device

We consider the sensor scheduling for sing device. Choosing the best set of sensors to

activate in order to satisfy the needs of various context-aware apps is very challenging.

This is because there exists a tradeoff between context inference accuracy and energy con-

sumption of sensors. On top of that, context-aware apps impose diverse accuracy require-

ments and smartphones have different remaining battery levels at different time. There-

fore, efficiently determining the set of sensors to activate dictates a comprehensive mobile

middleware solution, which brings together various information from apps and sensors.

In this thesis, we propose Optimal Sensor Management (OSM) middleware, which sits

between the context-aware apps and sensors. OSM achieves coordinated and optimized

uses of sensors, and provides efficient sensor management service to the context-aware

apps. To adapt to heterogeneous smartphones and diverse app/user preferences, the OSM

middleware also provides APIs for context-aware apps to send user feedback on inferred

contexts.

The core of the OSM middleware is the sensor scheduling algorithm, which is repeat-

edly invoked to adapt to system dynamics. We develop two mathematical formulations of

the scheduling problems: (i) energy optimization, which strives to find the set of sensors

that consumes the least energy while satisfying the sensing requirements, and (ii) accuracy

optimization, which strives to maximize the overall accuracy under an energy budget. The

OSM middleware allows the user to pick the preferred optimization criteria, which may

also be heuristically determined, e.g., the middleware may minimize energy consumption

only when the battery level is less than 33%. We propose two optimal scheduling algo-

rithms, which give us the performance bounds. However, running the optimal algorithms

2

for large scheduling problems may lead to high running time. Therefore, we also develop

two heuristic, real-time scheduling algorithms for resource-constrained mobile devices.

Moreover, we extend our algorithms to leverage the relationship between the request fre-

quency (how often an app needs each context), sensor sampling rate (how often the sensor

readings are collected), and energy consumption. Doing so gives us even more rooms for

optimization, e.g., a more (less) accurate set of sensors may lead to higher (lower) accu-

racy, and thus can be invoked less (more) often. By changing the frequency and sampling

rates, we essentially cache the higher-layer contexts, which have much lower space re-

quirements than caching the low-level sensor readings. The caching mechanism is not

possible without our detailed accuracy degradation model.

We evaluate the performance of the proposed scheduling algorithms using trace-driven

simulations. The simulation results show that, compared to ordinary mobile OS’s, such

as Android, our proposed algorithms save sensing energy or increase accuracy by 41%

and 72% on average. Moreover, our heuristic algorithms achieve close-to-optimal per-

formance in terms of energy saving and inference accuracy (as close as a ∼ 3% gap is

observed), yet terminate in real-time. We also implement the proposed middleware and

heuristic algorithms on Android and conduct real experiments to demonstrate their prac-

ticality and efficiency. The experiment results show that our middleware achieves high

accuracy, while mobile users opt for minimizing energy consumption may prolong their

battery life by 2 times. Furthermore, our Android implementation runs fast (< 50 ms

running time of the scheduling algorithms) and scales well to larger problems. Last, our

measurement results depict that the energy overhead of our middleware is fairly small:

between 1% and 8%.

1.2 Sensor Scheduling for Multiple Devices

The popularity of smartphones changes the landscape of sensing systems which do not

just consider a single smartphones. These smartphones allow us to augment infrastruc-

ture sensing by coorporating crowdsensing for cost reduction. Crowdsensing [13] refers

to collect sensory data from many smartphones and can be further classified into op-

portunistic sensing and participatory sensing. The difference between the two sensing

modes is the user intervention level, as illustrated in Fig. 1.3. Opportunistic sensing col-

lects sensory data from smartphones without user intervention, while participatory sens-

ing requires users to actively contribute the sensory data, such as shooting and uploading

photos.

We present a Smartphone Augmented Infrastructure Sensing (SAIS) system, which

aims to minimize the total carbon footprint while satisfying all the queries. To the best of

3

Less User Intervention More User Intervention

SAIS

Opportunistic

Sensing

Infrastructure

Sensing

Participatory

Sensing

Figure 1.3: SAIS supports sensing modes with diverse human intervention levels.

our knowledge, using smartphone users to augment the infrastructure sensors by cover-

ing wider areas in on-demand manner, so as to reduce the carbon footprint, has not been

thoroughly studied in the literature. In the current work, we assume that all smartphone

users are both producers and consumers of information about events. That is, via a unified

dashboard mobile application, officials and civilians can help one another to create better

situation-awareness (i.e., they all get to ask/answer questions). For example, a smart-

phone user at a fair may query for the most popular booth at some points, who later on

may offer traffic conditions to others when leaving the fairground. Such naturally-grown

ad-hoc communities motivate smartphone users to participate. The core problem of SAIS

system is (i) sensor scheduling and (ii) worker selection. The worker contains smart-

phone users and infrastructure sensors which can detect events. We consider the tradeoff

between accuracy and the cost of carbon footprint, and jointly formulate and solve these

two problems which focus on the selection of the sensors and workers as a task assign-

ment problem. We propose an optimal algorithm which gives us the performance bounds

and an efficient algorithm which lead a lower running time.

We evaluate a trace-driven simulation with our proposed algorithms. The simulation

results show that our algorithms save the cost of carbon footprint up to 364 times and

improve response time up to 8 times compared to baseline algorithms. Moreover, the

efficient algorithm achieves a small optimization gap of∼ 2% with the optimal algorithm.

1.3 Contributions of Thesis

This thesis makes several contributions.

• We present the OSM middleware to selectively activate some energy-efficient sen-

sors while satisfying the context sensing requirements from many context-aware

apps. We rigorously study the sensor scheduling problem, which is the core issue

in the OSM middleware. We present two optimization problem formulations: en-

ergy minimization and accuracy maximization. We propose four optimal/efficient

algorithms to solve the two formulations.

• We extend our algorithms to solve the more general problems with heterogeneous

4

context frequencies, sensor sampling rates, and accuracy degradation models. The

extended algorithms realize efficient caching of inferred contexts for lower energy

consumption.

• We extensively evaluate the proposed middleware and algorithms in trace-driven

simulations and real experiments. Our proof-of-concept Android implementation

demonstrates the practicality and efficiency of our solution, while the simulations

exercise more system parameters and larger problems.

• For the extension, we present the SAIS system as a crowdsensing which a novel

system considers sensors on multiple smartphones and infrastructure sensors. We

present a task scheduling problem. We propose two optimal/efficient algorithms,

and evaluate the algorithms via trace-driven simulation.

5

Chapter 2

Related Work

2.1 Sensor Scheduling

Mobile context sensing has been studied in the literature. Most existing studies [7,22,27,

30, 43] consider location sensing. Ma et al. [30] propose a system to predict the future

locations of a mobile user based on his/her previous locations. Their prediction algorithm

employs sensor readings from GSM and WiFi for coarse localization, which is more en-

ergy efficient than using GPS sensors. Similarly, Yan et al. [22] propose to combine

movement detection and path tracking for future location predictions to reduce the sam-

pling rate of turning on GPS sensors. Chon et al. [7] present a location service considering

the tradeoff between accuracy and energy consumption. Their system uses Bayesian net-

works to model accuracy and energy consumption, and Hidden Markov Model to predict

users’ locations. Lin et al. [27] also propose a system to minimize the energy consumption

of context sensing under predicted user mobility patterns. Wang et al. [43] rely on exten-

sive training sessions to quantify the tradeoff between accuracy and energy consumption,

assuming various sensors are used. Different from our proposed OSM middleware, these

studies [7,22,27,30,43] only consider location sensing, and thus their solutions are inap-

plicable to our problem.

Contexts other than location have also been recently investigated [29, 39, 47]. Yan et

al. [47] employ accelerometers to classify the mobile user actions, e.g., stand, walk, and

sit. They adjust the sampling rate of reading and processing accelerometer readings to

tradeoff the energy consumption and classification accuracy. Schirmer and Hopfner [39]

propose two algorithms to reduce the usage of energy hungry sensors on smartphones.

The first algorithm picks the most energy efficient way to infer each context. The second

algorithm leverages the relationships among the sensors to choose certain sensors to turn

on. Lu et al. [29] study the tradeoff between energy consumption and sensing accuracy

of three contexts: audio, action, and location. None of the studies [29, 39, 47] consider

6

the inter-dependency among inference algorithms of different contexts: each context is

inferred independently. Therefore, their solutions can not capitalize certain optimization

opportunity, e.g., from the motivative example illustrated in Fig. 1.2.

Nath [33] leverages the inter-dependency between various contexts by using a conjec-

ture algorithm. That is, his system dynamically learns the relationships among contexts,

and tries to satisfy each context requirement by running the conjecture algorithm on the

recently inferred contexts stored in a cache. Different from our work, Nath [33] does not

address the scheduling problem of concurrent and overlapping requirements from multi-

ple apps, nor does it utilize the fact that the sets of sensors used to infer different contexts

may not be mutually disjoint. Kang et al. [21] also takes the inter-dependency among

various contexts into consideration. However, their solution does not consider inference

accuracy and thus may not work well for apps with high accuracy requirements. In con-

trast, our proposed OSM middleware rigorously models: (i) energy consumption of each

sensor and (ii) accuracy of inferring every context using different sets of sensors. The

resulting models are used to find the best set of sensors to activate under system-wide

resource constraints. In this sense, our work is complementary to Nath [33] and Kang et

al. [21].

Pervasive computing community has proposed various context-aware middleware so-

lutions, although they are mostly for PCs and servers [4,20,37]. In contrast, we propose a

middleware specifically designed for smartphones, which are battery-powered with strin-

gent energy constraints. Moreover, each smartphone hosts a large number of apps re-

questing for diverse contexts with different accuracy requirements, and we concentrate

on how to tradeoff inference accuracy and energy consumption.

Last, C. Lin [26] considered simpler versions of the sensor scheduling for a single

smartphone. In his thesis, he proposed two simpler heuristic algorithms and most focused

on the evaluation of middleware on android system. Different from his work, we mathe-

matically formulated the objective problems and solved by two optimal algorithms. We

also proposed two efficient algorithms and jointly considered the caching problem and

frequency of apps requirements by controlling the sampling rates of sensors. Moreover,

we apply the sensor scheduling to more sensors on multiple mobile device and infrastruc-

ture sensors.

2.2 Crowdsensing

Infrastructure sensing has been studied in the literature [8, 19]. Chuvieco and Congal-

ton [8] presented a system to generate fire hazard map using images. Hsieh et al. [19]

proposed a system for accurate vehicle tracking and classification using highway cam-

7

eras. To ease the deployment overhead, crowdsensing using smartphones has also been

considered in more recent work [6, 17, 40, 49]. Talasila et al. [40] employed smartphone

sensors and human inputs to increase the accuracy of location sensors. Hasenfratz et

al. [17] used MiCS-OZ-47 sensors and GPS readers on smartphones to monitor air qual-

ity. Zhou et al. [49] used mobile sensors to identify the bus routes and predict the bus

arrival times. Chon et al. [6] used radio fingerprints of nearby WiFi access points to infer

the current places, e.g., gyms and restaurants.

Certain participatory sensing systems pushed the user intervention level to an extreme

by requesting smartphone users to manually perform sensing tasks or even move to spe-

cific sensing locations [5, 23, 45] for small rewards, which are also referred to as crowd-

sourcing systems [48]. Chon et al. [5] showed that a few smartphones can cover a wide

sensing area. However, they did not consider the energy consumption of each mobile

device. Lane et al. [23] found that the sensing and transmission energy is high when

smartphones are idle. They therefore developed a prediction algorithm to determine the

best sensing and transmission times. Yan et al. [45] leveraged human efforts for validating

the image search results and studied the trade-off between accuracy and human validation

time. Different from our work, these studies [5, 23, 45] did not take in-situ sensors into

considerations.

Coric and Gruteser [11] leveraged the vehicle and infrastructure sensors to provide on-

street vacant parking map. Their work is different from ours, because energy efficiency is

not a concern in their system, while minimizing carbon footprint is the core of our work.

More specifically, we dynamically choose the sensors from in-situ and smartphone sen-

sors to minimize the energy consumption and ensure the sensing coverage. This problem

has not been considered in the previous work. Last, our earlier studies [25] considered

simpler versions of the worker selection for a single smartphone.

8

Chapter 3

Sensor Scheduling for Single Mobile

Device

Application

Middleware

Hardware

API

Context Analyzer

Request Manager

Resource Manager

System Model

Energy

Model

Accuracy

Model

Schedule <Combination, Sampling Rate>

Preprocessor

Battery

Monitor

Request

Queue

<Context , Accuracy, Frequency>

Scheduling

Algorithm

GPS Acc. Cell.

Context

Table

Context Updater Combination

Model

Sensor Readings

Inferred Context

WiFi

Register/

Unregister

Inferred Context

Model Trainer

Feedback

Infer

algo
Infer

algo
Infer

Algo

Infer

Algo

Figure 3.1: The proposed OSM middleware.

3.1 Framework :OSM

We present the architecture of the OSM in this section.

3.1.1 System Overview

Our proposed OSM middleware sits between apps and the hardware. Many context-aware

apps run on smartphones, which may need different contexts at diverse accuracy and

9

frequency. We collectively call a pair of accuracy and frequency as request throughout this

chapter. Apps may register or unregister requests through an Application Programming

Interface (API) at any time. The OSM middleware maintains a database of active requests,

and determines what sensors to activate, and at what sampling rates, so as to satisfy all

active requests from the apps. Making such decisions is not an easy task, because multiple

sets of apps may register for different requests, and each request can be satisfied by using

one or multiple sensors. Each set of sensors is referred to as a combination in this chapter.

For example, a context IsDriving may be inferred by a combination of the GPS and

the accelerometer. Moreover, a context may be inferred by various combinations, which

renders the decisions even harder. For instance, IsDriving may also be inferred using

the microphone.

3.1.2 System Architecture

As illustrated in Fig. 3.1, the OSM middleware consists of an API and four software com-

ponents: (i) request manager, (ii) resource manager, (iii) context analyzer, and (iv) sys-

tem model. These components support the scheduling algorithms by managing requests,

monitoring battery level, inferring contexts, and modeling sensing accuracy. Our OSM

middleware is modularized in the sense that each component can be enhanced without

changing the architecture.

API. The OSM middleware provides APIs for context-aware apps. In particular, each

app uses register()/unregister() to add/remove requests to/from a database

managed by the request manager. Each register() also specifies a callback func-

tion for the request manager to call. The request manager calls the callback functions of

requested apps to pass them the inferred contexts. The apps then act differently based

on the contexts. We support both the periodic and event-driven modes, indicated by the

frequency (zero for the event-driven mode); the default mode is periodic. In the unfor-

tunate cases, where the inferred contexts are incorrect, the apps may call feedback()

to notify the OSM middleware, which then updates some model parameters for dynamic

adaptations.

Request manager. The request manager manages a request queue to keep track of all

registered requests and apps. It also checks if the callback function invocation fails, and

automatically unregisters all the requests from any failed (exited) apps. A preprocessor

is used to aggregate the overlapping requests, which are stored in the context table. By

aggregation, we refer to the process of finding the request with the highest accuracy re-

quirement and the highest frequency for each context. Once we satisfy that request, all

other requests are satisfied. Last, the request manager is also responsible for admission

control, which rejects new requests when resources, such as battery level, are saturated.

10

The precise design of the admission control algorithm is our future work.

Resource manager. The resource manager focuses on resource conservation and

consists of two components: the battery monitor and scheduling algorithm. The battery

monitor continuously checks the battery in terms of voltage, current, and capacity. The

scheduling algorithm takes the context table and system models as inputs, and generates

schedules that specify the combinations of sensors to activate and their sampling rates.

The scheduling algorithm can be configured to either: (i) maximize the overall accuracy

under a given energy budget which is an input from the battery monitor, or (ii) minimize

the total energy consumption while achieving target accuracy levels which are inputs from

apps or users. That is, we support two optimization criteria, and the target energy budget

and required accuracy are chosen by users or determined by heuristics. For instance,

smartphones may maximize the overall accuracy only when the battery level is higher

than 33%.

Context analyzer. The context analyzer analyzes the sensor readings to infer con-

texts, and comprises two components: (i) context updater, which hosts various inference

algorithms for different combinations and contexts, and (ii) model trainer, which takes the

feedback from apps as inputs and updates the model parameters in the system model.

System model. It contains three parts: (i) context model, (ii) accuracy model, and

(iii) energy model. The context model stores the relationship among contexts, infer-

ence algorithms, and sensor combinations, e.g., the action inference algorithm uses the

accelerometer and WiFi to classify the user actions, such as walk, run, and still. The ac-

curacy model captures the accuracy of the contexts inferred by the inference algorithms.

Diverse metrics, such as precision and recall can be used to quantify the inference accu-

racy. Precision is defined as the ratio between the number of correctly inferred contexts

and the total number of contexts reported by the inference algorithms. Recall is defined

as the ratio between the number of correctly inferred contexts and the actual number of

the contexts according to the ground truth. In the rest of this chapter, we use precision

as the accuracy metric given that a fixed recall is enforced for concrete discussions; we

use accuracy when presenting general ideas. The energy model captures the energy con-

sumption of each sensor at different sampling rates. Moreover, the energy model may

be readily extended to also capture the energy consumption of the inference algorithms.

These models may be parameterized, while the parameters are dynamically adjusted by

the model trainer using measurement results.

The core component of the OSM middleware is the scheduling algorithm, which gen-

erates the best schedules specifying sensor combinations and their sampling rates. The

schedules are sent to the sensors via mobile OS’s. For example, sensors in Android smart-

phones are managed by the sensor manager, location manager, and WiFi manager. In the

11

next two sections, we study the design of optimal/efficient scheduling algorithms.

3.2 Sensor Scheduling Problem Formulations

We first present two formulations, in which each request/schedule has a predefined and

fixed frequency/sampling rate for tractability. We will relax this assumption in Sec. 3.3.4.

SensorsCombinationsContexts

IsDriving

IsWalking

IsMeeting

IsFlying

s1 : GPS

s2 : WiFi

s3 : Celltower

s4 : Microphone

c1 : s1

c2 : s2 + s3

c3 : s2 + s4

c4 : s5 s5 : Accelerometer

45%

50%

75%

60%

90%

95%

Figure 3.2: Relation among contexts, combinations, and sensors.

3.2.1 Notations

We first develop notations for the scheduling problem in the OSM middleware. Table 3.1

summarizes the symbols used throughout this paper. We let R be the total number of

requested contexts to be scheduled and S be the total number of sensors on the smart-

phone. We define a request as < yr, fr >, where r (1 ≤ r ≤ R) is the requested context,

yr is the target accuracy, and fr is the desired frequency. If not otherwise specified, we

assume fr is fixed for each context. We let C be the total number of potential sensor

combinations. In theory, we could end up with C = 2S , but in the reality, C ≪ 2S as

many combinations cannot be used to infer any context. We employ a boolean matrix M

to capture the relation between combinations and sensors1. In particular, we let mc,s = 1

(1 ≤ c ≤ C, 1 ≤ s ≤ S) if combination c contains sensor s, and mc,s = 0 otherwise.

Fig. 3.2 illustrates the relationship among sensors, combinations, and contexts. Take this

figure as example, we can select c1 or c4 with different sensors to infer IsDriving at

different accuracy levels. Moreover, a combination may be used to infer multiple contexts

at diverse accuracy levels. Specifically, for context r, combination c achieves an accuracy

of ac,r, where 1 ≤ r ≤ R and 1 ≤ c ≤ C. We collectively call all ac,r as A. Last, we use

es to denote the energy consumption of sensor s, where 1 ≤ s ≤ S in the next scheduling

window T . T is a system parameter, in the order of minutes. We write a schedule as <

xs, ps >, where xs indicates whether the sensor s (1 ≤ s ≤ S) should be activated, and

1Throughout this chapter, we use bold font to denote vectors or matrices.

12

ps represents the sampling rate. Particularly, we let xs = 1 if the sensor s should be turned

on, and xs = 0 otherwise. For now, we assume the sampling rate ps is predetermined and

fixed for each combination and sensor if not otherwise specified.

Next, we present the two scheduling problems and show their hardness.

Problem 1 (Energy Minimization: EM). Given requested contexts r (1 ≤ r ≤ R) and

combinations c (1 ≤ c ≤ C), the EM problem selects a subset of combinations to achieve

the minimum energy consumption while satisfying all the accuracy requirements yr (1 ≤

r ≤ R). Upon the combination subset is chosen, the schedule is set based on the relation

between combinations and sensors (M).

Remark 1 (Hardness of the EM Problem). The EM scheduling problem is NP-Complete.

Proof. We prove the hardness of the EM scheduling problem by reducing the NP-Complete

set cover problem to it in polynomial time. We first present the set cover problem. Given

a set of U elements and a collection of sets V = {Vz|1 ≤ z ≤ Z}, where Vz (for all z)

is a subset of the U elements, find the smallest V∗ ⊆ V so that
⋃

Vz∈V∗ Vz covers all U

elements.

For any set cover problem, we create a corresponding EM problem as follows. We

create a requested context r for each element u, and let R = U . The accuracy require-

ments yr are set to 100% for all r. We create a combination c for each subset in V, and

let C = Z. We then set ac,r = 100% if the subset corresponding to c contains the el-

ement corresponding to r, and ac,r = 0 otherwise. Last, we choose the sensor energy

consumption es (1 ≤ s ≤ S) and the combination/sensor relation M in a way that all

combinations consume unit energy. Because all combinations consume the same amount

of energy, solving the EM scheduling problem is essentially finding the minimum number

of combinations to satisfy all requested contexts, and the results can be readily mapped

back to minimize the number of subsets from V to cover all U elements. In addition, be-

cause: (i) validating a solution can also be done in polynomial time and (ii) the set cover

problem is NP-Complete, the EM scheduling problem is NP-Complete.

Problem 2 (Accuracy Maximization: AM). Given requested contexts r (1 ≤ r ≤ R),

combinations c (1 ≤ c ≤ C), and an energy budget E, the AM problem selects a subset

of combinations to maximize the achieved accuracy without exceeding the energy budget.

Upon the combination subset is chosen, the schedule is set based on the relation between

combinations and sensors (M).

Remark 2 (Hardness of the AM Problem). The AM scheduling problem is NP-Complete.

Proof. We prove the hardness of the AM scheduling problem by reducing the NP-Complete

0/1 knapsack problem to it in polynomial time. We first present the 0/1 knapsack prob-

lem. Given a set of elements u (1 ≤ u ≤ U) with weight wu and value vu, find a set

13

U
∗ of elements so that

⋃
u∈U∗ vu is maximized while

⋃
u∈U∗ wu ≤ Z, where Z is the bag

capacity.

For any 0/1 knapsack problem, we create a corresponding AM problem as follows.

We create C = U combinations and R = U requested contexts, where ac,r = vc if c = r

and ac,r = 0 otherwise. We choose the sensor energy consumption es (1 ≤ s ≤ S) and the

combination/sensor relation (M) in a way that combination c consumes wu energy. Last,

we let energy budget E = Z. Solving the resulting AM scheduling problem is essentially

finding the set of combinations to maximize the total accuracy without exceeding the

energy budget, and the answers can be readily mapped back to maximizing the weight

sum of chosen elements without exceeding the bag capacity. In addition, because: (i)

validating a solution can be done in polynomial time and (ii) the 0/1 knapsack problem is

NP-Complete, we show that the AM scheduling problem is NP-Complete.

Table 3.1: Symbol Table

Symbol Definition

r Requested contexts

yr Accuracy requirement of r

fr Frequency of r

S Total number of sensors

R Total number of requested contexts

C Total number of combinations

mc,s Boolean relation between c and s

M Collection of all mc,s

ac,r Accuracy of using c to infer r

A Collection of all ac,r

es Energy consumption of sensor s

xs Whether to activate sensor s

ps Sampling rate of sensor s

T Scheduling window

E Energy budget

14

3.2.2 Problem Formulations

With the notations defined above, we formulate the EM scheduling problem as:

min
S∑

s=1

esxs (3.1)

s.t.
C

max
c=1

{⌊∑S
s=1 mc,sxs∑S
s=1 mc,s

⌋
ac,r

}
≥ yr, ∀r = 1, 2, . . . , R; (3.2)

xs ∈ {0, 1}, ∀s = 1, 2, . . . , S. (3.3)

The objective function in Eq. (3.1) is to minimize the total energy consumption in each

scheduling window. The constraints in Eq. (3.2) ensure that the resulting schedule satisfies

all the accuracy requirements.

Next, we formulate the AM scheduling problem as:

max
R∑

r=1

C
max
c=1

{⌊∑S
s=1 mc,sxs∑S
s=1 mc,s

⌋
ac,r

}
(3.4)

s.t.
S∑

s=1

esxs ≤ E; (3.5)

xs ∈ {0, 1}, ∀s = 1, 2, . . . , S. (3.6)

The objective function in Eq. (3.4) is to maximize the overall accuracy. The constraint

in Eq. (3.5) ensures the total energy consumption in each scheduling window does not

exceed the energy budget.

Request

Manager
Hardware

Resource

Monitor

Request <yr, fr> Schedule <xs, ps>

Scheduling

Algorithm

System

Model

Figure 3.3: Input/output of the scheduling algorithm.

3.3 Sensor Scheduling Algorithms

We present and analyze four scheduling algorithms in this section. As illustrated in

Fig. 3.3, the scheduling algorithms take inputs from Request Manager, solve the schedul-

ing problems with helps from System Model and Resource Monitor, and send the resulting

schedules to Hardware.

15

3.3.1 Optimal Sensor Scheduling Algorithms (EMA/AMA)

The formulations in Eqs. (3.1)–(3.3) and Eqs. (3.4)–(3.6) are both Integer Programming

(IP) problems, which may be solved by commercial optimization solvers. We adopt

CPLEX [12] optimizer to develop two optimization algorithms. In Eq. (3.2), we use the

floor function to check whether the combinations are feasible. However, CPLEX solver

does not support the floor function. To cope with this limitation, we define intermediate

variables ẑc (1 ≤ c ≤ C) to represent the floor function values of zc (1 ≤ c ≤ C). For the

EM formulations in Eqs. (3.1)–(3.3), we add the following two constraints:

zc ≥ ẑc; (3.7)

ẑc + 1 ≥ zc. (3.8)

Next, we let
∑S

s=1
mc,sxs

∑S
s=1

mc,s
= ẑc, and rewrite the Eq. (3.2) as:

C
max
c=1

(zcac,r) ≥ yr, ∀r = 1, 2, . . . , R. (3.9)

We solve the updated EM formulation, and refer to the optimal algorithm as Energy Min-

imization Algorithm (EMA).

For the AM formulation in Eqs. (3.4)–(3.6), we also add Eqs. (3.7)–(3.8) and rewrite

Eq. (3.4) as:

max
R∑

r=1

C
max
c=1

(zcac,r). (3.10)

We solve the updated AM formulation, and refer to the optimal algorithm as Accuracy

Maximization Algorithm (AMA). While the EMA and AMA algorithms lead to optimal

schedules in terms of energy consumption and inference accuracy, they may suffer from

long running time and thus are not suitable for larger scheduling problems with more

contexts, combinations, or sensors. Hence, we develop two heuristic algorithms in the

next sections.

1: // Input: A, M, R̂; Output: X

2: let X = ∅

3: while R̂ 6= ∅, max
1≤c≤C

gc(A,M,X, R̂) > 0 do

4: for each c = 1, 2, . . . , C do

5: compute gc(A,M,X, R̂) using Eq. (3.13)

6: select c∗ = argmax
c=1,2,...,C

gc(A,M,X, R̂)

7: X←X ∪ {s|mc∗,s = 1}

8: R̂← R̂ − {r|yr ≤ ac∗,r}

Figure 3.4: Efficient Energy Minimization Algorithm (EEMA).

16

3.3.2 Efficient Energy Minimization Algorithm (EEMA)

The Efficient Energy Minimization Algorithm (EEMA) maintains a set R̂, X of unmet

requests and the chosen sensors so far, and iteratively selects combination that leads to

the highest utility value. We define utility of a combination as a fraction of profit and cost.

The profit is the number of unmet requests that can be satisfied by the combination, and

the cost is the additional energy consumption, if the combination is chosen. The algorithm

stops after either: (i) all the requests are met or (ii) no more combinations can be chosen.

Mathematically, we define the profit pc of combination c (1 ≤ c ≤ C) as a function of A

and R̂:

pc(A, R̂) =

∑
1≤r≤R,r∈R̂ 1[ac,r≥yr]∑

1≤r≤R 1[ac,r≥yr]

, (3.11)

where 1 is the indicator function, A is the accuracy model, and R̂ is the set of unmet

requests. We define the cost wc of a combination c (1 ≤ c ≤ C) as a function of M,X:

wc(M,X) =
∑

1≤s≤S,s/∈X

mc,ses, (3.12)

where M is the boolean matrix of relation between combinations and sensors and X keeps

track of the chosen sensors so far. Last, the utility gc(A,M,X, R̂) of a combination c

(1 ≤ c ≤ C) is written as:

gc(A,M,X, R̂) =
pc(A, R̂)

wc(M,X)
. (3.13)

After all iterations, X is the resulting schedule. We note that the denominator of

Eq. (3.13), wc(M,X), could be zero because some sensors (such as proximity sensor)

may be always on for basic smartphone features, and thus incur no additional energy

consumption. To avoid dividing by zero, we replace the denominator of Eq. (3.13) with

max(wc(M,X), 1), where 1 is a small non-zero number.

Fig. 3.4 gives the pseudocode of EEMA. The while loop in lines 3–8 iteratively selects

the sensors of the combination with the highest utility. More specifically, the loop in lines

4–5 computes the latest gc(A,M,X, R̂) using Eq. (3.13) for all combinations. Line 6

picks the combination c∗ with the highest utility. Lines 7 and 8 update the current schedule

and unmet requests.

The EEMA algorithm is inspired by an approximation algorithm of the weighted set

cover problem [35]. However, our EM problem is even more complex in the sense that

each combination comprises multiple sensors, which have diverse energy consumption.

Moreover, multiple combinations may use overlapping sensors. Hence, the EEMA algo-

rithm has to update utility function values in each iteration. This prevents us from proving

an approximation factor for the EEMA algorithm.

17

Remark 3 (Complexity of EEMA). The time complexity of EEMA is O(RC(S +R)). R

and C come from the loops starting from lines 3 and 4, respectively. S and R come from

computing wc(M,X) and pc(A, R̂), respectively. Lines 6, 7, and 8 dominate. Hence, the

time complexity is O(RC(S +R)).

1: // Input: A, M; Output: X

2: let eX = 0, W = {1, 2, . . . , C}, Ŷ = 0

3: while W 6= ∅ do

4: for each c = 1, 2, . . . , C do

5: compute g′c(A,M,X, Ŷ) with Eq. (3.15)

6: select c∗ = argmaxc∈W g′c(A,M,X, Ŷ)

7: W←W − {c∗}

8: if eX + wc∗(M,X) < E then

9: X←X ∪ {s|mc∗,s = 1}

10: eX =
∑S

s=1 esxs

11: for each r = 1, 2, . . . , R do

12: if ŷr ≤ ac∗,r then

13: ŷr = ac∗,r

Figure 3.5: Efficient Accuracy Maximization Algorithm (EAMA).

3.3.3 Efficient Accuracy Maximization Algorithm (EAMA)

The Efficient Accuracy Maximization Algorithm (EAMA) algorithm is similar to the

EEMA algorithm. The EAMA algorithm maintains a set of R̂ of unmet requests, a list

of available combinations W (i.e., those have not been selected), the energy consumption

eX and achieved accuracy ŶX with the current schedule X. Its goal is to find a schedule

X with the highest average accuracy without exceeding the energy budget E. While the

cost function wc(M,X) is the same as the one used in the EEMA algorithm, we define a

different profit function as:

p′c(A,X, Ŷ) =
∑

1≤r≤R

ac,r1[ac,r≥max(yr,ŷr(X))], (3.14)

where 1 is the indicator function, and Ŷ(X) = {ŷr(x)|r = 1, 2, . . . , R} is the achieved

accuracy with schedule X. Moreover, the utility function g′c(A,M,X, Ŷ) is written as:

g′c(A,M,X, Ŷ) =
p′c(A,X, Ŷ)

max(wc(M,X), 1)
. (3.15)

Using the utility function, the EAMA algorithm iterates through all combinations in W.

In each iteration, the algorithm selects the combination with the highest utility function

18

value yet satisfying the energy constraint. The algorithm stops once all the combinations

have been considered.

Fig. 3.5 gives the pseudocode of EAMA. The while loop in lines 3–13 iteratively se-

lects the sensors of the combination with the highest utility value. In particular, the loop

in lines 4–5 computes the latest g′c(A,M,X, Ŷ) using Eq. (3.15) for all combinations.

Line 6 picks the combination c∗ with the highest utility, and line 7 updates the available

combinations. The if-clause between lines 8–13 checks if activating the sensors of com-

bination c∗ would lead to energy consumption within the energy budget. If yes, lines 9,

10 and the loop starting from line 11 update schedule X, total energy consumption eX,

and the achieved accuracy Ŷ, respectively.

The EAMA algorithm is inspired by an approximation algorithm of the 0/1 knapsack

problem [38]. However, the considered AM problem is more complex in the sense that

the utility function depends on the current schedule X and the current achieved accuracy

Ŷ. This prevents us from providing an approximation factor for the EAMA algorithm.

Remark 4 (Complexity of EAMA). The time complexity of EAMA is O(C2(S + R)).

C2 comes from the loops starting from lines 3 and 4. S and R come from computing

wc(M,X) and p′c(A,X, Ŷ), respectively. Lines 8–13 dominate. This yields the time

complexity of O(C2(S +R)).

3.3.4 Heterogeneous Frequency and Sampling Rate

0 1/fr 3/fr 4/fr Tfr

Check Point

yr

ac, r

ac, r ac, r

(ac, r - hr) 2/fr

2/fr

0

Time

A
cc

u
ra

cy
(%

)

1/ps 2/ps

Figure 3.6: The dynamics of accuracy degradation.

We relax the assumption of fixed frequency/sampling rate in this section. So far, the

proposed scheduling algorithms assume that request frequencies fs = 1/T are homoge-

neous and sampling rates ps are pre-determined by individual inference algorithms. Such

assumption is reasonable if the smartphone users are in relatively stable environments.

However, when smartphone users are in more dynamic environments, the inference accu-

racy of each context will degrade over time within a scheduling window. Take location

19

Table 3.2: The Combinations, Contexts, and Sensors Used in Our Simulations
Context Sensor

Combination IsSitting IsStanding IsWalking IsRunning InMeeting IsDriving Acc. Blue. WiFi Mic. GPS Cell.

YAN [47] 95 91 83.8 0 73.86 74 1 0 1 0 1 0

CenceMe [31] 68 78 94 74 68 74 1 1 0 1 1 0

EEMSS [43] 89.44 0 78.2 90 0 63.86 1 1 1 0 1 0

EEMSS2 [43] 99.44 0 88.2 100 0 73.86 1 1 1 1 1 0

SAMMPLE [46] 0 0 0 0 68 0 1 0 0 0 1 0

SAMMPLE2 [46] 0 0 0 0 57 0 1 0 0 0 0 0

OTHER1 50 59 66 70 96 91 0 0 1 0 0 1

OTHER2 35 54 56 60 86 76 1 0 0 0 0 1

as example, suppose a mobile user moves at a constant speed, the location accuracy de-

creases along the time, while higher speed results in faster rate of accuracy degradation.

To model the accuracy degradation, we let hr be the degradation rate of context r,

where r = 1, 2, . . . , R. At the beginning of a scheduling window, the accuracy of inferred

context r is ac,r (assuming combination c is used to infer r). Since the apps requesting

for r get the inferred context at time 0 (related to the scheduling window), apps need

another update at 0 + 1
fr

, where fr is the frequency of r in Hz. If ac,r −
hr

fr
≥ yr,

the OSM middleware passes the previously inferred context to the apps; otherwise, the

OSM middleware infers the context again, i.e., the sampling rate ps of each sensor s with

mc,s = 1 is larger than fr. Therefore, we refer to 0+ 1
fr

as a check point. Fig. 3.6 illustrates

the dynamics of inference accuracy.

We generalize the above observation as follows. For any context r (r = 1, 2, . . . , R),

there are ⌊Tfr⌋ check points, and our goal is to set the sampling rate ps of relevant sensor s

to be the same as the first check point with the degraded accuracy lower than the requested

accuracy. Mathematically, we write:

ps =

[
max(

⌈
(ac,r − yr)/hr

1/fr

⌉
1

fr
, T)

]−1

. (3.16)

In the ceiling function, the numerator computes the time duration before the accuracy de-

grades below the required accuracy, and the denominator is the time difference between

two check points. Therefore, the ceiling function gives the number of check points an in-

ferred context can last. Multiply the ceiling function by 1/fr again gives a lower bound on

the time interval between two context inferences, which should never exceed the schedul-

ing window T (as captured by the max function). Upon going through all context r,

where r = 1, 2, . . . , R, we may end up with several ps for each sensor s, i.e., s may be

activated by multiple combinations in order to satisfy all the requests. We pick the small-

est ps among all combinations, which yield the heuristic algorithms for heterogeneous

frequency and sampling rate.

20

3.4 Trace-Driven Simulations for Single Device

In Secs. 3.4 and 3.5, we fix the target recall to be 80% and use the resulting precision

as the accuracy metric for concrete discussions. We interchangeably use accuracy and

precision throughout these two sections.

3.4.1 Setup

We have developed a Java-based event-driven simulator to evaluate the proposed OSM

middleware. We have also implemented the proposed scheduling algorithms: the EMA

and AMA for optimal scheduling, and the EEMA and EAMA for efficient scheduling.

The EMA and AMA algorithms utilize CPLEX [12] solver with a time limit of 1 min,

which is quite long for real-time scheduling. For comparisons, we have also implemented

a baseline algorithm, which goes through all the requests, and for each context, it selects

the combination achieving the highest precision.

(a) (b)

Figure 3.7: Setup for energy consumption measurements: (a) the smartphone and (b) the

battery emulator.

We collect app usage traces from 5 Android users (engineers and students between

25 and 35 years old) for 21 days. In particular, we develop an Android app, which saves

the activity stack once every 5 mins. The Android activity stack includes a list of running

apps, and can be converted into a sequence of app launch/exit events. We assume that 10%

of random apps are context-aware. Moreover, each app requests for a context randomly

selected from the 6 contexts listed in Table 3.2. The same table also gives the precision

reported in the literature [31, 43, 46, 47]. The resulting app traces are used to drive our

simulator. Fig. 3.7 shows our energy consumption measurement setup. We take out the

battery from the smartphone, and connect the Agilent 66321D battery emulator [2] to the

21

smartphone. The battery emulator is also connected to a PC via USB, and we record the

voltage and current at 200 Hz for 5 mins. We write an app to turn on/off individual sen-

sors, and compute the power consumption difference with/without sensor activations. We

repeat the measurement 10 times and give the average power consumption in Table 3.3,

where is used in our simulations.

Table 3.3: Sensor Power Consumption of a Samsung Smartphone
Sensor GPS WiFi Cell Acc. Mic. Blue.

Power (mW) 546 16 20 187 62 195

We conduct the simulations on a Linux PC with an Intel 3.4 GHz CPU. We consider

both the EM and AM problems. For the EM problem, we let α be the minimal precision of

individual requests. More specifically, each request is associated with a random precision

uniformly distributed in [α, 100%]. We consider α ∈ {25%, 50%, 75%, 90%}, and report

results from α = 25% if not otherwise specified. For the AM problem, we consider the

energy budget E = {45, 52.5, 60, 67.5, 75} J, with a sampling rate of 1/300 Hz and duty

cycle of 1 min. E is the energy limit in each scheduling window. We report sample results

from E = 60 J, if not otherwise specified. We use T = 5 mins as scheduling window size.

We adopt three performance metrics: (i) energy consumption in J/day, (ii) mean precision

in %, and (iii) running time in ms. We report the simulation results with 95% confidence

intervals whenever applicable.

0 5 10 15 20
0

20

40

60

80

100

Time (day)N
o
r.

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(%
)

Baseline
EEMA
EMA

(a)

25 50 75 90
0

20

40

60

80

100

α (%)N
o
r.

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(%
)

Baseline
EEMA
EMA

(b)

Figure 3.8: Average energy consumption of the EM problem: (a) with α = 25% and (b)

diverse α.

We note that the number of contexts in Table 3.2 is rather limited. Therefore, we also

develop a synthetic trace generator to generate traces with more contexts and combina-

tions, which mimic the future scenarios where context-aware apps become very popular.

In particular, we consider 12 sensors, and vary the number of contexts β ∈ {2, 5, 10, 15, 20}

and the number of combinations γ = {2, 5, 10, 15, 20}. We report the results from β = 15

22

0 5 10 15 20
0

20

40

60

80

100

Time (day)

P
re

ci
si

o
n

(%
)

Baseline
EEMA
EMA

(a)

25 50 75 90
0

20

40

60

80

100

α (%)

P
re

ci
si

o
n

(%
)

Baseline
EEMA
EMA

(b)

Figure 3.9: Average precision of the EM problem: (a) with α = 25% and (b) diverse α.

0 5 10 15 20
0

10

20

30

40

50

Time (day)

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(J
)

User 1
User 2
User 3
User 4
User 5

Figure 3.10: Energy consumption of individual users in a sample EM problem.

and γ = 15 if not otherwise specified. The mapping between combinations and sen-

sors (M) is randomly chosen following a Bernoulli trail with probability 20%. We use

the generated synthetic traces to drive the simulator to evaluate the proposed schedul-

ing algorithms. Furthermore, we also consider heterogeneous frequency/sampling rate

in simulations. We assign a random frequency uniformly distributed in [1, 1/150] Hz to

each request and give every context a random degrading ratio hr uniformly distributed

in [1
3
%, 1

6
%]. That is, even with a precision of 100% at the beginning of a scheduling

window, it will drop to 0% before the end of that scheduling window.

3.4.2 Simulation Results

Minimizing energy consumption. We first validate the correctness of the baseline, EMA,

and EEMA algorithms: we find that all requests from apps are satisfied by the resulting

schedules. Next, we normalize the energy consumption achieved by each algorithm to

that of the baseline and plot it in Fig. 3.8(a). This figure reveals that our proposed EEMA

algorithm: (i) outperforms the baseline by at least 30% and (ii) often closely follows the

23

0 5 10 15 20
0

20

40

60

80

100

Time (day)

P
re

ci
si

o
n

(%
)

Baseline
EAMA
AMA

(a)

0 45 52.5 60 67.5 75
0

20

40

60

80

100

E (J)

P
re

ci
si

o
n

(%
)

Baseline
EAMA
AMA

(b)

Figure 3.11: Average precision of the AM problem: (a) with E = 52.5 J and (b) diverse

E.

0 5 10 15 20
0

10

20

30

40

50

Time (day)

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(J
)

Energy Budget

EAMA
AMA

(a)

0 45 52.5 60 67.5 75
0

20

40

60

80

E (J)

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(J
)

Energy Budget

EAMA
AMA

(b)

Figure 3.12: Average energy consumption of the AM problem: (a) with E = 52.5 J and

(b) diverse E.

EMA in terms of energy consumption. We next plot the aggregate results under different

α values in Fig. 3.8(b). This figure shows that the EEMA algorithm constantly leads

to good results, although the optimization room reduces with larger α values. This is

because when the requested precision is higher, all the algorithms are forced to activate the

sensors that are more accurate and energy hungry. Fig. 3.8 shows the effectiveness of our

proposed algorithms for the EM problem. Moreover, we show the mean precision of the

algorithms in Fig. 3.9. Fig. 3.9(a) shows that the EEMA achieves at least 53.60% higher

precision than the baseline and on average only ∼ 3% gap than the EMA. In Fig. 3.9(b),

the improvement of precision decreases when the α increases, as the energy budget is

fixed across different α values. Last, we present the energy consumption of individual

users in Fig. 3.10. Among the 5 users, we found that user 1 consumes the most overall

24

energy, whereas user 3 consumes the least overall energy. A deeper analysis indicates that

user 1 runs the most context-aware apps, on average 5.15 concurrent requests; user 3 runs

the fewest context-aware apps, on average 2.48.

Maximizing precision. We first validate that all the resulting schedules from the

baseline, AMA, and EAMA algorithms always satisfy the energy budget. We calculate

the precision achieved by each algorithm with E = 52.5 J and plot it in Fig. 3.11(a).

This figure reveals that our proposed EAMA algorithm: (i) outperforms the baseline by

72.38% on average and (ii) achieves a small optimization gap of ∼ 0.1% than the AMA.

Fig. 3.11(b) shows the overall precision under different energy budgets. This figure shows

that the AMA algorithm constantly leads to higher precision than baseline. Moreover, the

EAMA algorithm performs well when the energy budget is lower; it even occasionally

outperforms the AMA algorithm (under 1-min cap of execution time), e.g., when E = 60

J. However, when the energy budget is high, the performance of all algorithms is similar,

as the room for optimization is small. Moreover, we plot the energy consumption per day

and the aggregate results under different E values in Fig. 3.12. Fig. 3.12(a) reveals that

algorithms always produce schedules within under the energy budget, and Fig. 3.12(b)

shows that the EAMA saves more energy when E decreases.

Table 3.4: Running Time of Various Algorithms (in ms)

α EMA EEMA E AMA EAMA

25% 58 ≤ 1 45 J 50153 ≤ 1

50% 47 ≤ 1 52.5 J 63316 ≤ 1

75% 22 ≤ 1 60 J 60416 ≤ 1

90% 15 ≤ 1 67.5 J 63267 ≤ 1

2 5 10 15 20
0

20

40

60

80

100

No. ContextsN
o
r.

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(%
)

Baseline
EEMA

(a)

2 5 10 15 20
0

20

40

60

80

100

No. CombinationsN
o
r.

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(%
)

Baseline
EEMA

(b)

Figure 3.13: Scalability of the EEMA algorithm: (a) diverse contexts and (b) diverse

combinations.

25

2 5 10 15 20
0

20

40

60

80

100

No. Contexts

P
re

ci
si

o
n

(%
)

Baseline
EAMA

(a)

2 5 10 15 20
0

20

40

60

80

100

No. Combinations

P
re

ci
si

o
n

(%
)

Baseline
EAMA

(b)

Figure 3.14: Scalability of the EAMA algorithm: (a) diverse contexts and (b) diverse

combinations.

Running time. Table 3.4 reports the running time of all the considered algorithms.

We observe that the EEMA and EAMA run 35.5 and 59288 times faster than the EMA

and AMA. Since the EMA/AMA cannot run in real-time, we do not consider them in the

rest of this chapter. In contrast, the EEMA and EAMA algorithms run in real-time on

commodity PC. We will port the EEMA and EAMA algorithms to Android smartphone

in Sec. 3.5 and measure their running time in a real prototype system.

Scalability. We report the performance of the proposed algorithms with larger prob-

lems using synthetic traces. Fig. 3.13 shows the energy saving of the EEMA algorithm,

compared to the baseline. Fig. 3.13(a) shows that the EEMA algorithm outperforms the

baseline, by at least 71.03% in energy saving. Fig. 3.13(b) shows that more combina-

tions give more rooms for optimization. Fig. 3.14 reports the achieved precision of the

EAMA algorithm. This figure shows that the EAMA outperforms the baseline by up to

53.71% in precision. However, when the problem sizes are small (e.g., 5 contexts or 2

combinations), there may not be any room for the EAMA algorithm to improve over the

baseline.

Heterogeneous frequency/sampling rate. We next extend the EEMA and EAMA al-

gorithms by taking heterogeneous frequency and sampling rate into consideration (Sec. 3.3.4),

and refer to the new algorithms as EEMA∗ and EAMA∗. We first validate that the EEMA∗

and EAMA∗ algorithms always satisfy the precision requirements, even though the sam-

pling rates may be lower (for saving energy). Next, we report the normalized energy

consumption in Fig. 3.15. Fig. 3.15(a) shows that the EEMA and EEMA∗ outperform the

baseline by up to 64.58% and 84.64%, respectively. This also demonstrates the additional

optimization room, ∼ 20%, offered by heterogeneous frequency/sampling rates. On the

other hand, we find that the EAMA and EAMA∗ also outperform the baseline by up to

33.68% and 80.48%, when an even higher energy saving (∼ 45%) due to heterogeneous

26

frequency/sampling rates. The high energy saving can be partially attributed to the high

precision achieved by the EAMA, which grants more space for the EAMA∗ to reduce the

sampling rates to save more energy. Fig. 3.15(b) gives the aggregate energy consumption

under different α values, which shows the room for optimization decreases with larger α

values. Nonetheless, compared to the baseline, significant energy saving is achieved by

our proposed algorithms under all α values.

5 10 15 20
0

20

40

60

80

100

Time (day)N
o
r.

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(%
)

Baseline
EEMA
EAMA
EEMA∗

EAMA∗

(a)

0 25 50 75 90
0

20

40

60

80

100

α (%)N
o
r.

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

(%
)

Baseline
EEMA
EAMA
EEMA∗

EAMA∗

(b)

Figure 3.15: Average energy consumption with heterogeneous frequency and sampling

rate: (a) with α = 25% and (b) diverse α values.

3.5 Experiments

In this section, we report the learned lessons from the OSM Android implementation and

real experiments.

3.5.1 Implementation

We have implemented a proof-of-concept prototype OSM system and the proposed EEMA/EAMA

algorithms on Android (Fig. 3.16). We have also implemented a baseline algorithm for

comparisons, in which apps independently activate the sensors based on their own re-

quirements. Using the OSM API, we have built three context-aware apps: (i) Calorie

Calculator, which periodically recognizes the user action (still/walk/run), (ii) Mobile As-

sistant, which determines the user location (library/home/laboratory/food court), and (iii)

Where to Eat, which recommends food places based on user locations. We install our

software on Samsung and HTC smartphones.

27

3.5.2 Setup

We recruit 7 students and instruct each of them to perform a 2-hour experiment on our

campus. During each experiment, we generate random context requests from context-

aware apps following a Poisson arrival process with a mean inter-request time of 1 min.

The request precision follows a normal distribution with a mean of 70% and a variance

of 1.66%. The context requests from the 3 apps can be classified into: (i) action and (ii)

location contexts. For each student, we divide the 2-hour experiment into two halves.

We periodically prompt students to provide the ground truth. In particular, we use the

ground truth collected in the first hour to train the personalized models, and the ground

truth collected in the second hour to compute the achieved precision. The second hour is

further divided into 3 parts, in which the OSM middleware runs the baseline, EEMA, and

EAMA algorithms, respectively.

On average, each student provides 2732 times of ground truth. We split the 7 students

into two groups for two experiment scenarios. The first scenario includes 3 students with

homogeneous scheduling window sizes of 20 mins, i.e., the scheduling algorithm is in-

voked once every 20 mins. The second scenario includes 4 students with heterogeneous

scheduling window sizes as short as 3.33 mins. We consider three performance met-

rics: (i) energy consumption, which is in battery level (%) or Joules, (ii) execution time,

which is further broken down to request preprocessing, scheduling algorithm, sensor ac-

tivation/reading, and context inference times, and (iii) fraction of the correctly inferred

contexts based on the ground truth.

3.5.3 Results

Fraction of correctly inferred contexts. Fig. 3.17 gives the sample inferred contexts.

Fig. 3.18 presents the sample correct/wrong contexts, which reveal that the majority of

inferred contexts are correct. This demonstrates the effectiveness of our inference algo-

rithms. We give the overall fraction of correct inference in Table 3.5. This table confirms

that our proposed algorithms are correct of 83+%, which is much higher than the mean

precision requirements (inputs) of 70%.

Tradeoff between energy consumption and precision. The proposed EEMA and

EAMA algorithms provide apps/users a choice to exercise the trade-off between energy

consumption and precision. Compared to the baseline, we observe average energy sav-

ing of 61.34% and 22.08%, and average precision of 93.94% and 94.85%, respectively.

Moreover, the precision always exceeds the precision requirements. In addition to the

energy saving due to sensors, we also log the battery level throughout the experiments.

We fully charge the smartphones, and report the drops of battery levels in Table 3.6. This

28

Figure 3.16: User interface of OSM.

table reveals that the proposed OSM middleware may prolong the battery life for up to 2

times. Since our proposed algorithms outperform the baseline by far, we no longer report

results from the baseline algorithm in the rest of this section.

Implication of scheduling window size. We plot the battery consumption and achieved

precision under different scheduling window sizes in Fig. 3.19. We make three observa-

tions: (i) longer scheduling window sizes lead to lower battery consumption at the expense

of lower precision, (ii) EEMA constantly saves more energy compared to EAMA, and (iii)

both EEMA and EAMA achieve very high precision. We note that EEMA may occasion-

ally achieve higher precision than EAMA (e.g., with scheduling window size 10 min) as

indicated in Fig. 3.19(b). This may be attributed to the smaller scale of our experiments;

larger deployment is among our future tasks.

Execution time. We first report the total execution time, which is the time difference

between starting the request preprocessing, and receiving the inferred contexts. The ex-

ecution times with the EEMA and EAMA algorithms are at most 306 ms and 503 ms

in wall clock time. A closer look indicates that majority of the execution time is due to

sensor activation and context inference. For example, an accelerometer based inference

algorithm may read 100 readings in 250-ms duration for analysis, which contributes to the

execution time. Nevertheless, the execution time is negligible compared to the scheduling

29

0 20 40 60

Home

Lab

Library

Food Court

Time (min)

(a)

0 20 40 60

Still

Walk

Run

Time (min)

(b)

Figure 3.17: Sample inferred contexts: (a) locations of student 1 and (b) actions of student

2.

0 600 1200 1800 2400 3000 3600

Wrong

Correct

Time (s)

Baseline EEMA EAMA

(a)

0 600 1200 1800 2400 3000 3600
0

Wrong

Correct

Time (s)

Baseline EEMA EAMA

(b)

Figure 3.18: Sample correct/wrong contexts: (a) actions of student 1 and (b) locations of

student 3.

window, which is in the order of minutes.

To better understand the scalability of our proposed algorithms, we generate synthetic,

larger request traces by varying the number of contexts (combinations) between 7 and 15,

while fixing the number of combinations (contexts) at 7. We then run an 1-hour experi-

ment on a smartphone, and report the average running time in Fig. 3.20. This figure clearly

shows that our EEMA and EAMA algorithms are efficient even on resource-constrained

smartphones. Moreover, the running time increases linearly to the scheduling problem

size. This shows that the EEMA and EAMA scale to more contexts/combinations, which

will become a reality in the future.

Inference algorithms energy consumption. We conduct measurements using the

Agilent 66321D battery emulator [2] and a Samsung smartphone to quantify the sensor

and algorithm energy consumption of three sample inference algorithms: (i) WiFi/location,

(ii) cellular/location, and (iii) accelerometer/action. We invoke each inference algorithm

30

Table 3.5: Fraction of Correct Inference

Student 1 2 3

Baseline (%) 94.63 85.34 89.61

EEMA (%) 97.99 84.98 90.46

EAMA (%) 83.09 86.12 89.84

Table 3.6: Consumed Battery Level

Student 1 2 3

Baseline (%) 12 11 7

EEMA (%) 6 6 6

EAMA (%) 8 8 7

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

Scheduling Window Size (s)

B
a
tt

er
y

C
o
n
su

m
p
ti

o
n

(%
)

EEMA
EAMA

(a)

0 200 400 600 800 1000 1200
0

20

40

60

80

100

Scheduling Window Size (s)

A
ch

ie
ve

d
P

re
ci

si
o
n

(%
)

EEMA
EAMA

(b)

Figure 3.19: Implication of scheduling window sizes on: (a) battery consumption and (b)

achieved precision.

once every minute, and measure the energy consumption. By repeating the measurements

with/without sensor activations and algorithm invocations, we report the average energy

consumption across 5 measurements in Table 3.7. This table shows the energy consump-

tion of sensor, algorithm, and remaining smartphone components (other). We observe

that the inference algorithms only account for a small portion (¡ 5%) of smartphone en-

ergy consumption. Although there are computationally-complex inference algorithms out

there, they will gradually be implemented on special-purpose chips to meet the stringent

energy budget of smartphones, as witnessed recently [42].

Table 3.7: Energy Consumption of Sensors and Algorithms (J)

Inference Algorithm Sensor Algorithm Other

WiFi/Location (J) 3.73 3.48 404.13

Cellular/Location (J) 13.51 22.87 404.13

Accelerometer/Action (J) 4.97 0.23 404.13

31

5 7 9 11 13 15
0

5

10

No. Contexts

R
u
n
n
in

g
T

im
e

(m
s)

EEMA
EAMA

(a)

5 7 9 11 13 15
0

10

20

30

40

50

No. Combinations

R
u
n
n
in

g
T

im
e

(m
s)

EEMA
EAMA

(b)

Figure 3.20: Running time of our proposed algorithms: (a) different number of contexts

and (b) different number of combinations.

32

Chapter 4

Sensor Scheduling for Multiple Devices:

CrowdSensing

4.1 Framework

Fig. 4.1 gives an overview of the proposed system, which consists of the broker, servers,

and users. Users send queries to the broker for the events they are interested in, such as

measuring traffic congestion on a specific street or the degree of crowdness at a popular

fair. Both smartphone users and in-situ sensors are referred to as workers. The servers

collect sensory data from workers and run analysis algorithms to derive the answers. Last,

the servers return the results to users who issued queries via the broker. The smartphone

users get to ask and answer queries, and each query specifies: (i) the interested event, (ii)

the target accuracy, and (iii) the covered geolocation. The broker is a logically centralized

service and composed of several management modules. Among them, the task assignment

algorithm is responsible for solving the worker selection and sensor scheduling problem.

In the rest of the chaper, we focus on the development of the task assignment algorithm.

4.2 Task Scheduling Problem

4.2.1 System Models

In this chapter, we assume each event is inferred by inference algorithms, and different

inference algorithms employ different combinations of sensors. Let C and S be the sets

of combinations and sensors, respectively. We discretize the map into grids and use L to

denote the set of the locations. We let dl,l′ be the distance between l, l′ ∈ L. W is the set

of workers, and W
∗ is a subset of W consisting of all smartphones. Gw

s,l,l′ is a boolean

indicator, which is 1 if sensor s (s ∈ S) can gather the sensory data of location l′ when

33

. . .

Infrastructure

Sensor

Smartphone

User
Query

. . .

......

Broker

Servers

Task

Assignment

Algorithm

...

Assign Sensing Tasks and Collect Sensory Data

.

Figure 4.1: The SAIS system overview. Our focus in on the task assignment algorithms.

worker w (w ∈W) is at location l; Gw
s,l,l′ is 0 otherwise.

Our problem is to determine the assignments of queries to workers, and the traverse

routes of individual workers. We define two decision variables xw,l,s and Ew
i,j for these

two purposes, respectively. xw,l,s indicates how many times that worker w should perform

sensing at location l with sensor s. Ew
i,j is 1 if worker w moves from location i to location

j. We notice that different requests may have diverse target accuracy levels, and some of

them may dictate multiple workers to sense the same events. Therefore, we use Ol,s to

denote the number of workers that use their sensor s to collect the sensory data of location

l. We write Ol,s as a function of Gw
s,l,l′ and xw,l,s:

Ol,s =
∑

w∈W

∑

l′∈L

Gw
s,l′,lxw,l′,s, ∀s ∈ S, ∀l ∈ L. (4.1)

The sensing energy consumption of worker w while using sensor s is denoted as ew,s,

which includes both sensing and transmission energy. Fw is the residual energy of worker

w, and each worker has his/her own energy threshold θw before he/she exits the crowd-

sensing system. Our goal is to minimize the carbon footprint, which is the total energy

consumption, including both sensing and user movement energy. The current location of

worker w is Aw. mc,s is 1 if combination c ∈ C uses sensor s ∈ S, and is 0 otherwise. R

is the set of queries and fr is the target accuracy for query r ∈ R. The required location

of query r is denoted as rp, and rc is the combination which be selected by EEMA. The

accuracy of inferring query r with rc is denoted as arc . We let τr to be how many times

query r be covered by workers :

τr = min∀s∈S,mrc,s=1{Orp,s}, ∀r ∈ R. (4.2)

Q(τr, arc) is a function returning the sensing quality of the result, which is a final answer

to query r based on the results of combination c from τr nearby workers and the accuracy

of the combination. Q(τr, arc) can be derived using approaches proposed in Liu et al. [28]

and Xing et al. [44]. In fact, we can pre-compute a table using the experiment setup [28,

44] and obtain the accuracy by looking up the table for any locations and combination.

34

4.2.2 Problem Formulations

We formulate a problem of minimizing the overall carbon footprint in the following.

We write the sensing energy consumption of worker w as
∑

l∈L

∑
s∈S ew,sxw,l,s, and the

amount of generated carbon as α
∑

l∈L

∑
s∈S ew,sxw,l,s, where α is a factor in g/J . We

next give the total distance worker w travels as
∑

l,l′∈L dl,l′E
w
l,l′ , and the amount of gen-

erated carbon is given by β
∑

l,l′∈L dl,l′E
w
l,l′ , where β is a factor in g/km. Then, we can

write the objective function as:

min{α
∑

w∈W

∑

l∈L

∑

s∈S

ew,sxw,l,s + β
∑

w∈W∗

∑

l,l′∈L

dl,l′E
w
l,l′}. (4.3)

Moreover, we write all the constraints as:

Q(τr, arc) ≥ fr, ∀r ∈ R; (4.4)

Fw −
∑

l∈L

∑

s∈S

ew,sxw,l,s ≥ θw, ∀w ∈W
∗; (4.5)

∑

j∈L

Ew
j,Aw

= 0, ∀w ∈W
∗; (4.6)

∑

j∈L

Ew
Aw,j =




∑
j∈L

∑
s∈S

⌈
xw,j,s

xw,j,s+1

⌉

|L||S|+ 1



, ∀w ∈W

∗; (4.7)

∑

j∈L∪Aw,j 6=i

Ew
j,i =




∑
s∈S

⌈
xw,i,s

xw,i,s+1

⌉

|S|+ 1



, (4.8)

∀i ∈ L, ∀w ∈W
∗;

∑

j∈L,j 6=i

Ew
i,j ≤




∑
s∈S

⌈
xw,i,s

xw,i,s+1

⌉

|S|+ 1



, ∀i ∈ L, ∀w ∈W

∗. (4.9)

Eq. (4.4) states that the required accuracy fr should be satisfied. The energy constraint

is considered in Eq. (4.5). Eqs. (4.6)–(4.9) ensure the correctness of the paths for smart-

phone users to move to the query locations. Eq. (4.6) states that Aw is the start location

of the path for worker w. Eq. (4.7) shows that worker w should start from Aw and go to a

single next location if worker w is assigned any queries. Eqs. (4.8) and (4.9) ensure that

the locations are dictated by assigned queries.

4.2.3 Optimal Task Scheduling Algorithm (OPT)

The optimization problem is solved by CPLEX [12]. However, the formulation does not

prevent cycles, and we realize a common cycle elimination technique [18, 41], which

iteratively removes a link from any cycle until the solution is cycle free. In particular, we

35

1: Input: Φ =< L,R,W,µ, R̂ >

2: Output: X,E

3: while R̂ 6= ∅ do

4: z = Sensor scheduling(Φ)

5: Compute(Λ) using Eq. (4.11)

6: Sort(Λ)

7: λw,l = pop(Λ)

8: for s ∈ S do

9: xw,l,s = xw,l,s + zw,l,s

10: Ew
Aw,l = 1

11: update(E, W, µ)

12: for r ∈ R do

13: if Q(µrp,r, arc) ≥ fr then

14: remove r from R̂

15: return X,E

Figure 4.2: Efficient task assignment algorithm.

develop an optimal algorithm using CPLEX [12] and the cycle elimination technique [18,

41]. We refer to the algorithm as OPT.

4.2.4 Efficient Task Scheduling Algorithm (ETA)

The OPT algorithm gives the optimal task assignment, but may lead to long running time

for larger problems. We next develop an efficient task assignment algorithm, called ETA.

The algorithm first computes the sensor schedule for each worker to determine the sensors

that should be turned on each location. We let zw,l,s be a boolean variable, which is 1 if and

only if worker w has to turn on sensor s at location l. Once we have the sensor schedule,

we can compute the number of queries that can be covered by worker w at location l,

which is denoted as Tw,l:

Tw,l =
∑

r∈R

⌊∑
s∈S nrc,szw,l,sG

w
s,l,rp∑

s∈S nrc,s

⌋
, ∀w ∈W, l ∈ L. (4.10)

We iteratively assign a task, which consists of the target location and sensor schedule, to

a worker. We define λw,l as the utility of worker w performing tasks at location l:

λw,l =
Tw,l

α
∑

s∈S ew,szw,l,s + βdAw,l

, ∀w ∈W, l ∈ L, (4.11)

Which is a ratio of the number of covered queries and the carbon footprint. We assign

the tasks at location l to worker w who has the largest utility λw,l. ETA algorithm checks

36

whether required accuracy levels of queries are satisfied in each run, and the iteration is

terminated if all the queries are satisfied or the workers cannot perform any more task.

Notice that if the moving cost is higher than the sensing cost, ETA assigns tasks that

are close to workers. If the sensing cost becomes dominating due to advance of vehicle

technologies, ETA may assign some further tasks to workers for higher sensing efficiency.

Fig. 4.2 presents our ETA algorithm. We use µl,r and R̂ to denote the number of

workers performing query r and the set of queries that are not satisfied, respectively. µ

is the set of µl,r. The inputs of the algorithm are L, R, W, µ, and R̂. The algorithm

outputs X and E, which are the sets of xw,l,s and Ew
i,j , respectively. The algorithm works

as follows. First, we compute sensor schedule z, which is the set of zw,l,s, for all the

workers. Second, we compute Λ, which is a heap contains λw,l. λw,l, which has the

largest value, is popped out and we assign the task to worker w. We then update the status

of worker w and µ for all the queries covered by worker w. The for-loop checks whether

the queries are satisfied, if so, remove the queries from R̂. We repeat the process until all

the queries are satisfied or workers cannot perform tasks anymore.

4.3 Trace-Driven Simulations for Multiple Devices

4.3.1 Simulation Setup

We implemented our task assignment algorithm (ETA) and three baseline algorithms:

(i) infrastructure sensors only (IS), (ii) infrastructure sensors with opportunistic sensing

(ISOS), and (iii) optimal (OPT), in a simulator. IS uses infrastructure sensors to pro-

vide sensory data, and ISOS uses infrastructure sensors and opportunistic sensing, where

smartphone users are moving following the random way point model. IS and ISOS are

implemented in Java and OPT is implemented in CPLEX.

For the queries, we use real trace data collected from a popular Bulletin Board System

(BBS) in Taiwan. We collect the traces of posts and use them as queries. The post time

and IP address of the author are query’s time and location. We connect the IP address into

geolocation using IPInfoDB [1]. Since IPInfoDB claims the error range is 25 mile, we

add noise to the transformed locations with normal distribution to make the location more

realistic. The number of queries are varying from {500, 1000, 1500, 2000, 2500}, and if

not specified, we set it to be 2000. We consider six types of events in our simulation, and

each query is asking one of the events. The required accuracy of each query is uniformly

distributed in [50%–100%]. The number of mobile users and infrastructure sensors are

varying from {500, 1000, 1500, 2000, 2500} and {500, 1000, 1500}. If not specified, the

number of smartphone users and infrastructure sensors are 2000 and 1000, respectively.

37

IS ISOS ETA
0

20

40

60

80

100

C
o
m

p
le

te
d

T
a
sk

R
a
ti

o
(%

)

Figure 4.3: Completed task ratio of IS,

ISOS, and ETA.

2 5 8 11 14 17 20
0

300

600

900

1200

1500

1800

2100

2400

2700

Number of Smartphone Users

A
ve

ra
g
e

C
a
rb

o
n

F
o
o
tp

ri
n
t

(g
)

OPT
ETA

Figure 4.4: Carbon footprint of ETA and

OPT while varying number of smartphone

users.

Since we consider all the workers are consumers and producers in our system, we let the

collected locations to be the locations of smartphone users as well. For the infrastruc-

ture sensors, we discretize Taipei City into grids and uniformly distribute infrastructure

sensors in the map. For each smartphone user, we randomly determine the battery capac-

ity. The current energy level and threshold are uniformly distributed in [20%–80%] and

[10%–20%]. The sensor energy and inference algorithm accuracy is derived in Chap 3.

In order to understand the performance of our algorithm, we use (i) completed task

ratio, (ii) carbon footprint, (iii) running time, and (iv) responding time to be our metrics.

The responding time is defined as the time difference between the broker receives the

query and the query is satisfied.

4.3.2 Simulation Results

2 5 8 11 14 17 20
0

300
600
900

1200
1500
1800
2100
2400
2700
3000

Number of Queries

A
ve

ra
g
e

C
a
rb

o
n

F
o
o
tp

ri
n
t

(g
)

OPT
ETA

Figure 4.5: Carbon footprint of ETA and

OPT while varying number of queries.

2 5 8 11 14 17 20
0

30
60
90

120
150
180
210
240
270
300
330

Number of Smartphone Users

R
u
n
n
in

g
T

im
e

(s
)

OPT
ETA

Figure 4.6: Running time of ETA and OPT

while varying number of smartphone users.

Advantage of combining infrastructure sensing and Crowdsensing. Fig. 4.3 shows

38

2 5 8 11 14 17 20
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Number of Queries

R
u
n
n
in

g
T

im
e

(s
)

OPT
ETA

Figure 4.7: Running time of ETA and OPT

while varying number of queries.

0 500 1000 1500 2000 2500
0

10
20
30
40
50
60
70
80
90

100

Number of Smartphone Users

C
o
m

p
le

te
d

T
a
sk

R
a
ti

o
(%

)

ISOS
ETA

Figure 4.8: Completed task ratio while

varying number of smartphone users.

the benefit of using both infrastructure sensors and smartphone sensors. It shows that

infrastructure sensors can only cover 0.52% locations, and smartphone users can signif-

icantly improve the coverage of the system. Although ISOS improves the coverage to

22%, it still suffers from 78% incomplete queries. ETA instructs smartphone users to the

required locations and thus covers more locations. Hence, we don’t consider IS in the

following experiments.

The performance gap between ETA and OPT is small. We compare the perfor-

mance of ETA and OPT in two settings: (i) different number of workers with 10 queries

and (ii) different number of queries with 10 workers. The carbon footprint gap is shown

in Fig. 4.4 and Fig. 4.5. As the figures show, ETA consumes almost the same carbon foot-

print as OPT does, where the gaps are about 2% in Fig. 4.4 and 14% in Fig. 4.5. However,

ETA has shorter running time, which is shown in Fig. 4.6 and Fig. 4.7. In particular, when

the numbers of smartphone users or queries are huge, the running of time of ETA is 1333

times faster than OPT. Hence, we do not consider OPT in the following experiments.

ETA outperforms ISOS in many aspects. Fig. 4.8 reveals that more smartphone

users indeed improve the completed task ratio of ISOS but still far behind 100%. In con-

trast, ETA achieves 100% completed task ratio with very few smartphone users. Fig. 4.9

shows that ETA achieves 95% when there are 4 smartphone users in the system, and

achieves 99% with only 8 smartphone users. However, ISOS leads to a terrible com-

pleted task ratio almost 0%. This may be attributed to the fact that some queries are at

remote locations, and opportunistic sensing cannot direct smartphone users to perform

the tasks. Therefore, it is really hard for smartphone users opportunistically satisfy all

queries. Fig. 4.10 gives the average carbon footprint of each query while varying the

number of smartphone users. ISOS consumes up to 364 times higher energy than ETA,

and ETA results in constant carbon footprint. This is because workers in ISOS are wan-

dering and wasting large amount of energy on moving, which becomes more severe when

39

the number of smartphone users increases. We show the average responding time of ISOS

and ETA in Fig. 4.11. The average responding time of ISOS is up to 8 times higher than

ETA. This is because smartphone users are moving whatever they want in ISOS, and ETA

directs smartphone users to preferred locations. The responding time of ISOS is slightly

decreasing when the number of smartphone users is growing. It is intuitive that more

smartphone users in the system, more chance the tasks be covered by some of the users.

We show the scalability of ETA is good when number of queries is growing in Fig. 4.12.

As Fig. 4.12 shows, the completed task ratio of ISOS is lower than 23% and ETA still

achieves 100%. The average responding time of varying the number of queries is shown

in Fig. 4.13. ETA has smaller responding time compare to ISOS: up to 8 times faster than

ISOS.

2 4 8 16 32
0

10
20
30
40
50
60
70
80
90

100

Number of Smartphone Users

C
o
m

p
le

te
d

T
a
sk

R
a
ti

o
(%

)

ISOS
ETA

Figure 4.9: Completed task ratio when

number of smartphone users is small.

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Number of Smartphone UsersA
v
er

a
g
e

C
a
rb

o
n

F
o
o
tp

ri
n
t

(g
)

ISOS
ETA

Figure 4.10: Average carbon footprint

while varying number of smartphone users.

0 500 1000 1500 2000 2500
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

Number of Smartphone UersA
ve

ra
g
e

R
es

p
o
n
d
in

g
T

im
e

(h
r)

ISOS
ETA

Figure 4.11: Average responding time

while varying number of smartphone users.

0 500 1000 1500 2000 2500
0

10
20
30
40
50
60
70
80
90

100

Number of Queries

C
o
m

p
le

te
d

T
a
sk

R
a
ti

o
(%

)

ISOS
ETA

Figure 4.12: Completed task ratio while

varying number of queries.

40

0 500 1000 1500 2000 2500
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

Number of QueriesA
ve

ra
g
e

R
es

p
o
n
d
in

g
T

im
e

(h
r)

ISOS
ETA

Figure 4.13: Average responding time while varying number of queries.

41

Chapter 5

Conclusion and Future Work

Context-aware apps are getting increasingly popular. Multiple apps may run at the same

time on a smartphone and request for several overlapping contexts. In this thesis, we

studied the problem of developing a green middleware for single smartphone to sup-

port efficient context inference in terms of energy consumption and accuracy. More-

over, we proposed a crowdsensing system which cooperating sensors on multiple smart-

phones. In Chap. 3, We presented the OSM middleware to selectively activate some

sensors while considering the context sensing requirements from many context-aware

apps. The OSM middleware is one of the first attempts to solve this problem in a co-

ordinated and optimal manner. We also rigorously studied the scheduling problem–the

core issue in the OSM middleware. We gave two optimization problem formulations:

energy- and accuracy-optimization. We then proposed two optimal algorithms: EMA and

AMA and two heuristic algorithms: EEMA and EAMA. We further extended the EEMA

algorithm to EEMA∗ algorithm, which leverages the heterogeneous frequency and sam-

pling rate for even higher energy saving. Our extensive trace-driven simulations show

that: (i) EEMA/EAMA run in real-time, (ii) EEMA/EAMA achieve close-to-optimal per-

formance, as small as ∼ 2% and ∼ 1% gap are observed, (iii) EEMA/EAMA/EEMA∗

lead to better performance with more contexts and combinations. We also implemented

the OSM middleware and the EEMA/EAMA algorithms on Android phones. The real

experiments show the practicality and efficiency of our solution.

We consider the extensive application in Chap. 4, we proposed the SAIS system. We

mathematically formulated the task assignment problem and solve by an optimal algo-

rithm (OPT) and an efficient task assignment algorithm (ETA). We implemented a simu-

lator to evaluate the performance of ETA. Our simulation results show the proposed ETA

algorithm achieves significant performance improvement: (i) up to 364 times improve-

ment in carbon footprint, (ii) up to 8 times improvement in responding time, and (iii) only

2% gap in carbon footprint compare to optimal solution.

42

There are several possible future research directions. For example with single smart-

phone, large-scaled deployments on more diverse smartphone users will better quantify

the potentials of the proposed green OSM middleware. Such performance improvement

might not be huge at this point, but will certainly grow along with the increasing popu-

larity of context-aware apps in next few years. Moreover, there are more extensive ap-

plication about the usage of sensors such as data fusion [28], sharing context [3, 24], and

crowdsensing [36].

43

Bibliography

[1] IPInfoDb. http://www.ipinfodb.com/index.php.

[2] User’s guide, 66321B/D mobile communications dc source. http://cp.

literature.agilent.com/litweb/pdf/5964-8184.pdf.

[3] V. Antila, J. Polet, A. Sarjanoja, P. Saarinen, and M. Isomursu. Contextcapture:

Exploring the usage of context-based awareness cues in informal information shar-

ing. In Proc. of International Academic MindTrek Conference: Envisioning Future

Media Environments(MindTrek ’11), pages 269–275, Tampere, Finland, September

2011.

[4] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.

International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 2007.

[5] Y. Chon, N. Lane, Y. Kim, F. Zhao, and H. Cha. A large-scale study of mobile crowd-

sourcing with smartphones for urban sensing applications. In Proc. of ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’13),

Zurich, Switzerland, September 2013.

[6] Y. Chon, N. Lane, F. Li, H. Cha, and F. Zhao. Automatically characterizing places

with opportunistic crowdsensing using smartphones. In Proc. of ACM Conference

on Ubiquitous Computing (UbiComp’12), pages 481–490, Pittsburgh, Pennsylvania,

September 2012.

[7] Y. Chon, E. Talipov, H. Shin, and H. Cha. Mobility prediction-based smartphone

energy optimization for everyday location monitoring. In Proc. of ACM Conference

on Embedded Networked Sensor Systems (SenSys’11), Seattle, WA, 2011.

[8] E. Chuvieco and R. Congalton. Application of remote sensing and geographic in-

formation systems to forest fire hazard mapping. Remote Sensing of Environment,

29(2):147–159, August 1989.

[9] Context-aware applications. what are they and how can they help your business?

http://tinyurl.com/kjqq2bo.

44

[10] ContextMenus. http://developer.chrome.com/extensions/

contextMenus.html.

[11] V. Coric and M. Gruteser. Crowdsensing maps of on-street parking spaces. In

Proc. of IEEE International Conference on Distributed Computing in Sensor Sys-

tems (DCOSS’13), pages 115–122, Cambridge, MA, May 2013.

[12] IBM ILOG CPLEX optimizer. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.

[13] R. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: Current state and future chal-

lenges. IEEE Communication Magazine, 49(11):32–39, November 2011.

[14] Gartner says context-aware technologies will affect $96 billion of annual consumer

spending worldwide by 2015. http://www.gartner.com/newsroom/id/

1827614.

[15] Gimbal. https://developer.qualcomm.com/

mobile-development/mobile-technologies/

context-aware-gimbal.

[16] GoogleMap. https://maps.google.com/.

[17] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. Participatory air pollu-

tion monitoring using smartphones. In Proc. of International Workshop on Mobile

Sensing, Beijing, China, April 2012.

[18] P. Holub, H. Rudová, and M. Liška. Data transfer planning with tree placement for

collaborative environments. Constraints, 16(3), July 2011.

[19] J. Hsieh, S. Yu, Y. Chen, and W. Hu. Automatic traffic surveillance system for

vehicle tracking and classification. Intelligent Transportation Systems, 7(2):175–

187, June 2006.

[20] K. Kaer. A survey of context-aware middleware. In Proc. of Conference on IASTED

International Multi-Conference: Software Engineering, Innsbruck, Austria, 2007.

[21] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song. SeeMon:

scalable and energy-efficient context monitoring framework for sensor-rich mobile

environments. In Proc. of the International Conference on Mobile Systems, Appli-

cations, and Services (MobiSys’08), Breckenridge, CO, 2008.

45

[22] D. Kim, Y. Kim, D. Estrin, and M. Srivastava. SensLoc: sensing everyday places

and paths using less energy. In Proc. of ACM Conference on Embedded Networked

Sensor Systems (SenSys’10), Zurich, Switzerland, 2010.

[23] N. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao, and H. Cha.

Piggyback crowdsensing (pcs): energy efficient crowdsourcing of mobile sensor

data by exploiting smartphone app opportunities. In Proc. of ACM Conference on

Embedded Networked Sensor Systems (SenSys’13), page 7, Rome, Italy, November

2013.

[24] J. Lee and U. Chandra. Mobile phone-to-phone personal context sharing. In Proc.

of IEEE International Symposium on Communications and Information Technol-

ogy(ISCIT’09), pages 1034–1039, Incheon, Korea, September 2009.

[25] C. Liao and C. Hsu. A detour planning algorithm in crowdsourcing systems for

multimedia content gathering. In Proc. of Workshop on Mobile Video(MoVid’13),

pages 55–60, Oslo, Norway, February 2013.

[26] C.-L. Lin. An Energy/Accuracy-Optimized Framework for Context Sensing on

Smartphones. Master’s thesis, National Tsing Hua University, Taiwan, 2013.

[27] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy trade-off for

continuous mobile device location. In Proc. of International Conference on Mobile

systems, Applications, and Services (MobiSys’10), San Francisco, CA, 2010.

[28] J. Liu, E. Chu, and P. Tsai. Fusing human sensor and physical sensor data. In Proc.

of IEEE International Conference on Service-Oriented Computing and Applications

(SOCA’12), pages 1–5, Taipei, Taiwan, December 2012.

[29] H. Lu, J. Yang, Z. Liu, N. Lane, T. Choudhury, and A. Campbell. The Jigsaw con-

tinuous sensing engine for mobile phone applications. In Proc. of ACM Conference

on Embedded Networked Sensor Systems (SenSys’10), Zurich, Switzerland, 2010.

[30] Y. Ma, R. Hankins, and D. Racz. iLoc: a framework for incremental location-state

acquisition and prediction based on mobile sensors. In Proc. of ACM Conference on

Information and Knowledge Management (CIKM’09), Hong Kong, China, 2009.

[31] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, H. Lu, S. Eisenman, X. Zheng, and

A. Campbell. Sensing meets mobile social networks: the design, implementation

and evaluation of the CenceMe application. In Proc. of ACM Conference on Embed-

ded Networked Sensor Systems (SenSys’08), Raleigh, NC, 2008.

46

[32] My Act. http://xyo.net/android-app/my-act-cXMTrVs/.

[33] S. Nath. ACE: exploiting correlation for energy-efficient and continuous context

sensing. In Proc. of International Conference on Mobile Systems, Applications, and

Services (MobiSys’12), Low Wood Bay, UK, 2012.

[34] Nike. https://play.google.com/store/apps/details?id=com.

nike.plusgps.

[35] V. Paschos. A survey of approximately optimal solutions to some covering and

packing problems. Journal of ACM Computing Surveys, 29(2), 1997.

[36] G. R.K., F. Ye, and H. Lei. Mobile crowdsensing: current state and future challenges.

Communications Magazine, IEEE, 49(32-39), November 2011.

[37] A. Saeed and T. Waheed. An extensive survey of context-aware middleware architec-

tures. In Proc. of IEEE International Conference on Electro/Information Technology

(EIT’10), Normal, IL, 2010.

[38] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. Journal of the

ACM, 22(1), 1975.

[39] M. Schirmer and H. Höpfner. SENST*: approaches for reducing the energy con-

sumption of smartphone-based context recognition. In Proc. of International and In-

terdisciplinary Ionference on Modeling and Using Context (CONTEXT’11), Berlin,

Heidelberg, 2011.

[40] M. Talasila, R. Curtmola, and C. Borcea. Improving location reliability in crowd

sensed data with minimal efforts. In Proc. of Joint IFIP Wireless and Mobile Net-

working Conference (WMNC’13), Dubai, United Arab Emirates, April 2013.

[41] P. Troubil and H. Rudová. Integer linear programming models for media streams

planning. Lecture Notes in Management Science, 2011(3), August 2011.

[42] Ultra-low-power, context-aware motion-recognition platform to result from stmicro-

electronics and movea cooperation. http://www.st.com/web/en/press/

t3468.

[43] Y. Wang, J. Lin, M. Annavaram, Q. Jacobson, J. Hong, B. Krishnamachari, and

N. Sadeh. A framework of energy efficient mobile sensing for automatic user state

recognition. In Proc. of International Conference on Mobile Systems, Applications,

and Services (MobiSys’09), Kraków, Poland, 2009.

47

[44] G. Xing, R. Tan, B. Liu, J. Wang, X. Jia, and C. Yi. Data fusion improves the

coverage of wireless sensor networks. In Proc. of the 15th Annual International

Conference on Mobile Computing and Networking (MobiCom’09), pages 157–168,

Beijing, China, 2009.

[45] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds for accu-

rate real-time image search on mobile phones. In Proc.of the International Con-

ference on Mobile Systems, Applications, and Services (MobiSys’10), pages 77–90,

San Francisco, CA, USA, June 2010.

[46] Z. Yan, H. Jeung, D. Chakraborty, A. Misra, and K. Aberer. SAMMPLE: Detecting

semantic indoor activities in practical settings using locomotive signatures. In Proc.

of International Symposium on Wearable Computers (ISWC’12), Newcastle, UK,

2012.

[47] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer. Energy-efficient

continuous activity recognition on mobile phones: An activity-adaptive approach. In

Proc. of International Symposium on Wearable Computers (ISWC’12), Newcastle,

UK, 2012.

[48] M. Yuen, I. King, and K. Leung. A survey of crowdsourcing systems. In Proc. of

IEEE International Conference on Social Computing (SocialCom’11), pages 766–

773, Boston, MA, USA, October 2011.

[49] P. Zhou, Y. Zheng, and M. Li. How long to wait?: Predicting bus arrival time with

mobile phone based participatory sensing. In Proc. of ACM International Confer-

ence on Mobile Systems, Applications, and Services (MobiSys’12), pages 379–392,

Lake District, UK, June 2012.

48

