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中中中文文文摘摘摘要要要

本論文針對高速通訊網路下非對稱的頻寬和資源問題，提出了一個

在有限資源下的非對稱冗餘消除演算法 (RCARE)，利用多餘的下載頻

寬和接收端的資源，以加速上傳的數據傳輸。該系統可以部署於客戶

端或代理伺服器上。RCARE與現有的非對稱演算法不同，它使用更加

靈活的匹配機制來識別冗餘資料，並使用一個傳送端的暫存器吸收過

高的下載流量。和現有的冗餘消除演算法相比，它提供了一個可根據

資源與效能調整的傳送端暫存器。我們從多個伺服器和校園網路記錄

了真實的流量資料，並利用這些資料評估 RCARE的效能。由我們的

模擬結果顯示， RCARE可比目前的非對稱式通訊演算法達到更高的

上傳增益，以及更低的下載流量。我們也為有限資源的傳送端設計了

動態調整演算法。此演算法可根據目前的樣本資料，預測並分配資源

給目前的數據流，以達到最大的上傳增益。與平均分配資源的基準演

算法相比較，動態調整演算法提高了高達 87％的上傳增益。在前 10%

的實驗結果中 ( 以最佳的上傳增益排序 ) ， RCARE 平均達到了高達

40.5%的上傳增益。
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Abstract

Mobile devices are getting increasingly popular all over the world, includ-

ing developing countries, where mobile users rarely have the Internet access.

In this paper, we propose a Challenged Content Delivery Network (CCDN)

to opportunistically distribute news reports to mobile users with intermittent

Internet access. In particular, we formulate an optimization problem to com-

pute the distribution plans for individual mobile users, so as to maximize the

overall user experience under various resource constraints. Our formulation

jointly considers the characteristics of news reports, mobile users, and inter-

mittent networks. We present a distribution planning algorithm based on the

multidimensional knapsack problem, and we develop several online heuris-

tics to adapt to the system and network dynamics. We conduct extensive

trace-driven simulations to evaluate our proposed CCDN, which demonstrate

that our algorithm: (i) outperforms the baseline algorithms by 55% to 10

times in terms of user experience, (ii) achieves higher system efficiency than

the baseline algorithm–by 37% to 20 times, and (iii) terminates in 12 minutes

for a medium-size network of 150 users. We envision that our CCDN will

allow news providers to reach out to more mobile users, and mobile users to

watch news reports without always-on Internet access.
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Chapter 1

Introduction

1.1 Introduction

All over the world, the speed of urbanization largely exceeds the deployment of network

infrastructure. Although increasingly more people own modern mobile devices, such as

smartphones and tablets, they may not have always-on Internet access. In particular, peo-

ple living in developing cities suffer from weak (or non-existing) network infrastructure,

while people living in developed cities face over-crowded and expensive mobile Internet

access. For example, it is reported that, in India [?], poorly educated people who don’t

even have a SIM card but just use their phones as music players.” Even if we include

the well-developed cities like Cairo, Mumbai, and Shanghai, only 15%, 21%, and 30%

of mobile users in Africa, India, and China have cellular dataplan [7–9]. That is, many

mobile users have no access to online multimedia content, such as news reports, notifica-

tion messages, targeted advertisements, movie trailers, and TV shows. Such digital divide

may occur due to other reasons, e.g., in 2014, crowds in Taiwanese Student Movement

adopt mobile apps for communications due to overloaded cellular infrastructure, while

protesters in Hong Kong use FireChat [5] to avoid ubiquitous government censorship.

Efficient content distribution in these situations remains very challenging and urgently

needs a creative solution.

Let’s consider one day of Amy, who owns a smartphone but couldn’t afford of the

data plan. Amy lives on a farm without the Internet access, and thus Amy can not watch

online news reports in the evenings, when she finally gets some leisure time. Online news

providers, therefore, lose an opportunity to deliver news reports to Amy, and suffer from

degraded impacts to the society. One way to cope with such limitation is to hire Content

Delivery Networks (CDNs) to push news reports to the servers close to the mobile users.

Unfortunately, traditional CDNs do not help Amy, because Amy has no Internet access

at home. On the other hand, Amy’s smartphone is not isolated all day long, as illustrated

1
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Figure 1.1: A usage scenario of the proposed CCDN.

in Fig. 1.1. In particular, Amy drops off and picks up her kids at the school, works at

the city hall, and buys food at the market, where WiFi access is available. By deploying

a local proxy next to each WiFi access point, the proxy can send some news reports to

near-by mobile users, including Amy. Moreover, while Amy commutes, she runs into

other citizens, who may previously have downloaded some news reports and can send

the news reports to Amy as well. Hence, Amy, in fact, has intermittent network access

via a non-traditional network called a challenged network [32], which suffers from high

round-trip time, frequent link downs, long queueing delays, high dynamics, and scarce

resources [19].

In this paper, we propose a Challenged Content Delivery Network (CCDN) to help

news providers reach out to citizens living in rural areas without the Internet access, such

as Amy. The proposed CCDN leverages Amy’s contacts with local proxies and other

mobile users, so as to distribute news reports to Amy. Therefore, Amy can enjoy the

news reports in the evenings, although she does not have the Internet access at home.

The crux of the proposed CCDN is to create a distribution plan, in order to intelligently

distribute news reports: (i) at the best time, (ii) to the right mobile users, and (iii) at

the highest possible quality. The best time refers to the contact with the best channel

condition, which in turn results in faster data transfer and lower energy consumption.

The right mobile users are the mobile users who are likely to watch a given news report,

otherwise the transfer energy is simply wasted. The highest possible quality is measured

as the average user experience across all the watched news reports among all mobile

users. Take Amy as an example, a good distribution plan may: (i) instruct her to get news

reports from the local proxy at the city hall where the number of WiFi users is lower, (ii)

2



suggest her to get entertainment news since Amy loves movies, and (iii) recommend her

to get high-resolution videos for entertainment news reports, but only articles for other

news reports. Computing the best distribution plan is extremely challenging due to the

complex nature of the news reports, mobile users, and intermittent networks in CCDNs.

For example, a news report may include several representations, such as article (including

titles, descriptions, and images), audio, and layered video [37]; mobile users have diverse

commute trajectories and news interests; and cellular networks are vulnerable to fading,

shadowing, and interference that may result in disconnections. Throughout this paper,

we focus on the distribution planning problem, but we also cover other crucial system’s

aspects of the CCDNs.

One way to solve the distribution planning problem is to compute the plan on each

mobile device, which however is suboptimal by nature because each mobile device only

has limited local view and suffers from insufficient computation and storage resources. A

better way to solve the problem is to compute the distribution plan on a distribution server

in the content network of a news provider, as illustrated in Fig. 1.1. More specifically, the

distribution server periodically collects historical traces of news reports, mobile users, and

intermittent networks from all the local proxies, where the local proxies gather the traces

from mobile users. With the historical traces, the distribution server computes the optimal

distribution plan once a day (different frequencies are also possible) for individual mobile

users, based on the global view on the CCDN. Each distribution server manages a set of

local proxies in a geographic region, as mobile users only interact with local proxies and

mobile users in proximity. We allow the mobile users to specify their energy and storage

budgets to prevent depleted batteries and full disks. We envision that the news providers

would deploy low-cost local proxies in the field to boost the penetration rate of their news,

while mobile users will help each other to break the digital divide.

This paper makes the following contributions:

• We propose the Challenged Content Delivery Networks (CCDNs) to distribute news

reports to mobile users with intermittent Internet access, and increase the impacts

of news providers. Prior challenged network studies [32, 34] often consider short

messages, such as hazard and criminal alarms.

• We rigorously formulate and solve the distribution planning problem, which is the

core optimization problem in CCDNs. We consider detailed characteristics of news

reports, mobile users, and intermittent networks, while prior studies only solve the

problem from a single aspect, such as networking [18, 26].

• We conduct extensive simulations using real datasets of news reports, mobile user

trajectories, and user interests to quantify the performance of our proposed CCDNs

3



and algorithms. The simulation results show the merits of our CCDNs, e.g., our

algorithm: (i) outperforms the baseline algorithms by 55% to 10 times in terms

of user experience, (ii) outperforms the baseline algorithms by 37% to 20 times in

terms of system efficiency, and (iii) terminates in 12 mins for a network with 150

users.
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Chapter 2

Related Work

2.1 Opportunistic Networks

The solutions of opportunistic networks can be categorized based on assumptions regard-

ing specific applications and environments. Either naive flooding [41, 42] or controlled

flooding [22] are inefficient forwarding protocols under minimal assumptions. Epidemic

forwarding [42] disseminates messages like spreading a disease, which is the most basic

flooding strategy. Spray-and-wait [41] first spreads many copies of a message on several

mobile devices. These mobile devices carry the message and forward it to the destina-

tion. Controlled flooding [22] considers two metrics: the total number of messages sent

by nodes in the network and the total time that a node wants to a message until the des-

tination node receives the message. The flooding is controlled by simple probabilistic

heuristics, Time-to-live (TTL), passive drop of forwarding packets, and beacon intervals.

More efficient forwarding techniques require more sophisticated assumptions. The

device mobility [13,27], the controlled mobility of some nodes [12,47], and contact histo-

ries [?,29] are also used for more efficient opportunistic networks. Message ferrying [47]

leverages a set of special mobile nodes with non-random, controlled mobility to deliver

and communicate messages. Message ferrying With improves the efficiency of message

delivery and energy consumption based on the knowledge of ferry routes and predictable

mobility. Considering single node mobility, or device mobility in our usage scenario,

Leguay et al. [27] propose a position-based routing mechanism for similar mobility pat-

tern in high-dimensional Euclidean space. Cheng et al. [13] propose a geographic routing

solution which exploits vehicular mobility and navigation systems, and it outperforms

greedy based solutions in terms of packet delivery, such as Greedy Perimeter Stateless

Routing and Greedy Perimeter Coordinator Routing. MV routing [12] is based on the

observed mobility pattern and ensure robust message delivery for nodes on different geo-

graphic locations.
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Capturing intrinsic behavior on social networks, researchers are able to design social-

aware forwarding algorithms [16, 23, 33] that considers ranking or centrality information

of mobile devices. Daly et al. [16] exploit the exchange of betweenness centrality metrics

and local similarity information on social networks for the routing. Mtibaa et al. [33]

propose PeopleRank with the inspiration from PageRank. PeopleRank exploit the most

popular nodes in the social network to forward message, since they are mostly likely to

contact with other nodes. Hui et al. [23] design a social-aware forwarding algorithm that

considers communities and centrality of mobile devices. Similarly, Gao et al. [20] for-

mulate multicast relay selection problem as a knapsack problem using social networks.

Different from these studies, our CCDN systematically distributes news reports with mul-

tiple representations to mobile users who rarely have the Internet access.

Delay-tolerant networking, an architecture of opportunistic networks implementation,

has been studied in the literature [4, 6, 19]. For example, Fall [19] proposes a network

architecture composing of resource-constrained mobile devices, which is essentially an

overlay network above the transport layer. However, These studies focus on shorter mes-

sages, whereas our CCDN system supports multi-layer multimedia content.

2.2 Caching

Several studies consider caching Web contents on mobile devices. Qian et al. [36] reveal

the inefficient cache implementation using HTTP libraries and mobile browsers. Their

results show that the redundant transfers contribute about 20% of the total traffic and

7% of the radio energy consumption. Zhang et al. [46] provide a real implementation of

the Web caching service at the OS kernel level. Their implementation saves 42% traffic

under real user browsing behavior and doubles the Web accessing speed. Lymberopoulos

et al. [30] download Web contents before user requests using a machine learning model,

which predicts future Web accesses and caches 60% of the URL for about 80% users.

These studies are designed for the traditional Internet.

Cooperative caching improves performance of Web applications in opportunistic net-

works. The technique proposed in [45] caches data in a set of easily accessible mobile

devices and exercises the tradeoff between data accessibility and caching overhead. Wang

et al. [44] leverage the popularity ranks to support cooperative caching under opportunistic

networks via Bluetooth or WiFi. Besides, a cooperative caching system [24] is proposed

for interactive Web applications over challenged networks. While our distribution plan-

ning algorithm jointly considers news reports, mobile users, and intermittent networks to

compute the best distribution plan, the prior studies only consider some aspects, e.g., [24]

does not take the characteristics of news reports into consideration.
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2.3 Intermittent Clouds

Intermittent clouds are the cloud with some cloud servers that are not always connected

to the Internet, which are similar to our local proxy servers. Shi et al. [39] design and im-

plement a system that enables computation offloading from mobile devices to intermittent

cloud servers. CirrusCloud [38] investigate the best time for mobile devices to connect

to a central cloud, and offload computations to the cloud through other encountered mo-

bile devices. IC-Cloud [15] focuses on lightweight prediction for mobile devices, such

as connectivity prediction, execution prediction, and usage prediction to make offloading

decisions. We consider the media dissemination problem, which is complementary to the

computation offloading problem.

7



Chapter 3

News Video Distribution System

3.1 System Architecture

3.1.1 Proposed Network Model: Challenged CDNs

The system architecture is presented in Fig. 3.1. The proposed CCDN is an extension of

CDN, and consists of two parts: (i) a content network that distributes news reports over

the Internet to the users all over the world, and (ii) challenged networks where mobile

users rarely have Internet access. Mobile users in challenged networks do not have direct

access to the content network. Therefore, we propose to set up local proxies at popular

locations, such as coffee shops, city halls, schools, and markets, to distribute the news

reports to mobile users whenever they have contacts with local proxies. These mobile

users, therefore, may enjoy the news reports even when Internet access is unavailable.

The contacts among mobile users are also leveraged for exchanging news reports to speed

up the distribution. The distribution planning problem is solved on the distribution server

in the content network. The resulting distribution plans are sent to mobile users via local

proxies. The distribution planning algorithm runs periodically, say once a day, and the

frequency can be adjusted by system administrators.

3.1.2 News Report Model

We consider the online news reports from news providers, such as CNN, BBC, CBC, and

Al Jazeera. Each news report has different representations that are suitable under different

circumstances. For example, for mobile users with a few short contacts, distributing news

videos to them is unrealistic. In contrast, a well-connected tablet computer user may al-

locate more energy and disk budgets for high-resolution news videos. In particular, each

news report can be rendered in the following representations: articles, audio, and layered

video. Each representation contains one or multiple layers, e.g., an audio representation

8
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Figure 3.1: The system architecture of our proposed CCDN.

contains the article and audio layers, and the high-resolution video representation con-

tains all layers. That is, there exists a linear dependency among the layers, and the sizes

of different layers are quite diverse. Last, mobile users perceive different levels of ex-

perience when watching news reports in different representations. The user experience

improvement typically follows a saturated function with more layers, e.g., moving from

nothing to an article is a huge jump, while moving from medium- to high-resolution is

less dramatic.

The distribution planning problem has to determine which news report to send to

which mobile user. Each news report has one or multiple topics, which may be used to

match against mobile user interests. We take a step further and extract keywords from

individual news articles. Upon extracting the keywords from all news reports, we com-

pare the keywords and individual user interests to get a personalized rank on news reports,

which is then mapped into viewing probability following the viewing statistics. The view-

ing probability of each news report and mobile user is an input to the distribution planning

algorithm. The keyword extraction is done in the keyword extractor and the ranking is

done in the ranker.

3.1.3 Mobile User Model

We keep track of the user profile, which consists of various user-specific historical data.

First, each mobile user is interested in different keywords, which may be manually speci-

fied by mobile users, or derived via collecting all the keywords of recently watched news

reports. The most current user interests are used to rank future news reports. Second,

each mobile user moves along different trajectories, which are essentially series of times-

tamped locations. Such trajectories may be generated using GPS readers on smartphones.

Once we get the trajectories of all mobile devices, we compute the user contacts based on

the WiFi range, where each contact includes the duration and network condition. That is,

9



using the trajectories of all mobile users, we compute the contact sequences of individ-

ual mobile users. Our distribution planning algorithm takes the user contacts as inputs to

generate the distribution plan. However, the user contacts may be different each day, and

we rely on the contact predictor to estimate the future user contact. Fortunately, human

mobility is highly predictable and 85% of time a mobile user stays at his/her top 5 favorite

locations [21, 40].

Our distribution planning algorithm computes the distribution plans for all known

users. The distribution server then pushes the distribution plan and user profile of a mobile

user to the local proxies that are on the user’s contacts. The mobile user fetches the

distribution plan when getting into the proximity of any of these local proxies. Some

mobile users may fail to find their own distribution plans, because they are new to the

CCDN or dramatically changed their daily trajectories. We use the user matcher to locate

the plan for the closest, ideally exact, mobile user, so that even if the exact distribution

plan is not available at a local proxy, the most suitable one can be sent to the mobile user.

Specifically, the user matcher computes the similarity between the subject user’s profile

and all known user profiles, to find the exact or closet mobile user.

3.2 Distribution Planning Problem and Solution

3.2.1 Notations

We consider a CCDN that delivers news reports to U mobile users. The mobile users

communicate with the local proxies, and we let S denote the number of local proxies. Let

N be the total number of news reports and L be the number of layers of each news report.

The layer l (1 ≤ l ≤ L) is only decodable if all layers l′ ≤ l have also been received. We

define the delivery unit as a layer of a news report, which is the basic allocation unit. In

particular, unit i = nL + l is a unique identifier pointing to layer l of news report n. We

let ρi (1 ≤ i ≤ NL) be the user experience improvement when receiving unit i in addition

to all the layers beneath it. We let bi be the size of the unit i, and ψu,n be the probability

for mobile user u to watch news report n. We let ψ̄ be the minimal viewing probability: a

mobile user would not request a news report from another mobile user who is unlikely to

watch it.

We let T be the number of time slots that are considered in our formulation, and t = 0

be the starting time slot. We assume that mobile users’ trajectories are given, i.e., each

user’s location at every time slot is provided by some localization techniques. With the

mobile users’ trajectories and local proxies’ locations, the sequence of contacts during

time [0, T ] is determined. We let C be the maximal number of contacts across all mobile

10



devices. Without loss of generality, we assume each contact happens between two parties,

which can be either mobile users or local proxies. If a mobile user concurrently runs into u̇

other parties, it equally divides the contact into u̇ disjoint contacts along the time domain,

where each contact has exactly two parties. That is, simple time-division multiplex is

done to avoid interference due to concurrent transfers. We let pu,c be the other party of

contact c (1 ≤ c ≤ C) of user u (1 ≤ u ≤ U ), where 1 ≤ pu,c ≤ U + S. When pu,c ≤ U ,

it points to mobile user pu,c, while pu,c ≥ U , it points to local proxy pu,c − U . Last, we

write the duration of contact c of user u as κu,c.

Combining the contacts with trajectories, we can estimate the throughput and energy

consumption of each contact. In particular, we write the receiving throughput of contact

c of user u as ru,c, the transmitting per-unit energy consumption as êu,c and the receiving

per-unit energy consumption as ěu,c. Last, we use qu and du to represent the energy and

disk budgets of mobile user u during t ∈ [1, T ]. qu and du are user-specified parameters.

11



3.2.2 Problem Formulation

With the notations developed above, we formulate a distribution planning problem to

determine which units to request during which contacts in order to maximize the overall

user experience. The decision variables are the distribution plans: xu,n,l,c, where 1 ≤ u ≤

U , 1 ≤ n ≤ N , 1 ≤ l ≤ L, and 1 ≤ c ≤ C. xu,n,l,c = 1 if mobile user u requests for unit

nL+ l during contact c; xu,n,l,c = 0 otherwise. The formulation is written as:

max
U∑

u=1

N∑

n=1

L∑

l=1

C∑

c=1

xu,n,l,c ρnL+l ψu,n (3.1a)

st :ψp
u′,c′

,n′ ≥ ψ̄xu′,n′,l′,c′ ∀1 ≤ u′ ≤ U, 1 ≤ n′ ≤ N, 1 ≤ l′ ≤ L,

1 ≤ c′ ≤ C (3.1b)

N∑

n=1

L∑

l=1

bnL+lxu′,n,l,c′ ≤ ru′,c′κu′,c′∀1 ≤ c′ ≤ C, 1 ≤ u′ ≤ U (3.1c)

C∑

c=1

xu′,n′,l′,c ≥
C∑

c=1

xu′,n′,l′′,c ∀1 ≤ u′ ≤ U, 1 ≤ n′ ≤ N,

1 ≤ l′ < l′′ ≤ L (3.1d)

N∑

n=1

L∑

l=1

C∑

c=1

bnL+lxu′,n,l,c ≤ du′ ∀1 ≤ u′ ≤ U (3.1e)

U∑

u=1

N∑

n=1

L∑

l=1

C∑

c=1

{1−min [1,max(pu,c, u
′)−min(pu,c, u

′)]} bnL+l

xu,n,l,cêu′,c +
N∑

n=1

L∑

l=1

C∑

c=1

bnL+lxu′,n,l,cěu′,c ≤ qu′ ∀1 ≤ u′ ≤ U (3.1f)

C∑

c=1

xu′,n′,l′,c ≤ 1 ∀1 ≤ u′ ≤ U, 1 ≤ n′ ≤ N, l ≤ l′ ≤ L (3.1g)

xu,n,l,c ∈ {0, 1} ∀u, n, l, c. (3.1h)

The objective function in Eq. (3.1a) maximizes the expected overall user experience

across all mobile users. Eq. (3.1b) makes sure that mobile users never request a news

report from someone who is unlikely to watch it. Eq. (3.1c) ensures that each contact du-

ration is long enough to complete the planned unit transfer under the given transmission

throughput. Eq. (3.1d) captures the layer dependency, i.e., higher layer l′′ is only decod-

able when all its lower layers l′ are received. Eq. (3.1e) makes sure that the total size

of planned news videos does not exceed the user’s disk budget. Eq. (3.1f) sums up the

transmitting and receiving energy and ensures that it does not exceed the energy budget.

The first part of this constraint accounts for the transmission energy, and the term in the

brace is 1 iff pu,c = u′, which means that mobile user u plans to receive news videos from

12



mobile user u′. The second part accounts for the receiving energy. Eq. (3.1g) ensures that

each user does not receive the same unit multiple times, which results in wasted resources.

3.2.3 Distribution Planning Algorithm

Our problem formulation in Eq. (3.1) is a 0-1 Integer Linear Programming (ILP) problem.

A closer look reveals that our formulation can be converted into a 0-1 Multidimensional

Knapsack Problem (MKP). The MKP problem is written as:

max
J∑

j=1

rjxj (3.2a)

st :
J∑

j=1

wk,jxj ≤ yk ∀k = 1, 2, . . . , K (3.2b)

xj ∈ {0, 1} ∀j = 1, 2, . . . J. (3.2c)

The boolean decision variable xj indicates whether we want to put object j in our knap-

sack, while rj represents the profit of having object j. There are K constraints, where

each constraint k has a resource limit yk, and each object j consumes a given amount

of resource wk,j . The MKP problem strives to pick a subset of objects so that the total

profit is maximized, while none of the constraints are violated. The transformation from

our distribution planning problem to an MKP problem is done as follows. We first let

J = UNLC, and rj = ρnL+lψu,n, where j = uNLC + nLC + lC + c ∀u, n, l, c, which

turns our objective function into MKP’s objective function. Next, for each constraint of

our formulation, we move all the decision variables (along with their coefficients) to the

left hand side, and other constants to the right hand side. We let wk,j be the corresponding

coefficient, and yk be the constant. We can do this because our constraints (Eqs. (3.1b)–

(3.1g)) are all in the form of linear combinations of decision variables. The transformation

yields a corresponding MKP problem.

The MKP problem is solved by several exact and heuristic algorithms proposed in the

literature [43]. Finding the best algorithm for MKP problems is not our focus, and thus we

leverage on a commercial solver [1]. That is, we solve our distribution planning problem

in three steps: (i) transforming it into an MKP problem, (ii) solving the MKP problem,

and (iii) converting the MKP solution into a distribution plan. Our initial tests show that

the running time is quite short for medium-size problems. For larger problems, we may

set a time limit for our problem to trade optimality for running time. While a time limit

may lead to non-optimal distribution plans, we design several online adaptation strategies

(Sec. 3.3.1) to compensate this situation.
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3.3 Practical Concerns

3.3.1 Adaptive Communication Strategies

The distribution server is connected to the local proxies over potentially unreliable or

intermittent links, such as low Earth orbit satellites. However, the distribution planning

algorithm is infrequently invoked, and there is plenty of time for the distribution server

and local proxies to synchronize up in terms of news reports, user profiles, and distribution

plans. In contrast, the contacts in challenged networks are very short, and thus require

adaptive communication strategies. For a mobile device having a contact with a local

proxy, the mobile device first checks if it has a valid distribution plan. If not, the mobile

device requests for a new distribution plan. Upon having a distribution plan, the mobile

device checks if it should request for any outstanding units from the local proxy based

on the distribution plan. Upon the units planned for this contact are all finished, the

units planned for other contacts are requested. Once all the units on the distribution

plan are downloaded, the local proxy generates on-the-fly recommendations by matching

mobile user interests and the news report keywords. The recommendations might be first

presented to mobile users for validation and augmentation. If the contact terminates, the

mobile device aborts the ongoing transfer and waits for the next contact.

For a mobile device having a contact with another one, the mobile devices first ex-

change the outstanding units that are planned to request from each other. Once these units

are done, the mobile devices exchange the outstanding units that are in their plans. When

there are no outstanding units in the plans, the mobile devices show the available units

to mobile users, and allow them to select the news reports to request. If the storage and

energy budgets are used up, the mobile devices abort and wait for the next contacts.

When requesting multiple units, the order is crucial, e.g., requesting a higher layer

earlier is vulnerable to broken layer dependency. Moreover, it is preferred to devote re-

sources to those units that result in the higher user experience improvement normalized to

unit size. More precisely, when a contact is available, each mobile device computes ρu/bu

of the next outstanding layer of each news report. The mobile device requests the unit u∗

with the highest ρu∗/bu∗ . This heuristic is repeated until the contact is over or resources

(e.g., energy and disk) are used up.

3.3.2 Machine Learning on Distribution Servers

Several machine learning algorithms are adopted in our distribution server, which have

more resources and better security, compared to local proxies. Running them on mo-

bile devices takes long time and consumes excessive energy, while running them on local

14



Table 3.1: Sample News Reports

Report 1 2 3 4 5 6 7 8 9 10

Duration (s) 145 1500 1060 132 104 134 144 145 146 195

Article (KB) 4.2 1.0 1.6 1.8 2.9 1.8 0.3 2.1 0.5 1.6

Audio (MB) 0.74 10.4 7.2 1.35 1.09 1.17 1.05 0.74 0.86 1.58

Low-Res Video (MB) 4.6 47 36 4.4 3.4 4.7 4.8 4.6 4.9 6.3

Med-Res Video (MB) 17 178 124 16 13 16 17 17 17 24

High-Res Video (MB) 31 316 221 29 23 29 31 31 31 42

proxies is risky because the proxies are not trustworthy, e.g., they can be stolen from these

public areas. Our keyword extractor derives keywords using topical model techniques,

such as latent semantic analysis [17] and latent Dirichlet allocation [10]. The ranker then

computes user centric ranking using, e.g., RankingSVM [25] and LambdaMART [11].

Last, the contact predictor estimates the future contact locations using either trajectory

pattern [31], social networks [14], or frequency-based approach. Upon the contact loca-

tions are determined, the contact durations can be predicted using the techniques proposed

in, e.g., Li et al. [28]. The cited machine learning techniques are by no mean an exhausted

list, as many techniques are constantly proposed by the research community. In our sim-

ulator, we implement and evaluate a few machine learning algorithms; see Sec. ?? for

details.

3.3.3 Segmenting Video Layers

We have analyzed the layer sizes of typical Al Jazeera news reports. The article and audio

layers are merely 1+ MB at most, but the video layers are quite large1. Therefore, we

define a maximal segment size Z, which is a system parameter. For unit with size b larger

than Z, we divide the unit into ⌈b/Z⌉ segments, where the first ⌈b/Z⌉− 1 segments are in

the size of Z. The segments in the same units are assigned different time-based priorities,

e.g., the news room may manually tag the first one-third of a report as the most important

part and the middle one-third as the least important part. Then, we define the dependency

among the segments by their priorities. By doing so, we ensure that the more important

segments are distributed earlier. For brevity, the user experience improvement of a unit

is equally split among all segments in that unit; more comprehensive approaches are also

possible. The segmentations are done after the distribution plans are computed, because

incorporating the concept of segments in the distribution planning problem increases the

1Strictly speaking, the Al Jazeera videos are not encoded as layered videos [37], as layered codecs are

not widely available yet. We use their sizes to approximate the layered video sizes.
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problem size, which leads to staggering computational overhead.
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Chapter 4

Trace-driven Simulations

4.1 Datasets

We employ three datasets: (i) user contacts, (ii) video reports, and (iii) user interests

to drive our simulator. We adopt two user contact datasets: GeoLife [48] and SIG-

COMM [35]. The GeoLife dataset contains the GPS trajectories of about 180 mobile

users over 4 years. Using the locations of mobile users, we estimate the contacts (includ-

ing duration and throughput) by assuming a WiFi range of 100 m and considering various

modulation and coding schemes. The SIGCOMM dataset contains 76 mobile users’ Blue-

Tooth contacts for slightly over 3 days. We increase the throughput by 10 times, as the

Bluetooth has much lower data rate than WiFi. Since the dataset does not include tra-

jectories, for any contacts that did not actually happen, we use the average throughput of

both parties to approximate it.

For the news video dataset, we collect 27 news reports from Al Jazeera in mid-July

2014, and divide each news report into five layers: article, audio, low-, medium-, and

high-resolution videos. The sizes of each layer is calculated. The shortest and longest

news reports last for 1.73 and 26 minutes, respectively. We adopt Latent Dirichlet allo-

cation [10] to extract keywords from the articles. We get at least 5 keywords per news

report. The resulting keywords are used by the ranker and user matcher. Last, we derive

the user interests by leveraging the user queries in the LETOR [2] dataset. In particular,

we randomly pick a user query, and take the keywords in it to mimic a user’s interests.

The keywords in LETOR dataset are different from our Al Jazeera dataset, and we map

the keywords using their orders of appearance.
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4.2 Simulator Implementation

We have implemented a detailed CCDN simulator using a mixture of Python, C, and

CPLEX to evaluate the performance of our system. Our focus is on the proposed dis-

tribution planning algorithm and online adaptive strategies. The distribution planning

algorithm is executed once a day in our simulations. Upon the distribution plans are com-

puted, our simulator carries out the simulations following the ground truth given in the

real datasets. For comparison, we have also designed three baseline algorithms: (i) the

experience-driven baseline (Basev) that greedily requests the unit with the highest user

experience improvement in each contact, (ii) the centrality-driven baseline (Baseu) that

greedily sends the units to the mobile device with the highest number of contacts, and

(iii) the throughput-driven baseline (Basen) that greedily sends the units to the mobile de-

vice with the best channel condition. The baseline algorithms represent the prior arts, and

each of them considers an aspect of CCDNs: news reports, mobile users, or intermittent

networks. In contrast, our algorithm jointly considers all three aspects for more intelligent

distribution plans.

We repeat each simulation scenario with the four algorithms. We consider the follow-

ing performance metrics:

• User experience: the summation of the user experience of all the watched news

reports.

• Energy consumption: the energy consumption of mobile devices.

• System efficiency: the ratio of user experience and energy consumption.

• Used disk space: the amount of used disk space.

• Missed ratio: the fraction of unavailable news reports among all the user demanded

ones.

• Viewing ratio: the fraction of viewed news reports among all the downloaded ones.

We report the average performance with 95% confidence intervals whenever applicable.

Last, we have also implemented some machine learning algorithms. The contact pre-

dictor keeps track of the historical contacts, and predicts the future contacts based on

frequencies. The ranker employs LamdaMART [11] from RankLib [3] to compute the

ranks based on news report keywords and user interests, and the ranks are mapped to

view probabilities proportional to the discounted cumulative gains. The user matcher

adopts the cosine similarity to compute the distance between any two user profiles.
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4.3 Simulation Scenarios

We conduct two sets of simulations to investigate the performance of: (i) the proposed

CCDNs and (ii) the machine learning algorithms. The first set include 7- and 3-day simu-

lations using GeoLife and SIGCOMM datasets, respectively. The GeoLife dataset is very

sparse: (i) only 3.33% of user-day GPS trajectories are non-empty and (ii) the dataset

spans over the greater Beijing area. Therefore, we focus on a 92 km2 downtown area,

and create a 7-day trace by choosing the most active day of each mobile user. We re-

move the mobile users who never get into the downtown area, which yields a trace with

150 mobile users. Last, 30 local proxies are deployed in the crowded locations. For the

SIGCOMM dataset, we promote 10 mobile users with the most contacts to be the local

proxies. In both cases, we randomly pick 15 news reports every day from the Al Jazeera

dataset. We consider the disk budget in {60, 125, 250, 500} MB, and the energy budget in

{500, 1000, 2000, 4000} J. By default, we set disk (energy) budget to be 250 MB (2000

J). Moreover, WiFi power consumption is 600 mW, and the maximal segment size is 25

MB. Last, we set the user experience improvements of layers 1–3 to be 0.26, and the

medium- and high-resolution videos to be 0.12 and 0.10. The second set of simulations

evaluates the implications of the implemented machine learning algorithms: the contact

predictor and ranker. We conduct the simulations with and without the machine learning

algorithms, and study their performance.

4.4 Results

The proposed CCDN algorithm improves the service quality. Fig. 4.1 reports the

service quality of our CCDN in user experience and missed ratio. We first present sample

results from GeoLife. Fig. 4.1(a) shows that our algorithm outperforms all three baseline

algorithms. The gaps of and Baseu and Basen to our algorithm are large, because these

two algorithms do not take the characteristics of news reports into considerations. In

contrast, Basev considers the user experience improvement of each unit when requesting

for news reports, and thus achieves better user experience: only about 30% worse than

our algorithm. Fig. 4.1(b) gives the missed ratio, which shows that the mobile users miss

about 80% of news reports if Baseu or Basen are employed. In contrast, our algorithm

leads to only about 50% missed ratio in general, while Basev is at most 10% worse than

our algorithm. Next, for each mobile user, we compute the mean user experience and

missed ratio over 7 days. We plot the results in Figs. 4.1(c) and 4.1(d), which clearly

show that our algorithm results in higher user experience and lower missed ratio. Last,

we report sample results from the SIGCOMM dataset in Figs. 4.1(e) and 4.1(f). These two
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figures reveal that our algorithm outperforms Baseu and Basen in terms of service quality.

However, Basev achieves similar service quality than our CCDN algorithm. A closer look

indicates that the SIGCOMM dataset is well connected, and thus all the mobile users

receive at least medium-resolution news reports for all news reports. This in turn leads to

virtually no optimization room to our proposed CCDN algorithm.

The proposed CCDN algorithm is resource efficient. We report the resource effi-

ciency of our proposed CCDN in Fig. 4.2. Fig. 4.2(a) presents the daily system efficiency

of our CCDN, which is the ratio between user experience and energy consumption. This

figure clearly shows that our CCDN algorithm outperforms all three baseline algorithms.

In particular, more than 10 times of improvement is achieved compared to Baseu and

Basen, while up to 25% of improvement is achieved compared to Basev. This indicates

that our CCDN algorithm achieves good service quality in an energy-efficient manner.

Fig. 4.2(b) gives the daily used disk space, which shows that our algorithm uses at most

1/3 of disk space, compared to all three baseline algorithms. This shows that our algo-

rithm is conservative in terms of disk usage as well. Next, we plot the viewing ratio in

Fig. 4.2(c), which reveals that Baseu and Basen suffer from less than half of the view-

ing ratio achieved by our algorithm, while Basev has a viewing ratio 5% lower than our

algorithm. Therefore, our CCDN algorithm wastes the least downloaded news reports.

We also compute the per-user mean performance results in Figs. 4.2(d)–4.2(f), which also

demonstrate that our CCDN algorithm leads to higher system efficiency, less disk space

usage, and higher viewing ratio.

Implications of diverse energy and disk budgets. Next, we vary the energy and

disk budgets and compare the performance of our CCDN algorithm against the baseline

algorithms in Fig. 4.3. Figs. 4.3(a) and 4.3(b) present the service quality under different

energy budgets, which show that more energy budgets lead to higher user experience and

lower missed ratio. We observe that, compared to the baseline algorithms, our CCDN al-

gorithm enjoys the highest user experience boost (> 5 times) and missed ratio reduction

(by half). Figs. 4.3(c) and 4.3(d) show the service quality under different disk budgets.

We make two observations: (i) more disk budgets result in improved service quality for

the three baseline algorithms, and (ii) the CCDN algorithm achieves roughly constant ser-

vice quality under different disk budget. The latter observation indicates that our CCDN

algorithm uses the disk budget in an efficient way, e.g., with only 60 MB disk budget, our

algorithm achieves < 50% missed ratio.

Running time of our CCDN algorithm. In Fig. 4.4, we report the daily running time

of: ranker, problem constructor, and ILP solver. The figures show that the ILP solver runs

fast, but the ranker may take some time. Overall, the daily running times are 12 mins and

100 mins for GeoLife and SIGCOMM datasets. Since we solve the distribution planning
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Figure 4.2: Resource efficiency of our CCDNs: (a) daily system efficiency, (b) daily used

disk space, (c) daily viewing ratio, (d) system efficiency CDF, (e) used disk space CDF,

and (f) viewing ratio CDF. Sample results from GeoLife dataset.
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Figure 4.3: Implications of diverse budgets on the CCDNs: (a) energy budget on user

experience, (b) energy budget on missed ratio, (c) disk budget on user experience, and (d)

disk budget on missed ratio. Sample results from GeoLife dataset.
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Figure 4.4: Daily running time: (a) GeoLife and (b) SIGCOMM datasets.
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Figure 4.5: Daily user experience CDF: (a) with and without the contact predictor and (b)

with and without the ranker.

problem once a day, the running-time is reasonable. If time is a concern, a simpler ranker

may be adopted at the expense of less accurate viewing probabilities.

The machine learning algorithms. We plot the daily user experience with and with-

out the contact predictor in Fig. 4.5(a). The top line indicates the upper bound of the

user experience, which is derived using the ground truth (without the contact predictor).

The bottom line is the expected user experience with the contact predictor, which is com-

puted using our CCDN algorithm. The middle line is the actual user experience, which

is achieved by applying both the distribution plan and the adaptive communication strate-

gies. This figure shows that our adaptive communication strategies effectively increase

user experience to better approach the upper bound. Fig. 4.5(b) presents the user experi-

ence CDF with and without the ranker. This figure shows that our ranker slightly improves

the user experience.
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Chapter 5

System Prototype

We have implemented a proof-of-concept testbed of the proposed CCDN system shown

in Fig. 5.1. The distribution server and local proxies are built on Linux boxes. We realize

our proposed algorithm on the distribution sever, and hostapd, dhcpd, and apache

daemons on local proxies. The local proxies are equipped with 802.11b wireless cards,

and are connected to the distribution server via Internet. We implement a CCDN mobile

app on Android as shown in Fig. 5.1(b), which follows the distribution plan to download

multimedia content whenever it runs into local proxies. It also records timestamped events

and sends them via local proxies to the distribution server as profiles. The distribution

server analyzes the profiles for various inputs, such as contacts, and computes distribution

plans. The News Downloader retrieves news reports from NBC at 5 a.m. everyday as a

cron job. The computed plans and downloaded news reports are sent from distribution

server to mobile users via local proxies.

We set up a distribution server and two local proxies on our campus, and install our

mobile app on 5 Android phones. The distribution server and a local proxy are put in a lab

room (in EECS building), and another local proxy is put in a kitchen (in another general

purpose building). We set the client disk budget to be 2 GB (25% of the total disk) and

energy budget to be 6000 J (20% of the total energy). Every morning, the distribution

server sends the latest 300 news reports to local proxies. Each news report has 5 layers,

including text, audio, and videos transcoded to three different resolutions using FFmpeg

leading to 1500 units every day. Mobile users watch the news reports every evening and

we clean up their disks at 5 a.m. everyday. For any user, we use his/her profile on day

a−1 to predict his/her behavior on day a. We then use the predicted behaviors to compute

the distribution plans and send the plans to mobile users when they run into local proxies.

Fig. 5.2 plots the number of remaining units of users’ distribution plans, remaining

disk budget, and remaining energy budget on a sample day. It reveals that: (i) the numbers

of planed units are diverse, e.g., user5 plans to download 1401 units and user2 plans to
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Figure 5.1: CCDN prototype: (a) system components and (b) interface showing down-

loaded multimedia content.

download 1121 units, (ii) smartphones finish different percentages of their plans, e.g.,

user3 achieves 50% and user4 achieves > 99%, and (iii) shorter contact duration leads

to fewer downloaded units, e.g., user3 only gets 502 units due to the shortest contact

duration.

The current prototype system has some limitations: (i) smartphones cannot download

units from peer smartphones, (ii) better machine learning algorithms shall be adopted to

better leverage mobile user profiles, (iii) large video files shall be segmented into chunks

to efficiently support download resumes, and (iv) the distribution server and local proxies

may be in different geographic locations with diverse network conditions. Some of the

limitations are addressed in Sec. 3.3, and we are continue enhancing the prototype system.
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Figure 5.2: Sample results on March 30, 2015. The remaining: (a) number of units to be

downloaded, (b) disk budget, and (c) energy budget; (d) per-user total contact duration.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, we studied the problem of distributing news reports over challenged net-

works to mobile devices. We proposed a Challenged Content Delivery Network (CCDN),

which carefully plans the distribution of news reports to mobile users. The crux of the pro-

posed CCDN is the distribution planning algorithm, which intelligently distributes news

reports: (i) at the best time, (ii) to the interested mobile users, and (iii) at the highest pos-

sible quality. We formulated this distribution planning problem into a mathematical opti-

mization problem, and we solve the problem utilizing an optimal ILP solver. Furthermore,

we developed several heuristics to adapt to system and network dynamics without recom-

puting the distribution plans. We conducted extensive simulations using real datasets. The

simulation results indicate that our proposed CCDN algorithm results in: (i) better user

experience, (ii) higher system efficiency, (iii) reduced disk usage, (iv) lower missed ratio,

and (v) higher viewing ratio. This work can be extended in several directions. For exam-

ple, we are developing and deploying CCDN prototype systems for developing countries

to demonstrate its practicality and efficiency.
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